Generative Adversarial Networks for Robust Cryo-EM Image Denoising

  • Reference work entry
  • First Online:
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging

Abstract

The cryo-electron microscopy (cryo-EM) becomes popular for macromolecular structure determination. However, the 2D images captured by cryo-EM are of high noise and often mixed with multiple heterogeneous conformations and contamination, imposing a challenge for denoising. Traditional image denoising methods and simple denoising autoencoder cannot work well when the signal-to-noise ratio (SNR) of images is meager and contamination distribution is complex. Thus it is desired to develop new effective denoising techniques to facilitate further research such as 3D reconstruction, 2D conformation classification, and so on. In this chapter, we approach the robust denoising problem for cryo-EM images by introducing a family of generative adversarial networks (GANs), called β-GAN, which is able to achieve robust estimation of certain distributional parameters under Huber contamination model with statistical optimality. To address the denoising challenges, for example, the traditional image generative model might be contaminated by a small portion of unknown outliers, β-GANs are exploited to enhance the robustness of denoising autoencoder. Our proposed method is evaluated by both a simulated dataset on the Thermus aquaticus RNA polymerase (RNAP) and a real-world dataset on the Plasmodium falciparum 80S ribosome dataset (EMPIAR-10028), in terms of mean square error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and 3D reconstruction as well. Quantitative comparisons show that equipped with some designs of β-GANs and the robust 1-autoencoder, one can stabilize the training of GANs and achieve the state-of-the-art performance of robust denoising with low SNR data and against possible information contamination. Our proposed methodology thus provides an effective tool for robust denoising of cryo-EM 2D images and helpful for 3D structure reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    β-GAN has two parameters: α and β, written as (α, β)-GAN in this chapter.

  2. 2.

    We set the same architecture and parameters as https://github.com/nashory/pggan-pytorch and the input image size is 128 × 128.

References

  • Agostinelli, F., Anderson, M., Lee, H.: Adaptive multi-column deep neural networks with application to robust image denoising. In: Advances in Neural Information Processing Systems, pp. 1493–1501 (2013)

    Google Scholar 

  • Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54(11), 4311–4322 (2006)

    Article  MATH  Google Scholar 

  • Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceeding of the International Conference on Machine Learning, pp. 214–223 (2017)

    Google Scholar 

  • Bae, B., Feklistov, A., Lass-Napiorkowska, A., Landick, R., Darst, S.: Structure of a bacterial RNA polymerase holoenzyme open promoter complex. Elife 4, e08504 (2015)

    Article  Google Scholar 

  • Bai, X.C., McMullan, G., Scheres, S.: How Cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 40(1), 49–57 (2015)

    Article  Google Scholar 

  • Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, JMLR Workshop and Conference Proceedings, pp. 37–49 (2012)

    Google Scholar 

  • Bau, D., Zhu, J.Y., Wulff, J., Peebles, W., Strobelt, H., Zhou, B., Torralba, A.: Seeing what a gan cannot generate. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4502–4511 (2019)

    Google Scholar 

  • Bhamre, T., Zhang, T., Singer, A.: Denoising and covariance estimation of single particle Cryo-EM images. J. Struct. Biol. 195(1), 72–81 (2016)

    Article  Google Scholar 

  • Browning, D., Busby, S.: The regulation of bacterial transcription initiation. Nat. Rev. Microbiol. 2(1), 57–65 (2004)

    Article  Google Scholar 

  • Chen, J., Chen, J., Chao, H., Yang, M.: Image blind denoising with generative adversarial network based noise modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3155–3164 (2018)

    Google Scholar 

  • Chen, J., Chiu, C., Gopalkrishnan, S., Chen, A., Olinares, P., Saecker, R., Winkelman, J., Maloney, M., Chait, B., Ross, W. et al.: Stepwise promoter melting by bacterial RNA polymerase. Mol. Cell 78, 275–288.e6 (2020)

    Google Scholar 

  • Cox, M., Cox, T.: Multidimensional scaling. In: Handbook of Data Visualization. Springer, Berlin, pp. 315–347 (2008)

    Google Scholar 

  • Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  • Dai, Z., Yang, Z., Yang, F., Cohen, W.W., Salakhutdinov, R.: Good semi-supervised learning that requires a bad gan. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 6513–6523 (2017)

