Biopolymers from Microbial Flora

  • Chapter
  • First Online:
Biopolymers

Abstract

Over the recent times with the increasing interest on the environment, every country is trying to utilise every product from a natural resource in a needful manner. Bio-based polymer or biopolymer describes that they are from all plant, animal or microbial origin. With the advancing technology, consumers are also welcoming the synthetically originated polymers which are environment friendly. Biopolymers provide a plethora of applications in the various fields as they posses certain properties like biocompatibility, biodegradation to non-toxic products, low antigenicity, high bio-activity, processability to complicated shapes with appropriate porosity apart from ability to support cell growth and proliferation. In the present chapter an emphasis on biopolymers from microbial flora having applications in cosmetic, pharmaceutical and biomedical, agriculture, food etc. has been presented. Biopolymers are most commonly used and are most abundantly available and they provide protection against biotic stress. A combination of biopolymer and nanotechnology is a novel area of research paving way for nanomedicines and can be exploited for their potential application in drug delivery and gene therapy. The application in cosmetics and medicated cosmetics is also being researched. The research required to understand the novel applications of biopolymers cannot be limited to a specified field since they are employed in diverse areas. With the present day available literature, future work should focus on bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rao MG, Bharathi P, Akila RM (2014) Comprehensive review on biopolymers. Sci Revs Chem Commun 4(2):61–68. ISSN 2277–2669

    Google Scholar 

  2. Poddar PK, Gupta A, Jamari SS, Kim NS, Khan TA, Sharma S, Abd Aziz MA (2015) Synthesis of nanocellulose from rubberwood fibers via ultrasonication combined with enzymatic and chemical pretreatments. Asian J Appl Sci 3(5)

    Google Scholar 

  3. Sharma S, Gupta A (2016) Sustainable management of keratin waste biomass: applications and future perspectives. Braz Arch Biol Technol 59

    Google Scholar 

  4. Díez-Pascual AM (2019) Synthesis and applications of biopolymer composites. Int J Mol Sci 20(9):2321. Published online 2019 May 10. https://doi.org/10.3390/ijms20092321

  5. Sharma S, Gupta A, Chik SMST, Kee CYG, Podder PK, Subramaniam M, Thuraisingam J (2017) Study of different treatment methods on chicken feather biomass. IIUM Eng J 18(2):47–55

    Article  Google Scholar 

  6. Sharma S, Gupta A, Chik SMS, Kee CG, Mistry BM, Kim DH, Sharma G (2017) Characterization of keratin microparticles from feather biomass with potent antioxidant and anticancer activities. Int J Biol Macromol 104:189–196

    Article  CAS  PubMed  Google Scholar 

  7. Kamarudin NB, Sharma S, Gupta A, Kee CG, Chik SM, Gupta R (2017) Statistical investigation of extraction parameters of keratin from chicken feather using design-expert. 3 Biotech 7(2):1–9

    Google Scholar 

  8. Aggarwal J, Sharma S, Kamyab H, Kumar A (2020) The realm of biopolymers and their usage: an overview. J Environ Treat Techn 8(2):1005–1016

    Google Scholar 

  9. Kumaran P, Gupta A, Sharma S (2017) Synthesis of wound-healing keratin hydrogels using chicken feathers proteins and its properties. Int J Pharm Pharm Sci 9(2):171–178

    Google Scholar 

  10. Sharma S, Gupta A, Kumar A, Kee CG, Kamyab H, Saufi SM (2018) An efficient conversion of waste feather keratin into ecofriendly bioplastic film. Clean Technol Environ Policy 20(10):2157–2167

    Article  CAS  Google Scholar 

  11. Ramakrishnan N, Sharma S, Gupta A, Alashwal BY (2018) Keratin based bioplastic film from chicken feathers and its characterization. Int J Biol Macromol 111:352–358

