Hardware for Near-Infrared Observations—Adaptive Optics, Instrumentation, and Detectors

  • Chapter
  • First Online:
Astronomy in the Near-Infrared - Observing Strategies and Data Reduction Techniques

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 467))

  • 565 Accesses

Abstract

Following on the discussion of the properties of the near-infrared sky, we now describe the hardware suite required to successfully carry out observations in this wavelength range. This includes a brief illustration of the standard telescope concepts, a discussion on the various flavors of active and adaptive optics systems, an outline of how imagers, spectrographs, integral-field units and interferometers work, a description of the filter systems in the near-infrared, and a discussion of the detector technologies currently in use. The understanding of all these is imperative to properly prepare, execute, and reduce near-infrared observations. Finally, we comment on the upcoming 30m class telescopes and their instrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Appenzeller, I.: Introduction to Astronomical Spectroscopy (2013)

    Google Scholar 

  2. Bahcall, J.N., Soneira, R.M.: The universe at faint magnitudes. I. Models for the Galaxy and the predicted star counts. ApJS 44, 73–110 (1980). https://doi.org/10.1086/190685

    Google Scholar 

  3. Balcells, M., Guzman, R., Patron, J., et al.: EMIR: cryogenic NIR multi-object spectrograph for GTC. In: M. Iye, A.F. Moorwood (eds.) Optical and IR Telescope Instrumentation and Detectors, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 4008, pp. 797–805 (2000). https://doi.org/10.1117/12.395538

    ADS  Google Scholar 

  4. Barden, S.C., Arns, J.A., Colburn, W.S.: Volume-phase holographic gratings and their potential for astronomical applications. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 3355, pp. 866–876 (1998). https://doi.org/10.1117/12.316806

    ADS  Google Scholar 

  5. Barden, S.C., Arns, J.A., Colburn, W.S., et al.: Volume-phase holographic gratings and the efficiency of three simple volume-phase holographic gratings. PASP 112(772), 809–820 (2000). https://doi.org/10.1086/316576

    Article  ADS  Google Scholar 

  6. Baum, W.A.: Photoelectric magnitudes and red-shifts. In: G.C. McVittie (ed.) Problems of Extra-Galactic Research, vol. 15, p. 390 (1962)

    Google Scholar 

  7. Berger, D.H., Monnier, J.D., Millan-Gabet, R., et al.: CHARA Michigan phase-tracker (CHAMP): design and fabrication. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6268, p. 62683K (2006). https://doi.org/10.1117/12.672168

  8. Berkefeld, T., Soltau, D., von der Luehe, O.: Results of the multi-conjugate adaptive optics system at the German solar telescope, Tenerife, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5903, pp. 219–226 (2005). https://doi.org/10.1117/12.619132

    ADS  Google Scholar 

  9. Born, M., Wolf, E.: Principles of Optics Electromagnetic Theory of Propagation, Interference and Diffraction of Light (1980)

    Google Scholar 

  10. Bowen, I.S.: The image-slicer a device for reducing loss of light at slit of stellar spectrograph. ApJ 88, 113 (1938). https://doi.org/10.1086/143964

    Article  ADS  Google Scholar 

  11. Brault, J.W.: Fourier transform spectrometry in relation to other passive spectrometers. Philos. Trans. R. Soc. Lond. A 307(1500), 503–511 (1982). https://doi.org/10.1098/rsta.1982.0125

    Article  ADS  Google Scholar 

  12. Buscher, D.F., Longair, F.b.M.: Practical Optical Interferometry (2015)

    Google Scholar 

  13. Buschkamp, P., Hofmann, R., Gemperlein, H., et al.: The LUCIFER MOS: A full cryogenic mask handling unit for a near-infrared multi-object spectrograph. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7735, p. 773579 (2010). https://doi.org/10.1117/12.857950

