Advanced Coding and Coded Modulation Techniques

  • Chapter
  • First Online:
Advanced Optical and Wireless Communications Systems
  • 1075 Accesses

Abstract

This chapter is devoted to advanced channel coding and coded modulation techniques. After linear and BCH codes fundamentals, we provide the trellis description of linear block codes and describe the corresponding Viterbi decoding algorithm. After describing the fundamentals of convolutional, RS, concatenated, and product codes, we describe coding with interleaving as an efficient way to deal with burst of errors and fading effects. Significant space in the chapter is devoted to codes on graphs, in particular turbo, turbo product, and LDPC codes are described together with corresponding decoding algorithms. Regarding LDPC codes, both binary and nonbinary (NB) LDPC codes are introduced, and corresponding decoding algorithms as well as their FPGA implementation are described. Additionally, LDPC code design procedures are described, followed by rate adaptation. Rate-adaptive FPGA implementations of LDPC and generalized LDPC codes are described as well. The next portion of the chapter is devoted to coded modulation (CM) and unequal error protection (UEP). After providing the coded modulation fundamentals, we describe trellis-coded modulation (TCM), multilevel coding and UEP, bit-interleaved coded modulation (BICM), turbo TCM, and various hybrid multidimensional coded modulation schemes suitable for ultrahigh-speed optical transmission including multilevel nonbinary LDPC-coded modulation. After coded modulation sections, the focus of the chapter is on multidimensional turbo equalization. The following topics are described: nonlinear channels with memory, nonbinary MAP detection, sliding-window multidimensional turbo equalization, simulation study of multidimensional turbo equalization, and several experimental demonstrations including time-domain 4D-NB-LDPC-CM and quasi-single-mode transmission over transoceanic distances. In section on optimized signal constellation design and optimized bit-to-symbol map**s-based coded modulation, we describe multidimensional optimized signal constellation design (OSCD), EXIT chart analysis of OSCD map** rules, nonlinear OSCD-based coded modulation, and transoceanic multi-Tb/s transmission experiments enabled by OSCD. Finally, in adaptive coding and adaptive coded modulation section, we describe adaptive coded modulation, adaptive nonbinary LDPC-coded multidimensional modulation suitable for high-speed optical communications, and adaptive hybrid free-space optical (FSO)-RF-coded modulation. For better understanding, the set of problems is provided after concluding remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Cvijetic, I.B. Djordjevic, Advanced Optical Communication Systems and Networks (Artech House, Norwood, Jan. 2013)

    Google Scholar 

  2. I. Djordjevic, W. Ryan, B. Vasic, Coding for Optical Channels (Springer, New York, 2010)

    Book  Google Scholar 

  3. S.B. Wicker, Error Control Systems for Digital Communication and Storage (Prentice Hall, Englewood Cliffs, 1995)

    MATH  Google Scholar 

  4. R.H. Morelos-Zaragoza, The Art of Error Correcting Coding, 2nd edn. (Wiley, Chichester, 2006)

    Book  Google Scholar 

  5. D. Drajic, P. Ivanis, Introduction to Information Theory and Coding, 3rd edn. (Akademska Misao, Belgrade, 2009)

    MATH  Google Scholar 

  6. J.B. Anderson, S. Mohan, Source and Channel Coding: An Algorithmic Approach (Kluwer Academic Publishers, Boston/Dordrecht/London, 1991)

    Book  MATH  Google Scholar 

  7. S. Lin, D.J. Costello, Error Control Coding: Fundamentals and Applications, 2nd edn. (Pearson Prentice Hall, Upper Saddle River, 2004)

    MATH  Google Scholar 

  8. T. Mizuochi et al., Forward error correction based on block turbo code with 3-bit soft decision for 10 Gb/s optical communication systems. IEEE J. Sel. Top. Quantum Electron. 10(2), 376–386 (Mar./Apr. 2004)

    Article  Google Scholar 

  9. T. Mizuochi, et al., Next generation FEC for optical transmission systems, in Proceedings of OFC 2003, Paper ThN1

    Google Scholar 

  10. I.B. Djordjevic, M. Arabaci, L. Minkov, Next generation FEC for high-capacity communication in optical transport networks. J. Lightwave Technol. 27, 3518–3530 (2009)

    Article  Google Scholar 

  11. I.B. Djordjevic, Advanced coding for optical communication systems, in Optical Fiber Telecommunications VI, ed. by I. Kaminow, T. Li, A. Willner, (Elsevier/Academic Press, Boston, May 2013), pp. 221–296

