Biopolymers in Automotive Industry

  • Chapter
  • First Online:
Biopolymers

Abstract

Bio-based polymers are engineered for automotive applications due to their multifunctional characteristic properties, such as biocompatibility, biodegradability, and lower disposal as well as mechanical properties in some cases. Automotive Industry can shift to use renewable materials that exhibit equal or outstanding performance compared to the other conventional counterparts. Good life span and lightweight polymeric automotive parts as a way to reduce fuel consumption and therefore limit the outflow of ozone-depleting substances will continue to prompt comprehensive research into the applicability and employment of polymers and their obtained composites in the automotive industry. In this chapter, Biocomposite’s Characteristic Properties containing biomaterials as Polymeric Matrix, i.e., Natural rubber, polylactic acid or Filler, Glass, Cellulose, Wood, Flax,…, in plastic and elastic parts, tires, and foams have been reviewed. Using biopolymers improves Tensile Strength and tear strength, Young’s Modulus, higher Stiffness, lightweight, reduction in fuel consumption, lower Mooney viscosity, and better rolling resistance compared to conventional polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Konz RJ (2009) Note the end-of-life vehicle (ELV) directive: the road to responsible disposal. Regulation 431:431–457

    Google Scholar 

  2. https://www.oica.net/category/production-statistics/2019-statistics

  3. Goede M, Stehlin M, Rafflenbeul L, Kopp G, Beeh E (2009) Super Light Car-lightweight construction thanks to a multi-material design and function integration. Eur Transp Res Rev 1(1):5–10. https://doi.org/10.1007/s12544-008-0001-2

    Article  Google Scholar 

  4. Patil A, Patel A, Purohit R (2017) Science direct an overview of polymeric materials for automotive applications. Mater Today Proc 4(2):3807–3815. https://doi.org/10.1016/j.matpr.2017.02.278

    Article  Google Scholar 

  5. https://www.automotiveplastics.com/2019-light-vehicle-materials-report/

  6. Wei XF, Kallio KJ, Bruder S, Bellander M, Olsson RT, Hedenqvist MS (2020) High-performance glass-fibre reinforced biobased aromatic polyamide in automotive biofuel supply systems. J Clean Prod 263:121453. https://doi.org/10.1016/j.jclepro.2020.121453

  7. Sadashiva M, Abhishek JV (2020) Characteristic evaluation of tensile properties of hybrid bio composites with different orientation of fibers. AIP Conf Proc 2274. https://doi.org/10.1063/5.0027006

  8. da Silva CG, Frollini E (2020) Unburned sugarcane bagasse: bio-based phenolic thermoset composites as an alternative for the management of this agrowaste. J Polym Environ 28(12):3201–3210. https://doi.org/10.1007/s10924-020-01848-y

    Article  CAS  Google Scholar 

  9. Al- FM, Sapuan SM (2014) Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. J Clean Prod 66:347–354. https://doi.org/10.1016/j.jclepro.2013.10.050

  10. Yusof NSB, Sapuan SM, Sultan MTH, Jawaid M (2020) Conceptual design of oil palm fibre reinforced polymer hybrid composite automotive crash box using integrated approach. J Cent South Univ 27(1):64–75. https://doi.org/10.1007/s11771-020-4278-1

    Article  CAS  Google Scholar 

  11. Sadeghi- M, Safapour S (2018) Salt-free dyeing of cotton fabric modified with prepared chitosan-poly (propylene) imine dendrimer using direct dyes. Prog Color Color Coatings 11(1):21–32

    Google Scholar 

  12. Pantaloni D, Shah D, Baley C, Bourmaud A (2020) Monitoring of mechanical performances of flax non-woven biocomposites during a home compost degradation. Polym Degrad Stab 177:109166.https://doi.org/10.1016/j.polymdegradstab.2020.109166

  13. Oliver-Ortega H, Julian F, Espinach FX, Tarrés Q, Ardanuy M, Mutjé P (2019) Research on the use of lignocellulosic fibers reinforced bio-polyamide 11 with composites for automotive parts: car door handle case study. J Clean Prod 226:64–73. https://doi.org/10.1016/j.jclepro.2019.04.047

    Article  CAS  Google Scholar 

  14. Birch A, Dal Castel C, Kiziltas A, Mielewski D, Simon L (2015) Development of cost effective and sustainable polyamide blends for automotive applications. SPE Automot Compos Conf Exhib Troy, MI, USA, no. November, pp. 1–10, 2015. https://www.researchgate.net/publication/283504893

  15. Werchefani M, Lacoste C, Belguith H, Gargouri A, Bradai C (2020) Effect of chemical and enzymatic treatments of alfa fibers on polylactic acid bio-composites properties. J Compos Mater 54(30):4959–4967. https://doi.org/10.1177/0021998320941579