    Article  CAS  PubMed  Google Scholar 

  12. Madigan MT, Martinko JM, Parker J (2001) Biology of microorganisms, 9th edn. Prentice- Hall, Upper Saddle Riverzoo

    Google Scholar 

  13. Alexander S (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1(1):1–24

    Article  Google Scholar 

  14. Moradali MF, Rehm BH (2020) Bacterial biopolymers: from pathogenesis to advanced materials. Nature 18

    Google Scholar 

  15. Schmid J, Sieber V, Rehm BHA (2015) Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 6:496

    Google Scholar 

  16. Thongsomboon W et al (2018) Phosphoethanolamine cellulose: a naturally produced chemically modified cellulose. Science 359:334–338

    Article  CAS  PubMed  Google Scholar 

  17. Oh SY, Budzik JM, Garufi G, Schneewind O (2011) Two capsular polysaccharides enable Bacillus cereus G9241 to cause anthrax-like disease. Mol Microbiol 80:455–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tzeng Y-L, Thomas J, Stephens DS (2016) Regulation of capsule in Neisseria meningitidis. Crit Rev Microbiol 42:759–772

    CAS  PubMed  Google Scholar 

  19. Miao T, Wang J, Zeng Y, Liu G, Chen X (2018) Polysaccharide-based controlled release systems for therapeutics delivery and tissue engineering: from bench to bedside. Adv Sci 5:1700513

    Article  CAS  Google Scholar 

  20. Pauly M, Ramírez V (2018) New insights into wall polysaccharide O-acetylation. Front Plant Sci 9:1210

    Article  PubMed  PubMed Central  Google Scholar 

  21. Loh EYX et al (2018) Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Sci Rep 8:2875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Bottan S et al (2015) Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB). ACS Nano 9:206–219

    Article  CAS  PubMed  Google Scholar 

  23. Kulkarni PK, Anil Dixit S, Singh UB (2012) Evaluation of bacterial cellulose produced from Acetobacter xylinum as pharmaceutical excepient. Am J Drug Discovery Develop 2(2):72–86

    Article  CAS  Google Scholar 

  24. Lee TW, Lee SE, Jeong YG (2016) Carbon nanotube/cellulose papers with high performance in electric heating and electromagnetic interference shielding. Compos Sci Technol 131:77–87. https://doi.org/10.1016/j.compscitech.2016.06.003

  25. Prakash U, Singh L, Sharma V (2013) Role of xanthan gum (Xanthomonas Compestris) in gastroretentive drug delivery system: an overview. Int Res J Pharm 4(4):35–37

    Article  CAS  Google Scholar 

  26. Peng L, Bihua S, Caixia Y, Guanhui G, ** L, Huqiang Y, Mingxing L, Wang B (2013) Dextran based redox-responsive doxorubicin prodrug micelles for overcoming multidrug resistance. Polym Chem 1(284):5793–5799

    Google Scholar 

  27. Naffakh M, Díez-Pascual AM, Marco C (2016) Polymer blend nanocomposites based on poly(l-lactic acid), polypropylene and WS2 inorganic nanotubes. RSC Adv 6:40033–40044

    Article  CAS  Google Scholar 

  28. Saini P, Arora M, Kumar MNVR (2016) Poly(lactic acid) blends in biomedical applications. Adv Drug Deliv Rev 107:47–59

    Article  CAS  PubMed  Google Scholar 

  29. Coltelli M-B, Cinelli P, Gigante V, Aliotta L, Morganti P, Panariello L, Lazzeri A (2019) Chitin nanofibrils in Poly(Lactic Acid) (PLA) nanocomposites: dispersion and thermo-mechanical properties. Int J Mol Sci 20:504

    Article  PubMed Central  CAS  Google Scholar 

  30. Zhao Y, Liu B, Bi H, Yang J, Li W, Liang H, Liang Y, Jia Z, Shi S, Chen M (2018) The degradation properties of MgO Whiskers/PLLA composite in vitro. Int J Mol Sci 19:2740