    Chapter  Google Scholar 

  12. I.B. Djordjevic, On advanced FEC and coded modulation for ultra-high-speed optical transmission. IEEE Commun. Surv. Tutorials 18(99), 1–31 (1 Mar. 2016). https://doi.org/10.1109/COMST.2016.2536726

  13. L.R. Bahl, J. Cocke, F. Jelinek, J. Raviv, Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans. Inf. Theory IT-20(2), 284–287 (Mar. 1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes (North Holland, Amsterdam, 1977)

    MATH  Google Scholar 

  15. M. Ivkovic, I.B. Djordjevic, B. Vasic, Calculation of achievable information rates of long-haul optical transmission systems using instanton approach. IEEE/OSA J. Lightwave Technol. 25, 1163–1168 (May 2007)

    Article  Google Scholar 

  16. G. Bosco, P. Poggiolini, Long-distance effectiveness of MLSE IMDD receivers. IEEE Photon. Tehcnol. Lett. 18(9), 1037–1039 (1 May 2006)

    Article  Google Scholar 

  17. M. Ivkovic, I. Djordjevic, P. Rajkovic, B. Vasic, Pulse energy probability density functions for long-haul optical fiber transmission systems by using instantons and edgeworth expansion. IEEE Photon. Technol. Lett. 19, 1604–1606 (15 Oct. 2007)

    Article  Google Scholar 

  18. S. Haykin, Communication Systems (Wiley, Hoboken, 2004)

    Google Scholar 

  19. M.E. van Valkenburg, Network Analysis, 3rd edn. (Prentice-Hall, Englewood Cliffs, 1974)

    MATH  Google Scholar 

  20. B. Vucetic, J. Yuan, Turbo Codes-Principles and Applications (Kluwer Academic Publishers, Boston, 2000)

    Book  MATH  Google Scholar 

  21. B.P. Smith, F.R. Kschischang, Future prospects for FEC in fiber-optic communications. IEEE J. Sel. Top. Quantum Electron. 16(5), 1245–1257 (Sept.–Oct. 2010)

    Article  Google Scholar 

  22. R.M. Tanner, A recursive approach to low complexity codes. IEEE Tans. Inf. Theory IT-27, 533–547 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Berrou, A. Glavieux, P. Thitimajshima, Near Shannon limit error-correcting coding and decoding: turbo-codes, in Proceedings of the IEEE International Conference on Communications 1993 (ICC ‘93), vol 2, pp. 1064–1070, 23–26 May 1993

    Google Scholar 

  24. C. Heegard, S. Wicker, Turbo Codes (Kluwer Academic Press, Boston, 1999)

    Book  MATH  Google Scholar 

  25. B. Moision, J. Hamkins, Deep space optical communications downlink budget: Modulation and coding, Jet Propulsion Laboratory, Pasadena, CA, Interplanetary Netw. Progr. Rep., pp. 42–154, Apr.–Jun. 2003

    Google Scholar 

  26. Available at: http://ipnpr.jpl.nasa.gov/progress_report/42-154/154K.pdf

  27. B. Moision, J. Hamkins, Coded modulation for the deep space optical channel: serially concatenated pulse-position modulation, Jet Propulsion Laboratory, Pasadena, CA, Interplanetary Netw. Progr. Rep. 42–161, pp. 1–25, 15 May 2005. Available at: http://ipnpr.jpl.nasa.gov/progress_report/42-161/161T.pdf

  28. W.E. Ryan, Concatenated convolutional codes and iterative decoding, in Wiley Encyclopedia in Telecommunications, ed. by J. G. Proakis, (Wiley, Hoboken, 2003)

    Google Scholar 

  29. R.M. Pyndiah, Near optimum decoding of product codes. IEEE Trans. Commun. 46, 1003–1010 (1998)

    Article  MATH  Google Scholar 

  30. O.A. Sab, V. Lemarie, Block turbo code performances for long-haul DWDM optical transmission systems, in Proceedings of the OFC 2001, Paper ThS5

    Google Scholar 

  31. R.G. Gallager, Low Density Parity Check Codes (MIT Press, Cambridge, MA, 1963)

    Book  MATH  Google Scholar 

  32. D.J.C. MacKay, Good error correcting codes based on very sparse matrices. IEEE Trans. Inf. Theory 45, 399–431 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. T. Richardson, R. Urbanke, Modern Coding Theory (Cambridge University Press, Cambridge, 2008)