    Google Scholar 

  14. Chambers, K.C., Magnier, E.A., Metcalfe, N., et al.: The Pan-STARRS1 surveys. e-prints (2016). ar**v:1612.05560

    Google Scholar 

  15. Cirasuolo, M., Afonso, J., Carollo, M., et al.: MOONS: the Multi-Object Optical and Near-infrared Spectrograph for the VLT. In: S.K. Ramsay, I.S. McLean, H. Takami (eds.) Ground-based and Airborne Instrumentation for Astronomy V, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9147, p. 91470N (2014). https://doi.org/10.1117/12.2056012

  16. Crepp, J.R., Crass, J., King, D., et al.: iLocater: A Diffraction-Limited Doppler Spectrometer for the Large Binocular Telescope, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9908, p. 990819 (2016). https://doi.org/10.1117/12.2233135

    Google Scholar 

  17. Davies, R., Kasper, M.: Adaptive optics for astronomy. ARA&A 50, 305–351 (2012). https://doi.org/10.1146/annurev-astro-081811-125447

    Article  ADS  Google Scholar 

  18. de Jong, R.S., Agertz, O., Berbel, A.A., et al.: 4MOST: Project overview and information for the first call for proposals. The Messenger 175, 3–11 (2019). https://doi.org/10.18727/0722-6691/5117

    ADS  Google Scholar 

  19. Dhar, N.K., Dat, R., Sood, A.K.: Advances in infrared detector array technology. In: S.L. Pyshkin, J.M. Ballato (eds.) Optoelectronics, chap. 7. IntechOpen, Rijeka (2013). https://doi.org/10.5772/51665

  20. Dicke, R.H.: Phase-contrast detection of telescope seeing errors and their correction. ApJ 198, 605–615 (1975). https://doi.org/10.1086/153639

    Article  ADS  Google Scholar 

  21. Esposito, S., Riccardi, A., Pinna, E., et al.: Natural guide star adaptive optics systems at LBT: FLAO commissioning and science operations status. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8447, p. 84470U (2012). https://doi.org/10.1117/12.927109

    Google Scholar 

  22. Finger, G., Dorn, R.J., Eschbaumer, S., et al.: Performance evaluation, readout modes, and calibration techniques of HgCdTe Hawaii-2RG mosaic arrays. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7021, p. 70210P (2008). https://doi.org/10.1117/12.787971

    Google Scholar 

  23. Fiorucci, M., Munari, U.: The Asiago Database on Photometric Systems (ADPS). II. Band and reddening parameters. A&A 401, 781–796 (2003). https://doi.org/10.1051/0004-6361:20030075

    Google Scholar 

  24. Flaugher, B., Diehl, H.T., Honscheid, K., et al.: The dark energy camera. AJ 150(5), 150 (2015). https://doi.org/10.1088/0004-6256/150/5/150

    Article  ADS  Google Scholar 

  25. Foo, G., Palacios, D.M., Swartzland er Grover A., J.: Optical vortex coronagraph. Optics Letters 30(24), 3308–3310 (2005). https://doi.org/10.1364/OL.30.003308

  26. Fowler, A.M., Gatley, I.: Noise reduction strategy for hybrid IR focal-plane arrays. In: T.S.J. Jayadev (ed.) Infrared Sensors: Detectors, Electronics, and Signal Processing, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 1541, pp. 127–133 (1991). https://doi.org/10.1117/12.49326

    ADS  Google Scholar 

  27. Foy, R.: The Cone Effect. In: N. Ageorges, C. Dainty (eds.) NATO Advanced Science Institutes (ASI) Series C, vol. 551, p. 107 (2000)

    Google Scholar 

  28. Frade, M., Enguita, J.M., Álvarez, I.: In situ 3D profilometry of rough objects with a lateral shearing interferometry range finder. Opt. Lasers Eng. 50(11), 1559–1567 (2012). https://doi.org/10.1016/j.optlaseng.2012.04.012

    Article  Google Scholar 

  29. Fukugita, M., Ichikawa, T., Gunn, J.E., et al.: The sloan digital sky survey photometric system. AJ 111, 1748 (1996). https://doi.org/10.1086/117915

    Article  ADS  Google Scholar 

  30. Gendron, E., Vidal, F., Brangier, M., et al.: MOAO first on-sky demonstration with CANARY. A&A 529, L2 (2011). https://doi.org/10.1051/0004-6361/201116658