    Google Scholar 

  • Dong, Z., Liu, G., Ni, G., Jerwick, J., Duan, L., Zhou, C.: Optical coherence tomography image denoising using a generative adversarial network with speckle modulation. J. Biophotonics 13(4), e201960135 (2020)

    Article  Google Scholar 

  • Frank, J.: Three-dimensional electron microscopy of macromolecular assemblies: visualization of biological molecules in their native state. Oxford University Press, New York (2006)

    Book  Google Scholar 

  • Gao, C., Liu, J., Yao, Y., Zhu, W.: Robust estimation and generative adversarial nets. In: Interational Conference on Learning Representation, New Orleans (2019)

    Google Scholar 

  • Gao, C., Yao, Y., Zhu, W.: Generative adversarial nets for robust scatter estimation: a proper scoring rule perspective. J. Mach. Learn. Res. 21, 160–161 (2020)

    MathSciNet  MATH  Google Scholar 

  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  • Gu, H., Unarta, I.C., Huang, X., Yao, Y.: Robust autoencoder gan for cryo-em image denoising (2020)

    Google Scholar 

  • Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)

    Google Scholar 

  • Hua, Y., Li, R., Zhao, Z., Chen, X., Zhang, H.: Gan-powered deep distributional reinforcement learning for resource management in network slicing. IEEE J. Sel. Areas Commun. 38(2), 334–349 (2019)

    Article  Google Scholar 

  • Huber, P.: Robust estimation of a location parameter. In: Breakthroughs in Statistics. Springer, New York, pp. 492–518 (1992)

    Google Scholar 

  • Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representation, Vancouver (2018)

    Google Scholar 

  • Kenzaki, H., Koga, N., Hori, N., Kanada, R., Li, W., Okazaki, K., Yao, X.Q., Takada, S.: CafeMol: a coarse-grained biomolecular simulator for simulating proteins at work. J. Chem. Theory Comput. 7(6), 1979–1989 (2011)

    Article  Google Scholar 

  • Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representation, San Diego (2015)

    Google Scholar 

  • Krivov, G., Shapovalov, M., Dunbrack R.L. Jr.: Improved prediction of protein side-chain conformations with SCWRL4. Proteins: Struct. Funct. Bioinform. 77(4), 778–795 (2009)

    Article  Google Scholar 

  • Krull, A., Buchholz, T.O., Jug, F.: Noise2void-learning denoising from single noisy images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2129–2137 (2019)

    Google Scholar 

  • Kühlbrandt, W.: The resolution revolution. Science 343(6178), 1443–1444 (2014)

    Article  Google Scholar 

  • Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M., Aila, T.: Noise2noise: learning image restoration without clean data. In: Proceeding of the International Conference on Machine Learning, pp. 2965–2974 (2018)

    Google Scholar 

  • Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

  • Marabini, R., Masegosa, I., San Martın, M., Marco, S., Fernandez, J., De la Fraga, L., Vaquerizo, C., Carazo, J.: Xmipp: an image processing package for electron microscopy. J. Struct. Biol. 116(1), 237–240 (1996)

    Article  Google Scholar 

  • Moore, B., Kelley, L., Barber, J., Murray, J., MacDonald, J.: High–quality protein backbone reconstruction from alpha carbons using Gaussian mixture models. J. Comput. Chem. 34(22), 1881–1889 (2013)

    Article  Google Scholar 

  • Murakami, K., Masuda, S., Darst, S.: Structural basis of transcription initiation: Rna polymerase holoenzyme at 4 å resolution. Science 296(5571), 1280–1284 (2002)

    Article  Google Scholar 

  • Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)

    Google Scholar 

  • Okazaki, K., Koga, N., Takada, S., Onuchic, J., Wolynes, P.: Multiple-basin energy landscapes for large-amplitude conformational motions of proteins: structure-based molecular dynamics simulations. Proc. Natl. Acad. Sci. 103(32), 11844–11849 (2006)

    Article  Google Scholar 

  • Punjani, A., Rubinstein, J.L., Fleet, D.J., Brubaker, M.A.: CryoSPARC: algorithms for rapid unsupervised Cryo-EM structure determination. Nat. Methods 14(3), 290 (2017)