    Book  MATH  Google Scholar 

  34. B. Vasic, I.B. Djordjevic, R. Kostuk, Low-density parity check codes and iterative decoding for long haul optical communication systems. J. Lightwave Technol. 21(2), 438–446 (Feb. 2003)

    Article  Google Scholar 

  35. Z.-W. Li, L. Chen, L.-Q. Zeng, S. Lin, W. Fong, Efficient encoding of quasi-cyclic low-density parity-check codes. IEEE Trans. Commun. 54(1), 71–81 (Jan. 2006)

    Article  Google Scholar 

  36. W.E. Ryan, An introduction to LDPC codes, in CRC Handbook for Coding and Signal Processing for Recording Systems, ed. by B. Vasic, (CRC Press, London, 2004)

    Google Scholar 

  37. W.E. Ryan, S. Lin, Channel Codes: Classical and Modern (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  38. F.R. Kschischang, B.J. Frey, H.-A. Loeliger, Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47, 498–519 (Feb. 2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, X.-Y. Hu, Reduced-complexity decoding of LDPC codes. IEEE Trans. Commun. 53, 1288–1299 (2005)

    Article  Google Scholar 

  40. L. Lan, L. Zeng, Y.Y. Tai, L. Chen, S. Lin, K. Abdel-Ghaffar, Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: a finite field approach. IEEE Trans. Inf. Theory 53, 2429–2458 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. J.L. Fan, Array-codes as low-density parity-check codes, Second International Symposium on Turbo Codes, Brest, France, pp. 543–546, Sept. 2000

    Google Scholar 

  42. S. Kudekar, T.J. Richardson, R.L. Urbanke, Threshold saturation via spatial coupling: why convolutional LDPC ensembles perform so well over the BEC. IEEE Trans. Inf. Theory 57(2), 803–834 (Feb. 2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Lentmaier, G. Fettweis, K.S. Zigangirov, D. Costello, Approaching capacity with asymptotically regular LDPC codes, in Proceedings of the Information Theory and Applications 2009, San Diego, CA, USA, pp. 173–177, Feb. 2009

    Google Scholar 

  44. K. Sugihara, et al., A spatially-coupled type LDPC code with an NCG of 12 dB for optical transmission beyond 100 Gb/s, in Proceedings of the OFC/NFOEC 2013, Paper OM2B.4

    Google Scholar 

  45. D. Chang, et al., LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission, in Proceedings of OFC/NFOEC 2012, Paper OW1H.4

    Google Scholar 

  46. Y. Zhang, I.B. Djordjevic, Staircase rate-adaptive LDPC-coded modulation for high-speed intelligent optical transmission, in Proceedings of the OFC/NFOEC 2014, Paper M3A.6

    Google Scholar 

  47. A.J. Felström, K.S. Zigangirov, Time-varying periodic convolutional codes with low-density parity-check matrix. IEEE Trans. Inf. Theory 45(6), 2181–2191 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  48. I.B. Djordjevic, On the irregular nonbinary QC-LDPC-coded hybrid multidimensional OSCD-modulation enabling beyond 100 Tb/s optical transport. J. Lightwave Technol. 31(16), 2969–2975 (15 Aug. 2013)

    Article  Google Scholar 

  49. M. Arabaci, I.B. Djordjevic, L. Xu, T. Wang, Nonbinary LDPC-coded modulation for rate-adaptive optical fiber communication without bandwidth expansion. IEEE Photon. Technol. Lett. 23(18), 1280–1282 (15 Sept. 2012)

    Article  Google Scholar 

  50. M. Arabaci, I. B. Djordjevic, L. Xu, T. Wang, Hybrid LDPC-coded modulation schemes for optical communication systems, in Proceedings of the CLEO 2012, Paper CTh3C.3

    Google Scholar 

  51. M. Arabaci, I.B. Djordjevic, R. Saunders, R.M. Marcoccia, High-rate non-binary regular quasi-cyclic LDPC codes for optical communications. J. Lightwave Technol. 27(23), 5261–5267 (1 Dec. 2009)

    Article  Google Scholar 

  52. P. Elias, Error-free coding. IRE Trans. Inf. Theory IT-4, 29–37 (Sept. 1954)

    MathSciNet  Google Scholar 

  53. Y. Zhao, J. Qi, F.N. Hauske, C. **e, D. Pflueger, G. Bauch, Beyond 100G optical channel noise modeling for optimized soft-decision FEC performance, in Proceedings of the OFC/NFOEC 2012, Paper OW1H.3