    Article  ADS  Google Scholar 

  31. Gravity Collaboration, Lacour, S., Nowak, M., et al.: First direct detection of an exoplanet by optical interferometry. Astrometry and K-band spectroscopy of HR 8799 e. A&A 623, L11 (2019). https://doi.org/10.1051/0004-6361/201935253

  32. Hammer, F., Sayède, F., Gendron, E., et al.: The FALCON Concept: Multi-Object Spectroscopy Combined with MCAO in Near-IR. In: J. Bergeron, G. Monnet (eds.) Scientific Drivers for ESO Future VLT/VLTI Instrumentation, p. 139 (2002). https://doi.org/10.1007/10857019_21

  33. Hernandez, G.: Fabry-Perot Interferometers (1986)

    Google Scholar 

  34. Hewett, P.C., Warren, S.J., Leggett, S.K., et al.: The UKIRT Infrared Deep Sky Survey ZY JHK photometric system: passbands and synthetic colours. MNRAS 367(2), 454–468 (2006). https://doi.org/10.1111/j.1365-2966.2005.09969.x

    Article  ADS  Google Scholar 

  35. Hillenbrand, L.A., Foster, J.B., Persson, S.E., et al.: The Y Band at 1.035 Microns: Photometric calibration and the DwarfStellar/Substellar color sequence. PASP 114(797), 708–720 (2002). https://doi.org/10.1086/341699

  36. Hoffman, A.W., Love, P.J., Rosbeck, J.P.: Megapixel detector arrays: visible to 28 μm. In: T.J. Grycewicz, C.R. McCreight (eds.) Focal Plane Arrays for Space Telescopes, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5167, pp. 194–203 (2004). https://doi.org/10.1117/12.516509

    ADS  Google Scholar 

  37. Hough, J.H.: Polarimetry techniques at optical and infrared wavelengths. In: Astronomical Society of the Pacific Conference Series, vol. 343, p. 3 (2005)

    ADS  Google Scholar 

  38. Johnson, J.B.: Thermal agitation of electricity in conductors. Physical Review 32(1), 97–109 (1928). https://doi.org/10.1103/PhysRev.32.97

    Article  ADS  Google Scholar 

  39. Johnson, H.L.: Infrared stellar photometry. ApJ 135, 69 (1962). https://doi.org/10.1086/147248

    Article  ADS  Google Scholar 

  40. Johnson, H.L., Mitchell, R.I.: A completely digitized multi-color photometer. Commun. Lunar Planet. Lab. 1, 73–82 (1962)

    ADS  Google Scholar 

  41. Johnson, H.L., Morgan, W.W.: Fundamental stellar photometry for standards of spectral type on the Revised System of the Yerkes Spectral Atlas. ApJ 117, 313 (1953). https://doi.org/10.1086/145697

    Article  ADS  Google Scholar 

  42. Johnson, H.L., Mcarthur, J.W., Mitchell, R.I.: The spectral energy curves of subdwarfs. I. ApJ 152, 465 (1968). https://doi.org/10.1086/149563

    ADS  Google Scholar 

  43. Kaufer, A.: A two-beam two-slice image slicer for fiber-linked spectrographs. In: Astronomical Society of the Pacific Conference Series, vol. 152, p. 337 (1998)

    ADS  Google Scholar 

  44. Kelz, A., Roth, M.M., Becker, T.: Commissioning of the PMAS 3D-spectrograph. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 4841, pp. 1057–1066 (2003). https://doi.org/10.1117/12.460965

    ADS  Google Scholar 

  45. Kuchner, M.J., Traub, W.A.: A coronagraph with a band-limited mask for finding terrestrial planets. ApJ 570(2), 900–908 (2002). https://doi.org/10.1086/339625

    Article  ADS  Google Scholar 

  46. Langlois, M., Moretto, G., Richards, K., et al.: Solar multiconjugate adaptive optics at the Dunn Solar Telescope: preliminary results. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5490, pp. 59–66 (2004). https://doi.org/10.1117/12.548929