    Article  Google Scholar 

  • Quan, Y., Chen, M., Pang, T., Ji, H.: Self2self with dropout: Learning self-supervised denoising from single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1890–1898 (2020)

    Google Scholar 

  • Sarmad, M., Lee, H.J., Kim, Y.M.: Rl-gan-net: a reinforcement learning agent controlled gan network for real-time point cloud shape completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5898–5907 (2019)

    Google Scholar 

  • Scheres, S.: Processing of structurally heterogeneous Cryo-EM data in RELION. In: Methods in Enzymology. Elsevier, Academic Press, vol. 579, pp. 125–157 (2016)

    Google Scholar 

  • Shen, P.: The 2017 Nobel Prize in Chemistry: Cryo-EM comes of age. Anal. Bioanal. Chem. 410(8), 2053–2057 (2018)

    Article  Google Scholar 

  • Su, M., Zhang, H., Schawinski, K., Zhang, C., Cianfrocco, M.: Generative adversarial networks as a tool to recover structural information from cryo-electron microscopy data. BioRxiv, p. 256792 (2018)

    Google Scholar 

  • Tenenbaum, J., De Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  • Tran, L., Nguyen, S.M., Arai, M.: GAN-based noise model for denoising real images. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  • Tripathi, S., Lipton, Z.C., Nguyen, T.Q.: Correction by projection: denoising images with generative adversarial networks (2018)

    Google Scholar 

  • Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceeding of the International Conference on Machine Learning, pp. 1096–1103 (2008)

    Google Scholar 

  • Wang, J., Yin, C.C (2013) A zernike-moment-based non-local denoising filter for cryo-em images. Sci. China Life Sci. 56(4), 384–390

    Article  Google Scholar 

  • Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  • Wang, F., Gong, H., Liu, G., Li, M., Yan, C., **a, T., Li, X., Zeng, J.: DeepPicker: a deep learning approach for fully automated particle picking in Cryo-EM. J. Struct. Biol. 195(3), 325–336 (2016)

    Article  Google Scholar 

  • Warren, B.E.: X-Ray Diffraction. Courier Corporation. Dover Publications; Reprint Edition (1990)

    Google Scholar 

  • Wei, D.Y., Yin, C.C.: An optimized locally adaptive non-local means denoising filter for cryo-electron microscopy data. J. Struct. Biol. 172(3), 211–218 (2010)

    Article  Google Scholar 

  • Wong, W., Bai, X.C., Brown, A., Fernandez, I., Hanssen, E., Condron, M., Tan, Y.H., Baum, J., Scheres, S.: Cryo-EM structure of the Plasmodium falciparum 80s ribosome bound to the anti-protozoan drug emetine. Elife 3, e03080 (2014)

    Article  Google Scholar 

  • Wüthrich, K.: NMR with proteins and nucleic acids. Europhys. News 17(1), 11–13 (1986)

    Article  Google Scholar 

  • **an, Y., Gu, H., Wang, W., Huang, X., Yao, Y., Wang, Y., Cai, J.F.: Data-driven tight frame for cryo-em image denoising and conformational classification. In: Proceeding of the IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 544–548 (2018)

    Google Scholar 

  • **e, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: Advances in Neural Information Processing Systems, pp. 341–349 (2012)

    Google Scholar 

  • Yang, Q., Yan, P., Zhang, Y., Yu, H., Shi, Y., Mou, X., Kalra, M., Zhang, Y., Sun, L., Wang, G.: Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37(6), 1348–1357 (2018)

    Article  Google Scholar 

  • Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhong, E., Bepler, T., Davis, J., Berger, B.: Reconstructing continuous distributions of 3D protein structure from Cryo-EM images. In: International Conference on Learning Representation, Addis Ababa (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gu, H., **an, Y., Unarta, I.C., Yao, Y. (2023). Generative Adversarial Networks for Robust Cryo-EM Image Denoising. In: Chen, K., Schönlieb, CB., Tai, XC., Younes, L. (eds) Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-98661-2_126

Download citation

Publish with us

Policies and ethics

Navigation