    Article  PubMed Central  CAS  Google Scholar 

  31. Moradali MF, Ghods S, Rehm BHA (2017) Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 7:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hassler RA, Doherty DH (1990) Genetic engineering of polysaccharide structure: production of variants of xanthan gum in Xanthomonas campestris. Biotechnol Prog 6(3):182–187

    Article  CAS  PubMed  Google Scholar 

  33. Kennedy JF, Bradshaw IJ (1984) Production, properties and applications of xanthan. Prog Ind. Microbiol 19:319–371

    Google Scholar 

  34. Aulitto M, Fusco S, Nickel DB, Bartolucci S, Contursi P, Franzén CJ (2019) Seed culture pre-adaptation of Bacillus coagulans MA-13 improves lactic acid production in simultaneous saccharification and fermentation. Biotechnol biofuels, 12(1):1–11.

    Google Scholar 

  35. Du J, Li L, Zhou S (2019) Microbial production of cyanophycin: from enzymes to biopolymers. Biotechnol Adv 37(7):107400

    Google Scholar 

  36. Luo Z et al (2016) Microbial synthesis of poly-γ-glutamic acid: current progress, challenges, and future perspectives. Biotechnol Biofuels 9:134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hyldgaard M et al (2014) The antimicrobial mechanism of action of epsilon-poly-l-lysine. Appl Env Microbiol 80:7758

    Article  CAS  Google Scholar 

  38. Watzer B, Forchhammer K (2018) Cyanophycin synthesis optimizes nitrogen utilization in the unicellular Cyanobacterium synechocystis sp. strain PCC 6803. Appl Environ Microbiol 84(20):e01298–18

    Google Scholar 

  39. Yu Y et al (2016) Poly-γ-glutamic acids contribute to biofilm formation and plant root colonization in selected environmental isolates of Bacillus subtilis. Front Microbiol 7:1811

    PubMed  PubMed Central  Google Scholar 

  40. Campisano A, Overhage J, Rehm BHA (2008) The polyhydroxyalkanoate biosynthesis genes are differentially regulated in planktonic- and biofilm-grown Pseudomonas aeruginosa. J Biotechnol 133:442–452

    Article  CAS  PubMed  Google Scholar 

  41. Kai D, Loh XJ (2014) Polyhydroxyalkanoates: chemical modifications toward biomedical applications. ACS Sustain Chem Eng 2:106–119

    Article  CAS  Google Scholar 

  42. Parlane NA et al (2017) Self-assembled protein-coated polyhydroxyalkanoate beads: properties and biomedical applications. ACS Biomater Sci Eng 3:3043–3057

    Article  CAS  PubMed  Google Scholar 

  43. Gonzalez-Miro M et al (2019) Polyester as antigen carrier toward particulate vaccines. Biomacromol 20:3211–3212

    Article  CAS  Google Scholar 

  44. Cinelli P, Seggiani M, Mallegni N, Gigante V, Lazzeri A (2019) Processability and degradability of PHA-based composites in terrestrial environments. Int J Mol Sci 20:284

    Article  PubMed Central  CAS  Google Scholar 

  45. Sánchez-Safont EL, Arrillaga A, Anakabe J, Cabedo L, Gamez-Perez J (2018) Toughness enhancement of PHBV/TPU/Cellulose compounds with reactive additives for compostable injected parts in industrial applications. Int J Mol Sci 19:2102. https://doi.org/10.3390/ijms19072102

    Article  CAS  PubMed Central  Google Scholar 

  46. Kulaev IS, Vagabov VM, Kulakovskaya TV (2004) The Biochemistry of inorganic polyphosphates. In: Wiley Online Books, John Wiley & Sons, Ltd.