    Article  CAS  Google Scholar 

  16. Platnieks O, Gaidukovs S, Barkane A, Sereda A, Gaidukova G, Grase L, Thakur VK, Filipova I, Fridrihsone V, Skute M, Laka M (2020) Bio-based poly(butylene succinate)/microcrystalline cellulose/nanofibrillated cellulose-based sustainable polymer composites: thermo-mechanical and biodegradation studies. Polymers (Basel) 12(7):1–20. https://doi.org/10.3390/polym12071472

    Article  CAS  Google Scholar 

  17. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58(11):80–86. https://doi.org/10.1007/s11837-006-0234-2

    Article  CAS  Google Scholar 

  18. Baran A, Tuhin B (2020) Automotive applications of thermoplastic vulcanizates, 1–19. https://doi.org/10.1002/app.49181

  19. Mohanty AK, Misra M, Drzal LT (2005) No title. Nat fibers, Biopolym. Biocomposites

    Google Scholar 

  20. Aranguren MI, Marcovich NE, Salgueiro W, Somoza A (2013) Effect of the nano-cellulose content on the properties of reinforced polyurethanes. A study using mechanical tests and positron anihilation spectroscopy. Polym Test 32(1):115–122. https://doi.org/10.1016/j.polymertesting.2012.08.014

    Article  CAS  Google Scholar 

  21. https://www.ptonline.com/articles/natural-fibers-the-new-fashion-in-automotive-plastics

  22. Seagrave TD (2003) Automotive polyurethane composite parts made with natural fiber mats and honeycomb cores. Bayer and Hennecke GmbH Report. https://www.yumpu.com/en/document/read/3284814/automotive-polyurethane-composite-parts-made-with-natural-fiber

  23. Cunha AM, Campos AR, Cristovão C, Vila C, Santos V, Parajó JC (2006) Sustainable materials in automotive applications. Plast Rubber Compos 35(6–7):233–241. https://doi.org/10.1179/174328906X146487

    Article  CAS  Google Scholar 

  24. Toyota green innovations, pp 7–12, 2014. https://www.toyota.com

  25. Anuar H, Surip SN, Adilah A (2010) Development of reinforced thermoplastic elastomer with kenaf bast fibre for automotive component, pp 1–5

    Google Scholar 

  26. Al-Hartom OA, Al-ghamdi AA, Farha SA, Said A, Dishovsky N, Ward MB, Mihaylov M, Ivanov M (2015) Characterization of carbon silica hybrid fillers obtained by pyrolysis of waste green tires by the STEM-EDX method. Mater Charact 101, 90–96. https://doi.org/10.1016/j.matchar.2014.09.003

  27. Bledzki AK, Sperber VE, Faruk O (2002) Natural and wood Fibre reinforcement in polymers. Rapra Technol

    Google Scholar 

  28. Bouvier F, Rahier A, Camara B (2005) Progress in lipid research biogenesis, molecular regulation and function of plant isoprenoids 44:357–429. https://doi.org/10.1016/j.plipres.2005.09.003

  29. Lei W, Zhou X, Russell TP, Hua K, Yang X, Qiao H, Wang W, Li F, Wang R, Zhang L (2016) High performance bio-based elastomers: energy efficient and sustainable materials for tires. J Mater Chem A 4(34):13058–13062. https://doi.org/10.1039/C6TA05001H

    Article  CAS  Google Scholar 

  30. Dominic M, Joseph R, Sabura Begum PM, Kanoth BP, Chandra J, Thomas S (2020) Green tire technology: Effect of rice husk derived nanocellulose (RHNC) in replacing carbon black (CB) in natural rubber (NR) compounding. Carbohydr Polym 230:115620. https://doi.org/10.1016/j.carbpol.2019.115620

  31. Lolage M, Parida P, Chaskar M, Gupta A, Rautaray D (2020) “Jo ur of,” sustain. Mater Technol, e00232. https://doi.org/10.1016/j.susmat.2020.e00232

  32. G. G. T. M. R. Report, p. https://www.marketresearchfuture.com

  33. Song SH (2020) Characterization of eco-friendly processing aids for styrene butadiene rubber composites with silica. https://doi.org/10.1177/0021998320916230

  34. Das S, Chattopadhyay S, Dhanania S, Bhowmick AK (2020) “Improved dispersion and physico-mechanical properties of rubber/silica composites through new silane grafting. Polym Eng Sci 60(12):3115–3134. https://doi.org/10.1002/pen.25541

  35. Hassan AA, Formela K, Wang S (2020) Enhanced interfacial and mechanical performance of styrene-butadiene rubber/silica composites compatibilized by soybean oil derived silanized plasticization. Compos Sci Technol 197:108271.https://doi.org/10.1016/j.compscitech.2020.108271