    Google Scholar 

  54. F. Vacondio, et al., Experimental characterization of Gaussian-distributed nonlinear distortions, in Proceedings of the ECOC 2011, Paper We.7.B.1

    Google Scholar 

  55. F. Chang, K. Onohara, T. Mizuochi, Forward error correction for 100 G transport networks. IEEE Commun. Mag. 48(3), S48–S55 (Mar. 2010)

    Article  Google Scholar 

  56. Y. Miyata, K. Sugihara, W. Matsumoto, K. Onohara, T. Sugihara, K. Kubo, H. Yoshida, T. Mizuochi, A triple-concatenated FEC using soft-decision decoding for 100 Gb/s optical transmission, in Proceedings of the OFC/NFOEC 2010, Paper OThL3

    Google Scholar 

  57. T. Mizuochi et al., Experimental demonstration of concatenated LDPC and RS code by FPGAs emulation. IEEE Photon. Technol. Lett. 21(18), 1302–1304 (Sept. 2009)

    Article  Google Scholar 

  58. Z. Zhang, et al., Lowering LDPC error floors by postprocessing, in Proceedings of the IEEE GLOBECOM, 2008

    Google Scholar 

  59. G.J. Byers, F. Takawira, Fourier transform decoding of non-binary LDPC codes, in Proceedings Southern African Telecommunication Networks and Applications Conference (SATNAC), Sept. 2004

    Google Scholar 

  60. M. Davey, D.J.C. MacKay, Low-density parity check codes over GF(q). IEEE Commun. Lett. 2(6), 165–167 (1998)

    Article  Google Scholar 

  61. L. Barnault, D. Declercq, Fast decoding algorithm for LDPC over GF(2q), in Proceedings of the ITW2003, pp. 70–73

    Google Scholar 

  62. C. Spagnol, W. Marnane, E. Popovici, FPGA implementations of LDPC over GF(2m) decoders. IEEE Workshop on Signal Processing Systems, Shanghai, China, pp. 273–278, 2007

    Google Scholar 

  63. D. Declercq, M. Fossorier, Decoding algorithms for nonbinary LDPC codes over GF(q). IEEE Trans. Commun. 55(4), 633–643 (2007)

    Article  Google Scholar 

  64. V. Savin, Min-max decoding for non-binary LDPC codes, in Proceedings of the ISIT 2008, Toronto, ON, Canada, pp. 960–964, 6–11 July 2008

    Google Scholar 

  65. A. Voicila, F. Verdier, D. Declercq, M. Fossorier, P. Urard, Architecture of a low-complexity non-binary LDPC decoder for high order fields, in Proceedings of the ISIT 2007, pp. 1201–1206

    Google Scholar 

  66. D. Zou, I.B. Djordjevic, FPGA implementation of concatenated non-binary QC-LDPC codes for high-speed optical transport. Opt. Express 23(10), 14501–14509 (18 May 2015)

    Article  Google Scholar 

  67. D. Zou, I. B. Djordjevic, FPGA implementation of advanced FEC schemes for intelligent aggregation networks, in Proceedings of the PhotonicsWest 2016, OPTO, Optical Metro Networks and Short-Haul Systems VIII, SPIE, San Francisco, CA, USA, vol. 9773, pp. 977309-1–977309-7, 13–18 Feb. 2016. (Invited Paper)

    Google Scholar 

  68. I.B. Djordjevic, S. Sankaranarayanan, B. Vasic, Projective plane iteratively decodable block codes for WDM high-speed long-haul transmission systems. IEEE/OSA J. Lightwave Technol. 22, 695–702 (Mar. 2004)

    Article  Google Scholar 

  69. I.B. Djordjevic, B. Vasic, Performance of affine geometry low-density parity-check codes in long-haul optical communications. Eur. Trans. Telecommun. 15, 477–483 (2004)

    Article  Google Scholar 

  70. I.B. Djordjevic, B. Vasic, Projective geometry low-density parity-check codes for ultra-long haul WDM high-speed transmission. IEEE Photon. Technol. Lett. 15, 784–786 (May 2003)

    Article  Google Scholar 

  71. I.B. Djordjevic, S. Sankaranarayanan, B. Vasic, Irregular low-density parity-check codes for long haul optical communications. IEEE Photon. Technol. Lett. 16, 338–340 (Jan. 2004)