    Google Scholar 

  47. Moreno SN, Docampo R (2013) Polyphosphate and its diverse functions in host cells and pathogens. PLoS Pathog 9:e1003230

    Google Scholar 

  48. Wang X et al (2016) Polyphosphate as a bioactive and biodegradable implant material: induction of bone regeneration in rats. Adv Eng Mater 18:1406–1417

    Article  CAS  Google Scholar 

  49. Müller WEG et al (2017) Fabrication of amorphous strontium polyphosphate microparticles that induce mineralization of bone cells in vitro and in vivo. Acta Biomater 50:89–101

    Article  PubMed  CAS  Google Scholar 

  50. Wang X, Schröder HC, Müller WEG (2018) Amorphous polyphosphate, a smart bioinspired nano-/bio-material for bone and cartilage regeneration: towards a new paradigm in tissue engineering. J Mater Chem B 6:2385–2412

    Article  CAS  PubMed  Google Scholar 

  51. Müller WEG et al (2018) Transformation of amorphous polyphosphate nanoparticles into coacervate complexes: an approach for the encapsulation of mesenchymal stem cells. Small Nano Micro 14:1801170

    Google Scholar 

  52. Lindner SN, Knebel S, Pallerla SR, Schoberth SM, Wendisch VF (2010) Cg2091 encodes a polyphosphate/ATP-dependent glucokinase of Corynebacterium glutamicum. Appl Microbiol Biotechnol 87:703–713

    Article  CAS  PubMed  Google Scholar 

  53. Cao B, Xu H, Mao C (2011) Controlled self-assembly of rodlike bacterial pili particles into ordered lattices. Angew Chem Int Ed 50:6264–6268

    Article  CAS  Google Scholar 

  54. Bera S et al (2019) Rigid helical-like assemblies from a self-aggregating tripeptide. Nat Mater 18:503–509

    Article  CAS  PubMed  Google Scholar 

  55. Nguyen PQ, Courchesne ND, Duraj-Thatte A, Praveschotinunt P, Joshi NS (2018) Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv Mater 30: e1704847

    Google Scholar 

  56. Gilbert C, Ellis T (2019) Biological engineered living materials: growing functional materials with genetically programmable properties. ACS Synth Biol 8:1–15

    Article  CAS  PubMed  Google Scholar 

  57. Bilal M, Iqbal MN (2019) Naturally-derived biopolymers: potential platforms for enzyme immobilization. Int J Biol Macromol 130:462–482

    Article  CAS  PubMed  Google Scholar 

  58. Donot F, Fontana A, Baccou JC et al (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87(2):951–962

    Article  CAS  Google Scholar 

  59. Kumar CG, Mongolla P, Lasiosan PS (2018) A new exopolysaccharide from Lasiodiplodia sp. strain B2 (MTCC 6000): structural characterization and biological evaluation. Process Biochem 72:162–169

    Article  CAS  Google Scholar 

  60. Akila RM (2014) Fermentative production of fungal chitosan, a versatile biopolymer (perspectives and its applications). Adv Appl Sci Res 5:157–170

    CAS  Google Scholar 

  61. Ismail B, Nampoothiri KM (2010) Exopolysaccharide production and prevention of syneresis in starch using encapsulated probiotic Lactobacillus plantarum. Food Technol Biotechnol 48:484–489

    Google Scholar 

  62. Osinska-Jaroszuk M, Jarosz-Wilkołazka A, Jaroszuk-Sciseł J et al (2015) Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties. World J Microbiol Biotechnol 31(12):1823–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li R, Jiang X, Guan H (2010) Optimization of mycelium biomass and exopolysaccharides production by Hirsutella sp. in submerged fermentation and evaluation of exopolysaccharides antibacterial activity. Afr J Biotechnol 9:195–202

    CAS  Google Scholar 

  64. McIntosh M, Stone BA, Stanisich VA (2005) Curdlan and other bacterial (1–>3)-beta-D-glucans. Appl Microbiol Biotechnol 68(2):163–173. https://doi.org/10.1007/s00253-005-1959-5