  36. Ghosh J, Hait S, Ghorai S, Mondal D, Wießner S, Das A, De D (2019) Resources, conservation & recycling cradle-to-cradle approach to waste tyres and development of silica based green tyre composites. Resour Conserv Recycl 154:104629. https://doi.org/10.1016/j.resconrec.2019.104629

  37. Jiang L, Huang K, Wang Y, Wang J (2020) Effective reinforcement of hydrogen-bonding assembly silica-graphene hybrid in natural rubber, pp 1–10. https://doi.org/10.1002/vnl.21797

  38. Saleem A, Medina L, Skrifvars M, Berglin L (2020) Hybrid polymer composites of bio-based bast fibers with glass, carbon and basalt fibers for automotive applications-a review. Molecules 25(21). https://doi.org/10.3390/molecules25214933

  39. Li Z, Loh XJ (2015) Water soluble polyhydroxyalkanoates: future materials for therapeutic applications. Chem Soc Rev 44(10):2865–2879. https://doi.org/10.1039/C5CS00089K

    Article  CAS  PubMed  Google Scholar 

  40. Dusselier M, Van Wouwe P, Dewaele A, Jacobs PA, Sels BF (2015) GREEN CHEMISTRY. Shape-selective zeolite catalysis for bioplastics production. Science 349(6243):78–80. https://doi.org/10.1126/science.aaa7169

    Article  CAS  PubMed  Google Scholar 

  41. Ullah MH, Mahadi WNL, Latef TA (2015) Aerogel Poly ( butylene succinate) biomaterial substrate for rf and microwave applications. Nat Publ Gr, 1–8. https://doi.org/10.1038/srep12868

  42. van Lith R, Gregory EK, Yang J, Kibbe MR, Ameer GA (2014) Engineering biodegradable polyester elastomers with antioxidant properties to attenuate oxidative stress in tissues. Biomaterials 35(28):8113–8122. https://doi.org/10.1016/j.biomaterials.2014.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Z, Zhang X, Wang R, Kang H, Qiao B, Ma J, Zhang L, Wang H (2012) Synthesis and characterization of novel soybean-oil-based elastomers with favorable processability and tunable properties. Macromolecules 45(22):9010–9019. https://doi.org/10.1021/ma301938a

    Article  CAS  Google Scholar 

  44. Wang R, Ma J, Zhou X, Wang Z, Kang H, Zhang L, Design and preparation of a Novel Crosslinkable, high molecular weight and bio-based elastomer by emulsion polymerization, pp 1–4

    Google Scholar 

  45. Li H, Zong X, Li N, Zhang X, He A (2021) Influences of crosslinkable crystalline copolymer on the polymer network and filler dispersion of NR/ESBR/CB nanocomposites. Compos Part A Appl Sci Manuf 140:106194. https://doi.org/10.1016/j.compositesa.2020.106194

  46. Mazzon E, Habas A, Habas JP (2015) Lightweight rigid foams from highly reactive epoxy resins derived from vegetable oil for automotive applications. Eur Polym J 68:546–557. https://doi.org/10.1016/j.eurpolymj.2015.03.064

  47. Mazzon E, Guigues P, Habas JP (2020) Biobased structural epoxy foams derived from plant-oil: formulation, manufacturing and characterization. Ind Crops Prod 144:111994. https://doi.org/10.1016/j.indcrop.2019.111994

  48. Rus AZM, Azahari MSM, Kormin S, Soon LB, Zaliran MT, Sadrina A (2017) Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials. AIP Conf Proc 1877. https://doi.org/10.1063/1.4999883

  49. Ji Y, Chen S, Cheng Y (2019) Synthesis and acoustic study of a new tung oil-based polyurethane composite foam with the addition of miscanthus lutarioriparius. Polymers (Basel) 11(7). https://doi.org/10.3390/polym11071144

  50. Faruk O, Sain M, Farnood R, Pan Y, **ao H (2014) Development of lignin and Nanocellulose enhanced bio PU foams for automotive parts. J Polym Environ 22(3):279–288. https://doi.org/10.1007/s10924-013-0631-x

    Article  CAS  Google Scholar 

  51. Yu AZ, Setien RA, Sahouani JM, Docken J, Webster DC (2019) Catalyzed non-isocyanate polyurethane (NIPU) coatings from bio-based poly(cyclic carbonates). J. Coatings Technol Res 16(1):41–57. https://doi.org/10.1007/s11998-018-0135-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Ranjbar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ranjbar, Z., Ranjbar, B., Foroughirad, S. (2022). Biopolymers in Automotive Industry. In: Nadda, A.K., Sharma, S., Bhat, R. (eds) Biopolymers. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-98392-5_13

Download citation

Publish with us

Policies and ethics

Navigation