    Article  Google Scholar 

  72. I.B. Djordjevic, O. Milenkovic, B. Vasic, Generalized low-density parity-check codes for optical communication systems. J. Lightwave Technol. 23(5), 1939–1946 (2005)

    Article  Google Scholar 

  73. I.B. Djordjevic, L. Xu, T. Wang, M. Cvijetic, GLDPC codes with Reed-Muller component codes suitable for optical communications. IEEE Commun. Lett. 12(9), 684–686 (2008)

    Article  Google Scholar 

  74. I.B. Djordjevic, T. Wang, Multiple component codes based generalized LDPC codes for high-speed optical transport. Opt. Express 22(14), 16694–16705 (2014)

    Article  Google Scholar 

  75. D. Zou, I. B. Djordjevic, An FPGA design of generalized low-density parity-check codes for rate-adaptive optical transport networks. In Proceedings of the SPIE PhotonicsWest 2016, optical metro networks and short-haul systems VIII, SPIE, San Francisco, CA, USA, vol. 9773, pp. 97730M-1–97730M-6, 13–18 Feb. 2016

    Google Scholar 

  76. J. Boutros, O. Pothier, G. Zemor, Generalized low density (Tanner) codes, in Proceedings of the IEEE Intternational Conference on Communication (ICC’99), pp. 441–445, 1999

    Google Scholar 

  77. M. Lentmaier, K.S. Zigangirov, On generalized low-density parity-check codes based on Hamming component codes. IEEE Commun. Lett. 3(8), 248–250 (1999)

    Article  Google Scholar 

  78. V.A. Zyablov, R. Johannesson, M. Loncar, Low-complexity error correction of Hamming-code-based LDPC codes. Probl. Inf. Transm. 45(2), 95–109 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  79. I. Andersen, Combinatorial designs: construction methods, in Mathematics and Its Applications, (Ellis Horwood, Chichester, 1990)

    Google Scholar 

  80. M.-F. Huang, A. Tanaka, E. Ip, Y.-K. Huang, D. Qian, Y. Zhang, S. Zhang, P.N. Ji, I.B. Djordjevic, T. Wang, Y. Aono, S. Murakami, T. Tajima, T.J. **a, G.A. Wellbrock, Terabit/s Nyquist superchannels in high capacity fiber field trials using DP-16QAM and DP-8QAM modulation formats. J. Lightwave Technol. 32(4), 776–782 (15 Feb. 2014)

    Article  Google Scholar 

  81. G.-H. Gho, J.M. Kahn, Rate-adaptive modulation and low-density parity-check coding for optical fiber transmission systems. J. Opt. Commun. Netw. 4(10), 760–768 (Oct. 2012)

    Article  Google Scholar 

  82. M. Arabaci, I.B. Djordjevic, R. Saunders, R.M. Marcoccia, Polarization-multiplexed rate-adaptive non-binary-LDPC-coded multilevel modulation with coherent detection for optical transport networks. Opt. Express 18(3), 1820–1832 (2010)

    Article  Google Scholar 

  83. L. Beygi, E. Agrell, P. Johannisson, M. Karlsson, A novel multilevel coded modulation scheme for fiber optical channel with nonlinear phase noise, in Proceedings of the IEEE GLOBECOM, 2010

    Google Scholar 

  84. J.L. Massey, Coding and modulation in digital communications, in Proceedings of the International Zurich Seminar on Digital Communications, Zurich, Switzerland, pp. E2(1)–E2(4), 1974

    Google Scholar 

  85. H. Imai, S. Hirakawa, A new multilevel coding method using error correcting codes. IEEE Trans. Inf. Theory IT-23(3), 371–377 (May 1977)

    Article  MATH  Google Scholar 

  86. U. Wachsmann, R.F.H. Fischer, J.B. Huber, Multilevel codes: theoretical concepts and practical design rules. IEEE Trans. Inf. Theory 45(5), 1361–1391 (July 1999)

    Article  MathSciNet  MATH  Google Scholar 

  87. K.R. Narayanan, J. Li, Bandwidth efficient low density parity check codes using multilevel coding and iterative multistage decoding, in Proceedings of the 2nd Symposium on Turbo Codes and Related Topics, Brest, France, pp. 165–168, 2000