  65. Seviour RJ, Stasinopoulos SJ, Auer DPF (1992) Production of pullulan and other exopolysaccharides by filamentous fungi. Crit Rev Biotechnol 12(3):279–298. https://doi.org/10.3109/07388559209069196

    Article  CAS  Google Scholar 

  66. Klis FM, de Groot P, Hellingwerf K (2001) Molecular organization of the cell wall of Candida albicans. Med Mycol 39(1):1–8

    Article  CAS  PubMed  Google Scholar 

  67. Di Luzio NR, Williams DL, McNamee RB, Ewards BF, Kitahama A (1978) Comparative tumor-inhibitory and anti-bacterial activity of soluble and particulate glucan. Int J Cancer 24:773–779

    Article  Google Scholar 

  68. Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polym 73(4):515–531

    Article  CAS  PubMed  Google Scholar 

  69. Sugumaran KR, Ponnusami V (2017) Review on production, downstream processing and characterization of microbial pullulan. Carbohydr Polym 173:573–591

    Article  CAS  Google Scholar 

  70. Castillo NA, Valdez AL, Farina JI JI (2015) Microbial production of scleroglucan and downstream processing. Front Microbiol 6:1106–1119

    Article  PubMed  PubMed Central  Google Scholar 

  71. Khan AA, Gani A, Khanday FA et al (2018) Biological and pharmaceutical activities of mushroom b-glucan discussed as a potential functional food ingredient. Bioact Carbohydr Diet Fibre 16:1–13

    Google Scholar 

  72. Ruiz-Herrera J, Ortiz-Castellanos L (2019) Cell wall glucans of fungi. a review. Cell Surf 5:100022

    Google Scholar 

  73. Dikit P, Methacanon P, Visessanguan W et al (2010) Characterization of an unexpected bioemulsifier from spent yeast obtained from Thai traditional liquor distillation. Int J Biol Macromol 47(4):465–470

    Article  CAS  PubMed  Google Scholar 

  74. Zhu F, Du B, Xu B (2016) A critical review on production and industrial applications of beta-glucans. Food Hydrocoll 52:275–288

    Article  CAS  Google Scholar 

  75. Bai J, Ren Y, Li Y et al (2019) Physiological functionalities and mechanisms of b-glucans. Trends Food Sci Technol 88:57–66

    Article  CAS  Google Scholar 

  76. DeSimone JM (1973) Japanese develop starch-derived plastic. Chem Eng News 24:40

    Google Scholar 

  77. Jeanes A (1977) Dextrans and pullulans, industrially significant Alpha-D-Glucans. Extracel Microbial Polysaccharides ACS Sympos Series 45:284

    Google Scholar 

  78. Shin YC, Kim YH, Lee HS, Cho SJ, Byun SM (1989) Production of exopolysaccharide pullulan from inulin by mixed culture of Aureobasidium pullulans and Kluyveromyces fragilis. Biotechnol Bioeng 33(65):129–133

    Article  CAS  PubMed  Google Scholar 

  79. Schmid J, Meyer V, Sieber V (2011) Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid. Appl Microbiol Biotechnol 91(4):937–947

    Article  CAS  PubMed  Google Scholar 

  80. Liu C, Lu J, Lu L et al (2010) Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8–37-0-1. Biores Technol 101(14):5528–5533

    Article  CAS  Google Scholar 

  81. Ates O (2015) Systems biology of microbial exopolysaccharides production. Front Bioeng Biotechnol 3:200–216

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lei S, Feng Edmund T (2017) Polysaccharides, microbial. In: Roitberg BD (ed) Reference module in life sciences. Elsevier Inc, pp 482–494

    Google Scholar 

  83. New N, Furuike T, Tamura H (2011) Production, properties and applications of fungal cell wall polysaccharides: chitosan and glucan. Adv Polym Sci 244:187–207