    ADS  Google Scholar 

  47. Lyot, B.: The study of the solar corona and prominences without eclipses (George Darwin Lecture, 1939). MNRAS 99, 580 (1939). https://doi.org/10.1093/mnras/99.8.580

    Article  ADS  MATH  Google Scholar 

  48. Marchetti, E., Brast, R., Delabre, B., et al.: MAD on sky results in star oriented mode. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7015, p. 70150F (2008). https://doi.org/10.1117/12.787240

    Google Scholar 

  49. McLean, I.S., Steidel, C.C., Epps, H.W., et al.: MOSFIRE, the multi-object spectrometer for infra-red exploration at the Keck Observatory. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8446, p. 84460J (2012). https://doi.org/10.1117/12.924794

    Google Scholar 

  50. Michelson, A.A., Pease, F.G.: Measurement of the diameter of α orionis with the interferometer. ApJ 53, 249–259 (1921). https://doi.org/10.1086/142603

    Article  ADS  Google Scholar 

  51. Monnier, J.D.: An introduction to closure phases. In: P.R. Lawson (ed.) Principles of Long Baseline Stellar Interferometry, p. 203 (2000)

    Google Scholar 

  52. Moore, A.C., Ninkov, Z., Forrest, W.J.: Interpixel capacitance in nondestructive focal plane arrays. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5167, pp. 204–215 (2004). https://doi.org/10.1117/12.507330

    ADS  Google Scholar 

  53. Moro, D., Munari, U.: The Asiago Database on Photometric Systems (ADPS). I. Census parameters for 167 photometric systems. A&AS 147, 361–628 (2000). https://doi.org/10.1051/aas:2000370

    Article  ADS  Google Scholar 

  54. Parry, I., Bunker, A., Dean, A., et al.: CIRPASS: Description, performance, and astronomical results. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5492, pp. 1135–1144 (2004). https://doi.org/10.1117/12.552012

    ADS  Google Scholar 

  55. Pramskiy, A., Thompson, D., Heidt, J., et al.: The LUCI@LBT twins: instrument flexure control. In: C.J. Evans, L. Simard, H. Takami (eds.) Ground-based and Airborne Instrumentation for Astronomy VII. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10702, p. 107022X (2018). https://doi.org/10.1117/12.2313202

  56. Quirrenbach, A.: Phase referencing. In: P.R. Lawson (ed.) Principles of Long Baseline Stellar Interferometry, p. 143 (2000)

    Google Scholar 

  57. Quirrenbach, A., Amado, P.J., Caballero, J.A., et al.: CARMENES instrument overview. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9147, p. 91471F (2014). https://doi.org/10.1117/12.2056453

    Google Scholar 

  58. Ragazzoni, R.: Pupil plane wavefront sensing with an oscillating prism. J. Mod. Opt. 43(2), 289–293 (1996)

    Article  ADS  Google Scholar 

  59. Rieke, G.H.: Detection of light: from the ultraviolet to the submillimeter (2003)

    Google Scholar 

  60. Rieke, G.H.: Infrared detector arrays for astronomy. ARA&A 45(1), 77–115 (2007). https://doi.org/10.1146/annurev.astro.44.051905.092436

    Article  ADS  Google Scholar 

  61. Rigaut, F.: Ground conjugate wide field adaptive optics for the ELTs. In: European Southern Observatory Conference and Workshop Proceedings, vol. 58, p. 11 (2002)

    Google Scholar 

  62. Rodrigo, C., Solano, E.: The SVO filter profile service. In: Contributions to the XIV.0 Scientific Meeting (virtual) of the Spanish Astronomical Society, p. 182 (2020)

    Google Scholar 

  63. Rodrigo, C., Solano, E., Bayo, A.: SVO filter profile service version 1.0. IVOA Working Draft 15 October 2012 (2012). https://doi.org/10.5479/ADS/bib/2012ivoa.rept.1015R

  64. Rothberg, B., Christou, J.C., Miller, D.L., et al.: Enhanced Seeing Mode at the LBT: A Method to Significantly Improve Angular Resolution over a 4× 4 Field of View. e-prints (2019). ar**v:1911.00549

    Google Scholar 

  65. Rouan, D., Riaud, P., Boccaletti, A., et al.: The four-quadrant phase-mask coronagraph. I. Principle. PASP 112(777), 1479–1486 (2000). https://doi.org/10.1086/317707

    Article  Google Scholar 

  66. Schneider, D.P., Gunn, J.E., Hoessel, J.G.: CCD photometry of Abell clusters. I. Magnitudes and redshifts for 84 brightest cluster galaxies. ApJ 264, 337–355 (1983). https://doi.org/10.1086/160602

    Article  ADS  Google Scholar 

  67. Sharples, R., Bender, R., Agudo Berbel, A., et al.: First light for the KMOS multi-object integral-field spectrometer. The Messenger 151, 21–23 (2013)

    ADS  Google Scholar 

  68. Skrutskie, M.F., Cutri, R.M., Stiening, R., et al.: The two micron all sky survey (2MASS). AJ 131(2), 1163–1183 (2006). https://doi.org/10.1086/498708

    Article  ADS  Google Scholar 

  69. Smith, G.A., Saunders, W., Bridges, T., et al.: AAOmega: A multipurpose fiber-fed spectrograph for the AAT. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5492, pp. 410–420 (2004). https://doi.org/10.1117/12.551013

    ADS  Google Scholar 

  70. Smith, R.M., Zavodny, M., Rahmer, G., et al.: A theory for image persistence in HgCdTe photodiodes. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7021, p. 70210J (2008). https://doi.org/10.1117/12.789372

    ADS  Google Scholar 

  71. Storz, C., Naranjo, V., Mall, U., et al.: Standard modes of MPIA’s current H2/H2RG-readout systems. In: A.D. Holland, J.W. Beletic (eds.) High Energy, Optical, and Infrared Detectors for Astronomy V, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8453, p. 84532E (2012). https://doi.org/10.1117/12.927170

  72. Strömgren, B.: Two-dimensional spectral classification of F stars through photoelectric photometry with interference filters. Vistas Astron. 2(1), 1336–1346 (1956). https://doi.org/10.1016/0083-6656(56)90060-5

    Article  ADS  Google Scholar 

  73. Tallon, M., Foy, R.: Adaptive telescope with laser probe: Isoplanatism and cone effect. A&A 235, 549–557 (1990)

    ADS  Google Scholar 

  74. Tinyanont, S., Millar-Blanchaer, M.A., Nilsson, R., et al.: WIRC+Pol: A low-resolution near-infrared spectropolarimeter. PASP 131(996), 025001 (2019). https://doi.org/10.1088/1538-3873/aaef0f

    Article  ADS  Google Scholar 

  75. Valle, P.J., Fuentes, A., Canales, V.F., et al.: Digital coronography: application to space telescope images. OSA Continuum 2(6), 2038–2049 (2019). https://doi.org/10.1364/OSAC.2.002038. http://www.osapublishing.org/osac/abstract.cfm?URI=osac-2-6-2038

  76. Wainscoat, R.J., Cowie, L.L.: A filter for deep near-infrared imaging. AJ 103, 332 (1992). https://doi.org/10.1086/116064

    Article  ADS  Google Scholar 

  77. Walraven, T., Walraven, J.H.: Some features of the Leiden radial velocity instrument. In: Auxiliary Instrumentation for Large Telescopes, pp. 175–183 (1972)

    Google Scholar 

  78. Williams, R.E., Blacker, B., Dickinson, M., et al.: The Hubble deep field: Observations, data reduction, and galaxy photometry. AJ 112, 1335 (1996). https://doi.org/10.1086/118105

    Article  ADS  Google Scholar 

  79. Wilson, R.N.: Reflecting Telescope Optics I (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heidt, J. (2022). Hardware for Near-Infrared Observations—Adaptive Optics, Instrumentation, and Detectors. In: Astronomy in the Near-Infrared - Observing Strategies and Data Reduction Techniques. Astrophysics and Space Science Library, vol 467. Springer, Cham. https://doi.org/10.1007/978-3-030-98441-0_4

Download citation

Publish with us

Policies and ethics

Navigation