    Google Scholar 

  88. S. Benedetto, D. Divsalar, G. Montorsi, H. Pollara, Parallel concatenated trellis coded modulation, in Proceedings of the IEEE International Conference on Communications, Dallas, TX, USA, pp. 974–978, 1996

    Google Scholar 

  89. G. Caire, G. Taricco, E. Biglieri, Bit-interleaved coded modulation. IEEE Trans. Inf. Theory 44(3), 927–946 (May 1998)

    Article  MathSciNet  MATH  Google Scholar 

  90. J. Tan, G.L. Stüber, Analysis and design of symbol mappers for iteratively decoded BICM. IEEE Trans. Wirel. Comm. 4(2), 662–672 (Mar. 2005)

    Article  Google Scholar 

  91. J. Hou, P.H. Siegel, L.B. Milstein, H.D. Pfitser, Capacity-approaching bandwidth-efficient coded modulation schemes based on low-density parity-check codes. IEEE Trans. Inf. Theory 49(9), 2141–2155 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  92. L. Beygi et al., Coded modulation for fiber-optic networks. IEEE Sig. Proc. Mag. 31(2), 93–103 (Mar. 2014)

    Article  Google Scholar 

  93. G. Ungerboeck, Channel coding with multilevel/phase signals. IEEE Trans. Inf. Theory IT-28, 55–67 (1982)

    Article  MATH  Google Scholar 

  94. G.D. Forney, R.G. Gallager, G.R. Lang, F.M. Longstaff, S.U. Qureshi, Efficient modulation for band-limited channels. IEEE J. Sel. Areas Comm. SAC-2(5), 632–647 (1984)

    Article  Google Scholar 

  95. G.D. Forney, Coset codes-part I: introduction and geometrical classification. IEEE Trans. Inf.. Theory 34(5), 1123–1151 (Sept. 1988)

    Article  MathSciNet  MATH  Google Scholar 

  96. A. Goldsmith, Wireless Communications (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  97. A.R. Calderbank, N.J.A. Sloane, New trellis codes based on lattices and cosets. IEEE Trans. Inf. Theory IT-33, 177–195 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  98. G.D. Forney, Trellis sha**. IEEE Trans. Inf. Theory 38(2), 281–300 (Mar. 1992)

    Article  MathSciNet  MATH  Google Scholar 

  99. I.B. Djordjevic, B. Vasic, Multilevel coding in M-ary DPSK/differential QAM high-speed optical transmission with direct detection. IEEE/OSA J. Lightwave Technol. 24(1), 420–428 (Jan. 2006)

    Article  Google Scholar 

  100. J. Hou, P.H. Siegel, L.B. Milstein, H.D. Pfitser, Capacity approaching bandwidth-efficient coded modulation schemes based on low-density parity-check codes. IEEE Trans. Inf. Theory 49(9), 2141–2155 (Sept. 2003)

    Article  MathSciNet  MATH  Google Scholar 

  101. S. ten Brink, Designing iterative decoding schemes with the extrinsic information transfer chart. Intern. J. Electron. Commun. 54, 389–398 (Dec. 2000)

    Google Scholar 

  102. J. Hou, P.H. Siegel, L.B. Milstein, Design of multi-input multi-output systems based on low-density parity-check codes. IEEE Trans. Commun. 53, 601–611 (Apr. 2005)

    Article  Google Scholar 

  103. I.B. Djordjevic, M. Cvijetic, L. Xu, T. Wang, Using LDPC-coded modulation and coherent detection for ultra high-speed optical transmission. IEEE/OSA J. Lightwave Technol. 25, 3619–3625 (Nov. 2007)

    Article  Google Scholar 

  104. S. Le Goff, A. Glavieux, C. Berrou, Turbo-codes and high-spectral efficiency modulation, Proceedings of the 1994 IEEE International Conference on Communications (ICC’94), New Orleans, LA, USA, pp. 645–649, 1994

    Google Scholar 

  105. P. Robertson, T. Wörz, Coded modulation scheme employing turbo codes. Electron. Lett. 31, 1546–1547 (Aug. 1995)

    Article  Google Scholar 

  106. P. Robertson, T. Wörz, Bandwidth-efficient turbo trellis-coded modulation using punctured component codes. IEEE J. Sel. Areas Commun. 16(2), 206–218 (Feb. 1998)

    Article  Google Scholar 

  107. I.B. Djordjevic, B. Vasic, Nonlinear BCJR equalizer for suppression of intrachannel nonlinearities in 40 Gb/S optical communications systems. Opt. Express 14, 4625–4635 (29 May 2006)

