Numerical Modelling

  • Chapter
  • First Online:
Fluid Mechanics of Viscoplasticity

Abstract

This chapter is divided into two parts, with Part I describing two powerful numerical techniques, viz., the augmented Lagrangian method (ALM) and the operator-splitting method, to simulate the flows of Bingham fluids using the finite element method. In Part II, the finite difference method is used exclusively. First of all, it is employed to solve the flow problem of a viscoplastic fluid in a concentric annulus, using a shooting method. Next, it is applied to simulate the flow of a Bingham fluid in a pipe of square cross-section, and the lid driven, thermally influenced flow of this fluid in a square cavity. The last two problems are solved by means of the particle velocity based lattice Boltzmann method (PVLBM). The numerical modelling of flows of viscoplastic fluids requires two tests of accuracy. The first one measures the convergence of the iterations. The second one is the level of tolerance in delineating the yielded zone from the unyielded zone. These matters are discussed in this chapter. A successful numerical method must be easy to implement, be robust and deliver the desired level of accuracy; it must reproduce results found through other simulations. The ALM, the operator-splitting method and PVLBM meet these criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Uzawa’s papers deal with finding the maximum of concave functions subject to constraints; see Chaps. 3, 5, 7 and 10 in [6]. The algorithm for solving the saddle point problem appears in this chapter.

  2. 2.

    For a very readable introduction to constrained problems, see Nocedal and Wright [7]. See Chaps. 12 and 17 therein for the quoted results.

  3. 3.

    The proof given here follows that in Chap. 4, Sect. 19 in [3].

  4. 4.

    In viscoelastic fluid mechanics, splitting the constitutive equation into a viscous and an elastic part was conceived and applied to Oldroyd-B fluids in 1977; see [16].

References

  1. Glowinski R (1984) Numerical methods for nonlinear variational problems. Springer, New York

    Book  MATH  Google Scholar 

  2. Glowinski R, Le Tallec P (1989) Augmented Lagrangian and operator-splitting methods in nonlinear mechanics. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  3. Glowinski R (2003) Finite element methods for incompressible viscous flow. In: Ciarlet PG, Lions J-L (eds) Handbook of numerical analysis, vol IX. North-Holland, Amsterdam, pp 3–1176

    Google Scholar 

  4. Glowinski R, Wachs A (2011) On the numerical simulation of viscoplastic fluid flow. In: Ciarlet PG (General Ed), Glowinski R, Xu J (Guest eds) Handbook of numerical analysis, vol XVI. North-Holland, Amsterdam, pp 483–717

    Google Scholar 

  5. Cea J, Glowinski R (1972) Méthodes numériques pour l’écoulement laminaire d’un fluide rigide viscoplastique incompressible. Int J Comp Math, Sec B 3:225–255

    Article  MATH  Google Scholar 

  6. Arrow KJ, Hurwicz L, Uzawa H (1958) Studies in linear and nonlinear programming. Stanford University Press, Stanford

    MATH  Google Scholar 

  7. Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, New York

    MATH  Google Scholar 

  8. Apostol TM (1974) Mathematical analysis, 2nd edn. Addison-Wesley, Reading, Mass

    MATH  Google Scholar 

  9. Huilgol RR, Panizza MP (1995) On the determination of the plug flow region in Bingham fluids through the application of variational inequalities. J Non-Newt Fluid Mech 58:207–217

    Article  Google Scholar 

  10. Huilgol RR, You Z (2005) Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel-Bulkley fluids. J Non-Newt Fluid Mech 128:126–143

    Article  MATH  Google Scholar 

  11. Vinay G, Wachs A, Agassant J-F (2005) Numerical simulation of non-isothermal viscoplastic waxy crude oil flows. J Non-Newt Fluid Mech 128:144–162

    Article  MATH  Google Scholar 

  12. Putz A, Frigaard IA (2010) Cree** flow around particles in a Bingham fluid. J Non-Newt Fluid Mech 165:263–280

    Article  MATH  Google Scholar 

  13. Yu Z, Wachs A (2007) A fictitious domain method for dynamic simulation of particle sedimentation in Bingham fluids. J Non-Newt Fluid Mech 145:78–91

    Article  MATH  Google Scholar 

  14. Li CH (1991) Numerical solution of Navier-Stokes equations by operator splitting. In: Proceedings of the sixth international conference in Australia on Finite element methods, vol 1, pp 205–214

    Google Scholar 

  15. Glowinski R, Pironneau O (1992) Finite element methods for Navier-Stokes equations. Ann Rev Fluid Mech 24:167–204

    Article  MathSciNet  MATH  Google Scholar 

  16. Perera MGN, Walters K (1977) Long-range memory effects in flows involving abrupt changes in geometry. Part I: flows associated with L-shaped and T-shaped geometries. J Non-Newt Fluid Mech 2:49–81

    Article  MATH  Google Scholar 

  17. Sánchez FJ (1998) Application of a first-order operator splitting method to Bingham fluid flow simulation. Comput Math Appl 36:71–86

    Article  MathSciNet  MATH  Google Scholar 

  18. Dean EJ, Glowinski R (2002) Operator-splitting methods for the simulation of Bingham visco-plastic flow. Chin Ann Math 23B:187–204

    Article  MathSciNet  MATH  Google Scholar 

  19. Duvaut G, Lions JL (1972) Transfert de chaleur dans un fluide de Bingham dont la viscosité dépend de la température. J Funct Anal 11:93–110

    Article  MATH  Google Scholar 

  20. Kato Y (1992) On a Bingham fluid whose viscosity and yield limit depend on the temperature. Nagoya Math J 128:1–14

    Article  MathSciNet  MATH  Google Scholar 

  21. Li C-H, Glowinski R (1996) Modelling and numerical simulation of low-Mach-number compressible flows. Int J Numer Methods Fluids 23:77–103

    Article  MathSciNet  MATH  Google Scholar 

  22. Duvaut G, Lions JL (1972) Les Inéquations en Physique et en Mécanique. Dunod, Paris

    MATH  Google Scholar 

  23. Duvaut G, Lions JL (1976) Inequalities in mechanics and physics. Springer, New York

    Book  MATH  Google Scholar 

  24. Huilgol RR, You Z (2009) Prolegomena to variational inequalities and numerical schemes for compressible viscoplastic fluids. J Non-Newt Fluid Mech 158:113–126

    Article  MATH  Google Scholar 

  25. Huilgol RR, Kefayati GHR (2015) Natural convection problem in a Bingham fluid using the operator-splitting method. J Non-Newt Fluid Mech 220:22–32

    Article  MathSciNet  Google Scholar 

  26. Vola D, Boscardin L, Latché JC (2003) Laminar unsteady flows of Bingham fluids: a numerical strategy and some benchmark results. J Comput Phys 187:441–456

    Article  MathSciNet  MATH  Google Scholar 

  27. Lions P-L (1996) Mathematical topics in fluid mechanics, Incompressible models, vol 1. Clarendon Press, Oxford

    Google Scholar 

  28. Lions P-L (1998) Mathematical topics in fluid mechanics, Compressible models, vol 2. Clarendon Press, Oxford

    Google Scholar 

  29. Vinay G, Wachs A, Agassant J-F (2006) Numerical simulation of weakly compressible Bingham flows: the restart of pipeline flows of waxy crude oils. J Non-Newt Fluid Mech 136:93–105

    Article  MATH  Google Scholar 

  30. Frigaard I, Vinay G, Wachs A (2007) Compressible displacement of waxy crude oils in long pipeline startup flows. J Non-Newt Fluid Mech 147:45–64

    Article  MATH  Google Scholar 

  31. Horibata Y (1992) Numerical simulation of low-Mach-number flow with a large temperature variation. Comput Fluids 21:185–200

    Article  MATH  Google Scholar 

  32. Huilgol RR, Georgiou GC (2020) A fast numerical scheme for the Poiseuille flow in a concentric annulus. J Non-Newton Fluid Mech 285:104401

    Article  MathSciNet  Google Scholar 

  33. Fredrickson AG, Bird RB (1968) Non-Newtonian flow in annuli. Ind Eng Chem 50:347–352

    Article  Google Scholar 

  34. Hanks RW (1979) The axial laminar flow of yield-pseudoplastic fluids in a concentric annulus. Ind Eng Chem Process Des Dev 18:488–493

    Article  Google Scholar 

  35. Chatzimina M, Xenopohontos C, Georgiou G, Argyropaidas A, Mitsoulis E (2007) Cessation of annular Poiseuille flows of Bingham plastics. J Non-Newt Fluid Mech 142:135–142

    Article  MATH  Google Scholar 

  36. Peng J, Zhu KQ (2004) Linear stability of Bingham fluids in spiral Couette flow. J Fluid Mech 512:21–45

    Article  MATH  Google Scholar 

  37. Huilgol RR, Kefayati GHR (2016) From mesoscopic models to continuum mechanics: Newtonian and non-Newtonian fluids. J Non-Newt Fluid Mech 233:146–154

    Article  MathSciNet  Google Scholar 

  38. Guo Z, Shi B, Zheng C (2002) A coupled lattice BGK model for the Boussinesq equations. Int J Numer Methods Fluids 39:325–342

    Article  MathSciNet  MATH  Google Scholar 

  39. Toro EF (1999) Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer, pp 531–542

    Google Scholar 

  40. Lax PD, Wendroff B (1960) Systems of conservation laws. Commun Pure Appl Math 13:217–237

    Article  MATH  Google Scholar 

  41. Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transfer 15:1787–1806

    Article  MATH  Google Scholar 

  42. Patankar SV (1981) A calculation procedure for two-dimensional elliptic situations. Numer Heat Transf 4:409–425

    Article  Google Scholar 

  43. Fu SC, So RMC (2009) Modeled lattice Boltzmann equation and the constant-density assumption. AIAA J 47:3038–3042

    Article  Google Scholar 

  44. Fu SC, So RMC, Leung WWF (2012) Linearized-Boltzmann-type-equation -based finite difference method for thermal incompressible flow. Comput Fluids 69:67–80

    Article  MathSciNet  MATH  Google Scholar 

  45. Blazek J (2001) Computational fluid dynamics: principles and applications. Elsevier, Amsterdam

    MATH  Google Scholar 

  46. Cebeci T, Shao JP, Kafyeke F, Laurendeau E (2005) Computational fluid dynamics for engineers. Springer, New York

    Google Scholar 

  47. Kefayati GHR, Huilgol RR (2017) Lattice Boltzmann method for the simulation of the steady flow of a Bingham fluid in a pipe of square cross-section. Eur J Mech B/Fluids 65:412–422

    Article  MathSciNet  MATH  Google Scholar 

  48. Moyers-Gonzalez M, Frigaard I (2004) Numerical solution of duct flows multiple visco-plastic fluids. J Non-Newt Fluid Mech 127:227–241

    Article  MATH  Google Scholar 

  49. Mosolov M, Miasnikov V (1965) Variational methods in the theory of the fluidity of a viscous-plastic medium. J Mech Appl Math (PMM) 30:545–577

    Article  MATH  Google Scholar 

  50. Huilgol RR, Kefayati GHR (2018) A particle distribution function approach to the equations of continuum mechanics in Cartesian, cylindrical and spherical coordinates: Newtonian and non-Newtonian fluids. J Non-Newt Fluid Mech 251:119–31

    Article  MathSciNet  Google Scholar 

  51. Karimfazli I, Frigaard IA, Wachs A (2015) A novel heat transfer switch using the yield stress. J Fluid Mech 783:526–566

    Article  MathSciNet  MATH  Google Scholar 

  52. Syrakos A, Georgiou GC, Alexandrou AN (2016) Cessation of the lid-driven cavity flow of Newtonian and Bingham fluids. Rheol Acta 55:51–66

    Article  Google Scholar 

  53. Neofytou P (2005) A 3rd order upwind finite volume method for generalised Newtonian fluid flows. Adv Eng Softw Part A 36:664–680

    Article  MATH  Google Scholar 

  54. Kefayati GHR, Huilgol RR (2016) Lattice Boltzmann method for simulation of mixed convection of a Bingham fluid in a lid-driven cavity. Int J Heat Mass Transf 103:725–743

    Article  Google Scholar 

  55. Waheed MA (2009) Mixed convective heat transfer in rectangular enclosures driven by a continuously moving horizontal plate. Int J Heat Mass Transf 52:5055–5063

    Article  MATH  Google Scholar 

  56. Tiwari RK, Das MK (2007) Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf 50:2002–2018

    Article  MATH  Google Scholar 

  57. Abdelkhalek MM (2008) Mixed convection in a square cavity by a perturbation technique. Comput Math Sci 42:212–219

    Article  Google Scholar 

  58. Khanafer K, Al-Amir AM, Pop I (2007) Numerical simulation of unsteady mixed convection in a driven cavity, using an externally excited sliding lid. Eur J Mech - B/Fluids 26:669–687

    Article  MathSciNet  MATH  Google Scholar 

  59. Sharif MAR (2007) Laminar mixed convection in shallow inclined driven cavities with hot moving lid on top and cooled from bottom. Appl Thermal Eng 27:1036–1042

    Article  Google Scholar 

  60. Khanafer K, Chamkha AJ (1991) Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium. Int J Heat Mass Transf 20:29–41

    MATH  Google Scholar 

  61. Iwatsu R, Hyun JM, Kuwahara K (1993) Mixed convection in a driven cavity with a stable vertical temperature gradient. Int J Heat Mass Transf 36:1601–1608

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja R. Huilgol .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huilgol, R.R., Georgiou, G.C. (2022). Numerical Modelling. In: Fluid Mechanics of Viscoplasticity. Springer, Cham. https://doi.org/10.1007/978-3-030-98503-5_10

Download citation

Publish with us

Policies and ethics

Navigation