    Article  CAS  Google Scholar 

  84. Cota-Arriola O, Onofre Cortez-Rocha M, Burgos-Hernandez A et al (2013) Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: development of new strategies for microbial control in agriculture. J Sci Food Agric 93(7):1525–1536

    Article  CAS  PubMed  Google Scholar 

  85. Farias JM, Stamford TCM, Resende AHM et al (2019) Mouthwash containing a biosurfactant and chitosan: an eco-sustainable option for the control of cariogenic microorganisms. Int J Biol Macromol 129:853–860

    Article  CAS  PubMed  Google Scholar 

  86. Abdel-Gawad KM, Hifney AF, Fawzy MA et al (2017) Technology optimization of chitosan production from Aspergillus niger biomass and its functional activities. Food Hydrocoll 63:593–601

    Article  CAS  Google Scholar 

  87. Mnif I, Ghribi D (2016) Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. J Sci Food Agric 96(13):4310–4320

    Article  CAS  PubMed  Google Scholar 

  88. Batrakov SG, Konova IV, Sheichenko VI et al (2003) Glycolipids of the filamentous fungus Absidia corymbifera. Chem Phys Lipids 123(2):157–164

    Article  CAS  PubMed  Google Scholar 

  89. Liu Y, Koh CMJ, Ji L (2011) Bioconversion of crude glycerol to glycolipids in Ustilago maydis. Biores Technol 102(4):3927–3933

    Article  CAS  Google Scholar 

  90. Biniarz P, Łukaszewicz M, Janek T (2017) Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides: a review. Crit Rev Biotechnol 37(3):393–410

    Article  CAS  PubMed  Google Scholar 

  91. Mnif I, Ghribi D (2015) Lipopeptide surfactants: production, recovery and pore forming capacity. Peptides 71:100–112

    Article  CAS  Google Scholar 

  92. Khoo CG, Dasan YK, Lam MK, Lee KT (2019) Algae biorefinery: Review on a broad spectrum of downstream processes and products. Biores Technol 292:121964. https://doi.org/10.1016/j.biortech.2019.121964

  93. Lutzu GA, Ciurli A, Chiellini C, Di Caprio F, Concas A, Dunford NT (2021) Latest developments in wastewater treatment and biopolymer production by microalgae. J Environ Chem Eng 9(1):104926. https://doi.org/10.1016/j.jece:2020.104926

    Article  CAS  Google Scholar 

  94. Parsons S, Allen MJ, Chuck CJ (2020) Coproducts of algae and yeast-derived single cell oils: a critical review of their role in improving biorefinery sustainability. Biores Technol 303:122862. https://doi.org/10.1016/j.biortech.2020.122862

    Article  CAS  Google Scholar 

  95. Cheng P, Okada S, Zhou C, Chen P, Huo S, Li K, Addy M, Yan X, Ruan RR (2019) High-value chemicals from Botryococcus braunii and their current applications—a review. Biores Technol 291:121911. https://doi.org/10.1016/j.biortech.2019.121911

    Article  CAS  Google Scholar 

  96. Pankiewicz R, Łęska B, Messyasz B, Fabrowska J, Sołoducha M, Pikosz M (2016) First isolation of polysaccharidic ulvans from the cell walls of freshwater algae. Algal Res 19:348–354. https://doi.org/10.1016/j.algal.2016.02.025

    Article  Google Scholar 

  97. Yuan Q, Li H, Wei Z, Lv K, Gao C, Liu Y, Zhao L (2020) Isolation, structures and biological activities of polysaccharides from Chlorella: a review. Int J Biol Macromol 163:2199–2209. https://doi.org/10.1016/j.ijbiomac.2020.09.080

    Article  CAS  PubMed  Google Scholar 

  98. Zhu N, Ye M, Shi D, Chen M (2017) Reactive compatibilization of biodegradable poly(butylene succinate)/Spirulina microalgae composites. Macromol Res 25(2):165–171. https://doi.org/10.1007/s13233-017-5025-9

    Article  CAS  Google Scholar 

  99. Cassuriaga APA, Freitas BCB, Morais MG, Costa JAV (2018) Innovative polyhydroxybutyrate production by Chlorella fusca grown with pentoses. Biores Technol 265:456–463. https://doi.org/10.1016/j.biortech.2018.06.026

    Article  CAS  Google Scholar 

  100. Costa SS, Miranda AL, Andrade BB, Assis DDJ, Souza CO, de Morais MG, Costa JAV, Druzian JI (2018) Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae. Int J Biol Macromol 116:552–562. https://doi.org/10.1016/j.ijbiomac.2018.05.064

    Article  CAS  PubMed  Google Scholar 

  101. Rueda E, García-Galan MJ, Ortiz A, Uggetti E, Carretero J, García J, Díez-Montero R (2020) Bioremediation of agricultural runoff and biopolymers production from cyanobacteria cultured in demonstrative full-scale photobioreactors. Process Saf Environ Prot 139:241–250. https://doi.org/10.1016/j.psep.2020.03.035

    Article  CAS  Google Scholar 

  102. Sirohi R, Prakash Pandey J, Kumar Gaur V, Gnansounou E, Sindhu R (2020) Critical overview of biomass feedstocks as sustainable substrates for the production of polyhydroxybutyrate (PHB). Biores Technol 311:123536. https://doi.org/10.1016/j.biortech.2020.123536

    Article  CAS  Google Scholar 

  103. Kavitha G, Kurinjimalar C, Sivakumar K, Palani P, Rengasamy R (2016) Biosynthesis, purification and characterization of polyhydroxybutyrate from Botryococcus braunii kütz. Int J Biol Macromol 89:700–706. https://doi.org/10.1016/j.ijbiomac.2016.04.086

    Article  CAS  PubMed  Google Scholar 

  104. Tebaldi ML, Maia ALC, Poletto F, de Andrade FV, Soares DCF (2019) Poly(-3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): current advances in synthesis methodologies, antitumor applications and biocompatibility. J Drug Deliv Sci Technol 51:115–126. https://doi.org/10.1016/j.jddst.2019.02.007

    Article  CAS  Google Scholar 

  105. Akdoğan M, Çelik E (2021) Enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biopolymer by recombinant Bacillus megaterium in fed-batch bioreactors. Bioprocess Biosyst Eng 44(2):403–416. https://doi.org/10.1007/s00449-020-02452-z

    Article  CAS  PubMed  Google Scholar 

  106. Noreen A, Jabeen M, Tabasum S, Anjum A, Naseer R, NMadera-Santana TJ, Sultana T, Sultana S (2017) Algae-derived polyester blends and composites. Chem Biotechnol Mater Sci 12:459–497

    Google Scholar 

  107. Sayin S, Kohlhaas T, Veziroglu S, Okudan ES, Naz M, Schröder S, Saygili EI, Açil Y, Faupel F, Wiltfang J, Aktas OC, Gülses A (2020) Marine Algae-PLA composites as de novo alternative to porcine derived collagen membranes. Mater Today Chem 17, 100276. https://doi.org/10.1016/j.mtchem.2020.100276

  108. FPriyan Shanura Fernando I, Kim KN, Kim D, Jeon YJ (2019) Algal polysaccharides: potential bioactive substances for cosmeceutical applications. Crit Rev Biotechnol 39(1):99–113. https://doi.org/10.1080/07388551.2018.1503995

    Article  CAS  Google Scholar 

  109. Zhang C, Show P-L, Ho S-H (2019) Progress and perspective on algal plastics—a critical review. Biores Technol 289:121700. https://doi.org/10.1016/j.biortech.2019.121700

    Article  CAS  Google Scholar 

  110. Yuan Y, Macquarrie DJ (2015) Microwave assisted step-by-step process for the production of fucoidan, alginate sodium, sugars and biochar from Ascophyllum nodosum through a biorefinery concept. Biores Technol 198:819–827. https://doi.org/10.1016/j.biortech.2015.09.090

    Article  CAS  Google Scholar 

  111. Etman SM, Elnaggar YSR, Abdallah OY (2020) Fucoidan, a natural biopolymer in cancer combating: From edible algae to nanocarrier tailoring. Int J Biol Macromol 147:799–808. https://doi.org/10.1016/j.ijbiomac.2019.11.191

    Article  CAS  PubMed  Google Scholar 

  112. January GG, Naidoo RK, Kirby-McCullough B, Bauer R (2019) Assessing methodologies for fucoidan extraction from South African brown algae. Algal Res 40:101517. https://doi.org/10.1016/j.algal.2019.101517

    Article  Google Scholar 

  113. Zhao Y, Zheng Y, Wang J, Ma S, Yu Y, White W, Yang S, Yang F, Lu J (2018) Fucoidan extracted from Undaria pinnatifida: Source for nutraceuticals/functional foods. Mar Drugs 16(9):321. https://doi.org/10.3390/md16090321

    Article  CAS  PubMed Central  Google Scholar 

  114. Hmelkov AB, Zvyagintseva TN, Shevchenko NM, Rasin AB, Ermakova SP (2018) Ultrasound-assisted extraction of polysaccharides from brown alga Fucus evanescens. Structure and biological activity of the new fucoidan fractions. J Appl Phycol 30(3):2039–2046. https://doi.org/10.1007/s10811-017-1342-9

  115. Rajauria G, Ravindran R, Garcia-Vaquero M, Rai DK, Sweeney T, O’Doherty J (2021) Molecular characteristics and antioxidant activity of laminarin extracted from the seaweed species Laminaria hyperborea, using hydrothermal-assisted extraction and a multi-step purification procedure. Food Hydrocoll 112:106332. https://doi.org/10.1016/j.foodhyd.2020.106332

    Article  CAS  Google Scholar 

  116. Kadam SU, Tiwari BK, O’Donnell CP (2015) Extraction, structure and biofunctional activities of laminarin from brown algae. Int J Food Sci Technol 50(1):24–31. https://doi.org/10.1111/ijfs.2015.50.issue-110.1111/ijfs.12692

    Article  CAS  Google Scholar 

  117. Bouanati T, Colson E, Moins S, Cabrera J-C, Eeckhaut I, Raquez J-M, Gerbaux P (2020) Microwave-assisted depolymerization of carrageenans from Kappaphycus alvarezii and Eucheuma spinosum: controlled and green production of oligosaccharides from the algae biomass. Algal Res 51:102054. https://doi.org/10.1016/j.algal.2020.102054

    Article  Google Scholar 

  118. Bui VTNT, Nguyen BT, Renou F, Nicolai T (2019) Structure and rheological properties of carrageenans extracted from different red algae species cultivated in Cam Ranh Bay Vietnam. J Appl Phycol 31(3):1947–1953. https://doi.org/10.1007/s10811-018-1665-1

    Article  CAS  Google Scholar 

  119. Tran DT, Lee HR, Jung S, Park MS, Yang JW (2018) Lipid-extracted algal biomass based biocomposites fabrication with poly(vinyl alcohol). Algal Res 31:525–533. https://doi.org/10.1016/j.algal.2016.08.016

    Article  Google Scholar 

  120. Alsop RM (1983) Industrial production of Dextrans. Prog Ind Microbiol 101:1-42. In: Bushell ME (ed). Elsevier, Amsterdam, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Velamakanni, R.P., Sree, B.S., Vuppugalla, P., Velamakanni, R.S., Merugu, R. (2022). Biopolymers from Microbial Flora. In: Nadda, A.K., Sharma, S., Bhat, R. (eds) Biopolymers. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-98392-5_8

Download citation

Publish with us

Policies and ethics

Navigation