    Article  Google Scholar 

  108. I.B. Djordjevic, L.L. Minkov, L. Xu, T. Wang, Suppression of fiber nonlinearities and PMD in coded-modulation schemes with coherent detection by using turbo equalization. IEEE/OSA J. Opt. Commun. Netw. 1(6), 555–564 (Nov. 2009)

    Article  Google Scholar 

  109. R. Koetter, A.C. Singer, M. Tüchler, Turbo equalization. IEEE Sig. Proc. Mag. 21(1), 67–80 (Jan. 2004)

    Article  Google Scholar 

  110. C. Duan, et al., A low-complexity sliding-window turbo equalizer for nonlinearity compensation, in Proceedings of the OFC 2012, Paper JW2A.59

    Google Scholar 

  111. T. Fujimori, et al., A study on the effectiveness of turbo equalization with FEC for nonlinearity compensation in coherent WDM transmissions, in Proceedings OECC/PS 2013, Paper OM2B

    Google Scholar 

  112. C. Douillard, M. Jézéquel, C. Berrou, A. Picart, P. Didier, A. Glavieux, Iterative correction of intersymbol interference: turbo equalization. Eur. Trans. Telecommun. 6, 507–511 (1995)

    Article  Google Scholar 

  113. E. Ip, J.M. Kahn, Compensation of dispersion and nonlinear impairments using digital backpropagation. J. Lightwave Technol. 26(20), 3416–3425 (2008)

    Article  Google Scholar 

  114. E. Ip, J.M. Kahn, Nonlinear impairment compensation using backpropagation, in Optical Fibre, New Developments, ed. by C. Lethien, (In-Tech, Vienna, Dec. 2009) (Invited Chapter)

    Google Scholar 

  115. Y. Zhang, S. Zhang, I.B. Djordjevic, On the pragmatic turbo equalizer for optical communications, in Proceedings of the CLEO-PR&OECC/PS 2013, Paper ThR2-4

    Google Scholar 

  116. Y. Zhang, M. Arabaci, I.B. Djordjevic, Evaluation of four-dimensional nonbinary LDPC-coded modulation for next-generation long-haul optical transport networks. Opt. Express 20(8), 9296–9301 (9 Apr. 2012)

    Article  Google Scholar 

  117. Y. Zhang, S. Zhang, I.B. Djordjevic, F. Yaman, T. Wang, Extending 100G transatlantic optical transmission over legacy DMF fibers using time-domain four-dimensional nonbinary LDPC-coded modulation, In Proceedings of ECOC 2013, Paper P.4.18

    Google Scholar 

  118. F. Yaman, S. Zhang, Y.-K. Huang, E. Ip, J.D. Downie, W.A. Wood, A. Zakharian, S. Mishra, J. Hurley, Y. Zhang, I.B. Djordjevic, M.-F. Huang, E. Mateo, K. Nakamura, T. Inoue, Y. Inada, T. Ogata, First quasi-single-mode transmission over transoceanic distance using few-mode fibers, in Proceedings of the OFC Postdeadline Papers, Paper Th5C.7, Los Angeles, CA, USA, pp. 22–26, Mar. 2015

    Google Scholar 

  119. Z.H. Peric, I.B. Djordjevic, S.M. Bogosavljevic, M.C. Stefanovic, Design of signal constellations for Gaussian channel by iterative polar quantization, in Proceedings of the 9th Mediterranean Electrotechnical Conference, Tel-Aviv, Israel, vol. 2, pp. 866–869, 18–20 May, 1998

    Google Scholar 

  120. I.B. Djordjevic, H.G. Batshon, L. Xu, T. Wang, Coded polarization-multiplexed iterative polar modulation (PM-IPM) for beyond 400 Gb/s serial optical transmission, in Proceedings of the OFC/NFOEC 2010, Paper OMK2

    Google Scholar 

  121. A.P.T. Lau, J.M. Kahn, Signal design and detection in presence of nonlinear phase noise. J. Lightwave Technol. 25(10), 3008–3016 (Oct. 2007)

    Article  Google Scholar 

  122. T. Liu, I.B. Djordjevic, On the optimum signal constellation design for high-speed optical transport networks. Opt. Express 20(18), 20396–20406 (27 Aug. 2012)

    Article  Google Scholar 

  123. T. Liu, I.B. Djordjevic, Optimal signal constellation design for ultra-high-speed optical transport in the presence of nonlinear phase noise. Opt. Express 22(26), 32188–32198 (29 Dec. 2014)

    Article  Google Scholar 

  124. R.E. Blahut, Computation of channel capacity and rate distortion functions. IEEE Trans. Inf. Theory IT-18, 460–473 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  125. T. Liu, I.B. Djordjevic, Multi-dimensional optimal signal constellation sets and symbol map**s for block-interleaved coded-modulation enabling ultra-high-speed optical transport. IEEE Photonics J. 6(4), Paper 5500714 (Aug. 2014)

    Google Scholar 

  126. T. Liu, I.B. Djordjevic, T. Wang, Optimal signal constellation design for ultra-high-speed optical transport in the presence of phase noise, In Proceedings of the CLEO 2014, Paper STu3J.7

    Google Scholar 

  127. T. Liu, I.B. Djordjevic, M. Li, Multidimensional signal constellation design for channel dominated with nonlinear phase noise, in Proceedings of the 12th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services – TELSIKS 2015, Nis, Serbia, pp. 133–136, 14–17 Oct. , 2015

    Google Scholar 

  128. I.B. Djordjevic, A. Jovanovic, M. Cvijetic, Z.H. Peric, Multidimensional vector quantization-based signal constellation design enabling beyond 1 Pb/s serial optical transport networks. IEEE Photonics J. 5(4), Paper 7901312 (Aug. 2013)

    Article  Google Scholar 

  129. S. Zhang, F. Yaman, M.-F. Huang, Y.-K. Huang, Y. Zhang, I. B. Djordjevic, E. Mateo, 40Tb/s transoceanic transmission with span length of 121km and EDFA-only amplification, in Proceedings of the OECC/ACOFT 2014, Paper THPDP1-3

    Google Scholar 

  130. S. Chandrasekhar, X. Liu. B. Zhu, D.W. Peckham, Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber, in Proceedings of the ECOC 2009, Paper PD2.6

    Google Scholar 

  131. T. Pfau, S. Hoffmann, R. Noé, Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations. J. Lightwave Technol. 27, 989–999 (2009)

    Article  Google Scholar 

  132. X. Liu, S. Chandrasekhar, et al., Digital coherent superposition for performance improvement of spatially multiplexed coherent optical OFDM superchannels. Opt. Express 20, B595–B600 (2012)

    Article  Google Scholar 

  133. J.G. Proakis, Digital Communications, 4th edn. (McGraw-Hill, New York, 2001)

    MATH  Google Scholar 

  134. X. Liu, S. Chandrasekhar, P.J. Winzer, Digital signal processing techniques enabling multi-Tb/s superchannel transmission. IEEE. Sig. Proc. Mag. 31(2), 16–24 (Mar. 2014)

    Article  Google Scholar 

  135. T.H. Lotz et al., Coded PDM-OFDM transmission with shaped 256-iterative-polar modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach. J. Lightwave Technol. 31, 538–545 (2013)

    Article  Google Scholar 

  136. A. Goldsmith, S.-G. Chua, Adaptive coded modulation for fading channels. IEEE Trans. Commun. 46, 595–601 (May 1998)

    Article  Google Scholar 

  137. I.B. Djordjevic, G.T. Djordjevic, On the communication over strong atmospheric turbulence channels by adaptive modulation and coding. Opt. Express 17(20), 18250–18262 (25 Sept. 2009)

    Article  Google Scholar 

  138. I.B. Djordjevic, Adaptive modulation and coding for free-space optical channels. IEEE/OSA J. Opt. Commun. Netw. 2(5), 221–229 (May 2010)

    Article  Google Scholar 

  139. I.B. Djordjevic, Adaptive modulation and coding for communication over the atmospheric turbulence channels, in Proceedings of the IEEE Photonics Society Summer Topicals 2009, Paper TuD3. 3, Newport Beach, CA, USA, 20–22 July 2009

    Google Scholar 

  140. I.B. Djordjevic, G.T. Djordjevic, Adaptive modulation and coding for generalized fading channels, in Proceedings of the IEEE TELSIKS 2009, Nis, Serbia, pp. 418–422, 7–9 Oct. 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Djordjevic, I.B. (2022). Advanced Coding and Coded Modulation Techniques. In: Advanced Optical and Wireless Communications Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-98491-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98491-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98490-8

  • Online ISBN: 978-3-030-98491-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation