Crop-Livestock-Forest System as Nature-Based Solutions to Combating Climate Change, and Achieving SDGs in Brazil

  • Living reference work entry
  • First Online:
Handbook of Nature-Based Solutions to Mitigation and Adaptation to Climate Change

Abstract

Brazil is one of the countries with the largest population and areas of natural lands with the potential for the storage of excess atmospheric circulation of GHGs, especially CO2. The rapid growth of the human population has increased the demand for more food, shelter, and infrastructural developments (such as transport and communication networks, industries, educational facilities, commercial arenas, recreational centers, and others). Thus, there has been a decline in the land areas of available natural land cover (including forests, grasslands, savannahs, and soils) have started to decline in sizes and qualities because of severe threats and degradations from anthropogenic activities coupled with climate changes. To achieve the sustainable development goals (SDGs) 1 (end of poverty), SDGs 2 (zero hunger: food for all), SDGs 3 (assured good health and well-being), SDGs 6 (provisions of clear water and sanitation), SDGs 13 (climate change combat actions), and SDGs 15 (protection of life and land), the natural ecosystems and their indispensable services need to be restored and preserved. Therefore, agricultural practices especially the crop-livestock-forest systems (CLFs) have been identified as the ultimate nature-based solutions (NBS) to tackle climate change and achieve most of the SDGs in Brazil. This work performed a scientometric analysis of national-based studies in the Web of Sciences scientific database on CLFs as NBS for mitigating climate change and meeting SDGs. This review study established that agricultural practices especially the crop-livestock-forest systems (CLFs) are the ultimate nature-based solutions (NBS) to tackle climate change and achieve most of the SDGs. It revealed that Brazil as third country in the world in agricultural production has made significant progress in the adoption of CLFs, especially in the southeast, south, central-west, and northeastern regions. Considering the number and distribution of the integrated crop-livestock-forest systems in Brazil, and coupled with the reviewed potential of the systems, there is no doubt that the country in near future will become one of the leading nations in achieving SDGs and climate change mitigation through low-carbon agriculture. This systematic review will help to close the knowledge gap on the potential of CLFs and consolidate policies to promote the systems in Brazil and globally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aitchison JW (2014) 2 Classification of agricultural systems. Progress in Agricultural Geography (Routledge Revivals), 38

    Google Scholar 

  • Awazi NP, Tchamba NM (2019) Enhancing agricultural sustainability and productivity under changing climate conditions through improved agroforestry practices in smallholder farming systems in sub-Saharan Africa. African J Agric Res 14(7):379–388

    Article  Google Scholar 

  • Balbino LC, Cordeiro LAM, Porfírio-da-Silva V, de Moraes A, Martínez GB, Alvarenga RC, Kichel AN, Fontaneli RS, dos Santos HP, Franchini JC, Galerani PR (2011) Evolução tecnológica e arranjos produtivos de sistemas de integração lavoura-pecuária-floresta no Brasil. Pesq Agrop Brasileira 46:i–xii. https://doi.org/10.1590/S0100-204X2011001000001. [English translated]

    Article  Google Scholar 

  • Baldotto MA, Baldotto LEB (2018) Relationships between soil quality indicators, redox properties, and bioactivity of humic substances of soils under integrated farming, livestock, and forestry. Revista Ceres 65(4):373–380

    Article  CAS  Google Scholar 

  • Batlle-Bayer L, Batjes NH, Bíndraban PS (2010) Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: a review. Agric Ecosyst Environ 137:47–58

    Article  CAS  Google Scholar 

  • Beillouin D, Ben-Ari T, Malézieux E, Seufert V, Makowski D (2021) Positive but variable effects of crop diversification on biodiversity and ecosystem services. Glob Change Biol 27:4697–4710

    Article  CAS  Google Scholar 

  • Bell LW, Moore AD, Kirkegaard JA (2014) Evolution in crop–livestock integration systems that improve farm productivity and environmental performance in Australia. Eur J Agron 57:10–20

    Article  Google Scholar 

  • Bertomeu M (2012) Growth and yield of maize and timber trees in smallholder agroforestry systems in Claveria, northern Mindanao, Philippines. Agrofor Syst 84:73–87

    Article  Google Scholar 

  • Bilen C, El Chami D, Mereu V, Trabucco A, Marras S, Spano D (2023) A systematic review on the impacts of climate change on coffee agrosystems. Plan Theory 12(1):102

    Google Scholar 

  • Blanco-Canqui H, Ruis SJ (2018) No-tillage and soil physical environment. Geoderma 326:164–200

    Article  Google Scholar 

  • Borges WLB, Calonego JC, Rosolem CA (2019) Impact of crop–livestock–forest integration on soil quality. Agrofor Syst 93:2111–2119

    Article  Google Scholar 

  • Brando PM, Balch JK, Nepstad DC, Morton DC, Putz FE, Coe MT et al (2014) Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc Natl Acad Sci 111(17):6347–6352

    Article  CAS  Google Scholar 

  • Buttel FH (2001) Some reflections on late twentieth century agrarian political economy. Sociol Rural 41:165–181

    Article  Google Scholar 

  • Cá J, Filho JFL, da Silva NR, de Castro CRT, de Oliveira TS (2022) C and N stocks in silvopastoral systems with high and low tree diversity: evidence from a twenty-two year old field study. Sci Tot Environ 833:155298. https://doi.org/10.1016/j.scitotenv.2022.155298

    Article  CAS  Google Scholar 

  • Carvalho PCF, Anghinoni I, de Moraes A et al (2010) Managing grazing animals to achieve nutrient cycling and soil improvement in no-till integrated systems. Nutr Cycl Agroecosyst 88:259–273. https://doi.org/10.1007/s10705-010-9360-x

    Article  Google Scholar 

  • Castellano GR, Santos LA, Menegário AA (2022) Carbon soil storage and technologies to increase soil carbon stocks in the South American Savanna. Sustainability 14(9):5571

    Article  CAS  Google Scholar 

  • Chávez LF, Escobar LF, Anghinoni I, Carvalho PCF, Meurer EJ (2011) Diversidade metabólica e atividade microbiana em sistema de integrac¸ ão lavoura-pecuária em plantio direto sob intensidades de cultivo. Pesqui. Agropecu. Bras 46:1254–1261. [English language translated abstract]

    Article  Google Scholar 

  • Chen C (2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Info Sci Tech 57(3):359–377

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Christensen JH, Krishna Kumar K, Aldrian E, An S-I, Cavalcanti IFA, de Castro M et al (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Cicek H, Thiessen Martens JR, Bamford KC, Entz MH (2014) Effects of grazing two green manure crop types in organic farming systems: N supply and productivity of following grain crops. Agric Ecosyst Environ 190:27–36

    Article  Google Scholar 

  • Costa MP, Schoeneboom JC, Oliveira SA, Vinas RS, de Medeiros GA (2018) A socio-eco-efficiency analysis of integrated and non-integrated crop-livestock-forestry systems in the Brazilian Cerrado based on LCA. J Clean Prod 171:1460–1471

    Article  Google Scholar 

  • Cubbage F, Glenn V, Paul Mueller J, Robison D, Myers R, Luginbuhl JM, Myers R (2012) Early tree growth, crop yields and estimated returns for an agroforestry trial in Goldsboro, North Carolina. Agrofor Syst 86:323–334

    Article  Google Scholar 

  • da Conceicao MCG, Matos ES, Bidone ED, Rodrigues R, Cordeiro RC (2017) Changes in soil carbon stocks under integrated crop-livestock-forest system in the Brazilian Amazon region. Agric Sci 8:904–913

    Google Scholar 

  • da Paixão CFC, Ávila RG, da Silv EC, Alves EM, Vida VM, dos Santos LNS, Teixeira MB (2022) Physiological and production performance of maize and soybean in crop-livestock-forest integration system under hydrogel rates and nitrogen and potassium topdressing. Emirates J Food Agric

    Google Scholar 

  • da Silva Oliveira DM, Tavares RLM, Loss A, Madari BE, Cerri CEP, Rodrigues BJ (2023) Climate-smart agriculture and soil C sequestration in Brazilian Cerrado: a systematic review. Rev Bras Cienc Solo 47:e0220055

    Article  Google Scholar 

  • da Silva HA, Santos LAC, Pacheco AR, Calil FN, Silva-Neto CDM (2021) Crop-livestock-forest integration systems: a scientometric analysis

    Google Scholar 

  • Damian JM, Firmano RF, Cherubin MR, Pavinato PS, de Marchi ST, Paustian K, Cerri CEP (2021) Changes in soil phosphorus pool induced by pastureland intensification and diversification in Brazil. Sci Tot Environ 703:135463. https://doi.org/10.1016/j.scitotenv.2019.135463

    Article  CAS  Google Scholar 

  • Davidson EA, de Araújo AC, Artaxo P, Balch JK, Brown IF, Bustamante MMC, Coe MT, DeFries RS, Keller M, Longo M, Munger JW, Schroeder W, Soares-Filho BS, Souza CM, Wofsy SC (2012) The Amazon basin in transition. Nature 481(7381):321–328

    Article  CAS  Google Scholar 

  • de Dias MBC, de Costa KAP, da Severiano EC, Bilego UO, AEF N, Almeida DP, Brand SC, Vilela L (2020) Brachiaria and Panicum maximum in an integrated crop– livestock system and a second-crop maize system in succession with soybean. J Agric Sci 158:206–217

    Article  CAS  Google Scholar 

  • de Moraes Sá JC, Lal R, Cerri CC, Lorenz K, Hungria M, de Faccio Carvalho PC (2017) Low-carbon agriculture in South America to mitigate global climate change and advance food security. Environ Int 98:102–112

    Article  Google Scholar 

  • de Olanda Souza GH, de Oliveira Aparecido LE, de Moraes JRDSC, Botega GT (2023) Climate change and its influence on planting of cassava in the Midwest region of Brazil. Environ Dev Sustain 25(2):1184–1204

    Article  Google Scholar 

  • Descheemaeker K, Amede T, Haileslassie A (2010) Improving water productivity in mixed crop–livestock farming systems of sub-Saharan Africa. Agric Water Manag 97:579–586

    Article  Google Scholar 

  • Diekow J, Mielniczuk J, Knicker H, Bayer C, Dick DP, Kögel-Knabner I (2005) Soil C and N stocks as affected by crop** systems and nitrogen fertilization in a southern Brazil Acrisol managed under no-tillage for 17 years. Soil Til Res 81:87–95

    Article  Google Scholar 

  • dos Reis JC, Kamoi MYT, Michetti M, Wruck FJ, de Rodrigues R, de Farias Neto AL (2023) Economic and environmental impacts of integrated systems adoption in Brazilian agriculture-forest frontier. Agrofor Systs 1-17

    Google Scholar 

  • dos Santos EA, Fortini RM, Cardoso LCB, Zanuncio JC (2023) Climate change in Brazilian agriculture: vulnerability and adaptation assessment. Int J Environ Sci Tech 20:1–18

    Google Scholar 

  • Douglas G, Mackay A, Vibart R, Dodd M, McIvor I, McKenzie C (2020) Soil carbon stocks under grazed pasture and pasture-tree systems. Sci Total Environ 715:1. https://doi.org/10.1016/j.scitotenv.2020.136910

    Article  CAS  Google Scholar 

  • Duru M, Therond O (2015) Livestock system sustainability and resilience in intensive production zones: which form of ecological modernization? Reg Environ Chang 15:1651–1665

    Article  Google Scholar 

  • Embrapa Territorial (2020) Agricultura e preservação ambiental: uma análise do cadastro ambiental rural. Campinas. Available in: www.embrapa.br/car. Accessed 2 Feb 2022

  • Escobar H (2015) Water security. Drought triggers alarms in Brazil’s biggest metropolis. Science 347(6224):812

    Article  CAS  Google Scholar 

  • Ezeaku IE, Mbah BN, Baiyeri KP, Okechukwu EC (2015) Integrated crop-livestock farming system for sustainable agricultural production in Nigeria. African J Agric Res 10(47):4268–4274

    Article  CAS  Google Scholar 

  • Fachinelli NP, Pereira AO (2015) Impacts of sugarcane ethanol production in the Paranaiba basin water resources. Biomass Bioenergy 83:8–16

    Article  Google Scholar 

  • FAO and UNEP (2020) The State of the World’s Forests 2020. Forests, Biodiversity and People, Rome. https://doi.org/10.4060/ca8642en

    Book  Google Scholar 

  • Faria DMRR, Baumgarten LJ, Cetra M (2006) Bat and bird assemblages from forest and shade cacao plantations in two contrasting landscapes in the Atlantic Forest of southern Bahia, Brazil. Biodivers Conserv 15:587–612

    Article  Google Scholar 

  • Foster JB (1999) Marx’s theory of metabolic rift: classical foundations for environmental sociology. Am J Sociol 105:366–405

    Article  Google Scholar 

  • Foster J, Magdoff F (1998) Liebig, Marx, and the depletion of soil fertility: relevance for today’s agriculture. Mon Lab Rev 121:32–45

    Article  Google Scholar 

  • Funes-Monzote FR (2008) Farming like we’re here to stay: the mixed farming alternative for Cuba. Ph.D. dissertation, Wageningen University, Wageningen

    Google Scholar 

  • Gama-Rodrigues AC (2011) Soil organic matter, nutrient cycling and biological dinitrogen-fixation in agroforestry systems. Agrofor Syst 81:191–193

    Article  Google Scholar 

  • Gama-Rodrigues EF, Araujo SP, Faustino LL, Moreira RDS, Paulucio VDO, Gama-Rodrigues AC (2018) Physical, chemical and microbiological attributes of soils under different land uses in a toposequence in the Northwest Fluminense. Rev Brasileira de Ciências Agrárias (Agrária) 13(3):1

    Article  Google Scholar 

  • Gama-Rodrigues AC, Müller MW, Gama-Rodrigues EF, Mendes FAT (2021) Cacao-based agroforestry systems in the Atlantic Forest and Amazon biomes: An ecoregional analysis of land use. Agric Syst 194:103270

    Article  Google Scholar 

  • Gama-Rodrigues EF, Gama-Rodrigues AC, Vicente LC, Alvarenga LC, Müller MW, Partelli FL, Faitanin MA (2022) Perspectives on carbon footprint of agricultural land-use in Brazil. Carbon Footprints 1(1):6

    Article  Google Scholar 

  • Garrett RD, Niles MT, Gil JDB, Gaudin A, Chaplin-Kramer R, Assmann A et al (2017) Social and ecological analysis of commercial integrated crop livestock systems: current knowledge and remaining uncertainty. Agric Syst 155:136–146

    Article  Google Scholar 

  • Gil J, Garrett R, Berger T (2016) Determinants of crop-livestock integration in Brazil: evidence from the household and regional levels. Land Use Policy 59:557–568. https://doi.org/10.1016/j.landusepol.2016.09.022

    Article  Google Scholar 

  • Gil JDB, Reidsma P, Giller K, Todman L, Whitmore A, van Ittersum M (2019) Sustainable development goal 2: improved targets and indicators for agriculture and food security. Ambio 48(7):685–698

    Article  CAS  Google Scholar 

  • Goldberger JR (2011) Conventionalization, civic engagement, and the sustainability of organic agriculture. J Rural Stud 27:288–296

    Article  Google Scholar 

  • Hayden J, Rocker S, Phillips H, Heins B, Smith A, Delate K (2018) The importance of social support and communities of practice: farmer perceptions of the challenges and opportunities of integrated crop–livestock systems on organically managed farms in the Northern US. Sustainability 10(12):4606

    Article  Google Scholar 

  • Hayes GF (2002) Cattle grazing effects on California coastal prairie and associated annual forbs. Ph.D. dissertation, University of California, Santa Cruz, Santa Cruz

    Google Scholar 

  • Hilimire K (2011) Integrated crop/livestock agriculture in the United States: a review. J Sustain Agric 35:376–393

    Article  Google Scholar 

  • Hinrichs CC, Welsh R (2003) The effects of the industrialization of US livestock agriculture on promoting sustainable production practices. Agric Hum Values 20:125–141

    Article  Google Scholar 

  • Hoosbeek MR, Remme RP, Rusch GM (2018) Trees enhance soil carbon sequestration and nutrient cycling in a silvopastoral system in South-Western Nicaragua. Agrofor Syst. https://doi.org/10.1007/s10457-016-0049-2

  • Kingwell R, Squibb L (2015) The role and value of combining dual-purpose crops and lucerne in a mixed-enterprise farming system. Crop Pasture Sci 66:399–409

    Article  Google Scholar 

  • Kruchelski S, Trautenmüller JW, Orso GA, Triches GP, Porfirio-da-Silva V, de Moraes A (2023) Growth and productivity of Eucalyptus benthamii in integrated crop–livestock systems in southern Brazil. Agrofor Syst 97(1):45–57

    Article  Google Scholar 

  • Leblois A, Damette O, Wolfersberger J (2017) What has driven deforestation in develo** countries since the 2000s? Evidence from new remote-sensing data. World Dev 92:82–102

    Article  Google Scholar 

  • Lemaire G, Franzluebbers A, de Faccio Carvalho PC, Dedieu B (2014) Integrated crop–livestock systems: strategies to achieve synergy between agricultural production and environmental quality. Agric Ecosyst Environ 190:4–8

    Article  Google Scholar 

  • Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tip** elements in the Earth’s climate system. Proc Natl Acad Sci 105(6):1786–1793

    Article  CAS  Google Scholar 

  • Lewis SL, Brando PM, Phillips OL, Van Der Heijden GM, Nepstad D (2011) The 2010 amazon drought. Science 331(6017):554–554

    Article  CAS  Google Scholar 

  • Lira Junior MA, Fracetto FJC, Ferreira JS, Silva MB, Fracetto GGM (2020) Legume-based silvopastoral systems drive C and N soil stocks in a subhumid tropical environment. Catena 189:104508. https://doi.org/10.1016/j.catena.2020.104508

    Article  CAS  Google Scholar 

  • MacDonald JM, McBride WD (2009) The transformation of U.S. livestock agriculture: scale, efficiency, and risks; economic information Bulletin No. 43; Economic Research Service, United States Department of Agriculture, Washington, DC, USA

    Google Scholar 

  • Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA (2008) Climate change, deforestation, and the fate of the Amazon. Science 319(5860):169–172

    Article  CAS  Google Scholar 

  • Manzatto CV, Araujo L, Vicente SEL, Koga-Vicente A, Perosa BB (2018) Monitoramento da mitigaç˜ao das emiss˜oes de carbono na agropecu’aria. Agroanalisys (FGV) 38:26–29

    Google Scholar 

  • Marengo JA, Bernasconi M (2015) Regional differences in aridity/drought conditions over Northeast Brazil: present state and future projections. Clim Chang 129(1–2):103–115

    Article  Google Scholar 

  • Maughan MW, Flores JPC, Anghinoni I, Bollero G, Fernandez FG, Tracy BF (2009) Soil quality and corn yield under crop-livestock integration in Illinois. Agron J 101:1503–1510

    Article  CAS  Google Scholar 

  • Mbow C, van Noordwijk M, Prabhu R, Simons T (2014) Knowledge gaps and research needs concerning agroforestry’s contribution to sustainable development goals in Africa. Curr Opin Environ Sust 6:162–170

    Article  Google Scholar 

  • McMichael P (2009) A food regime analysis of the world food crisis. Agric Hum Values 26:281–295

    Article  Google Scholar 

  • Mercure JF, Paim MA, Bocquillon P, Lindner S, Salas P, Martinelli P, Vinuales JE (2019) System complexity and policy integration challenges: the Brazilian energy-water-food nexus. Renew Sustain Energ Rev 105:230–243

    Article  Google Scholar 

  • MMA (2006) Caderno da Região Hidrográfica Amazônica. Ministério do Meio Ambiente. Available online at http://www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011024915.pdf. Accessed 14 Jan 2023

  • Moraes AD, Carvalho PCDF, Lustosa SBC, Lang CR, Deiss L (2014) Research on integrated crop-livestock systems in Brazil. Rev Ciência Agron 45:1024–1031

    Article  Google Scholar 

  • Moraes A, Carvalho PC, Crusciol AAC, Lang RC, Pariz CM, Deiss L, Sulc RM (2019) Integrated crop-livestock systems as a solution facing the destruction of Pampa and Cerrado biomes in South America by intensive monoculture systems. Agroecosyst Divers:257–273. https://doi.org/10.1016/B978-0-12-811050-8.00016-

  • Moraine M, Duru M, Therond O (2017a) A social-ecological framework for analyzing and designing integrated crop–livestock systems from farm to territory levels. Renew Agric Food Syst 32:43–56

    Article  Google Scholar 

  • Moraine M, Melac P, Ryschawy J, Duru M, Therond O (2017b) A participatory method for the design and integrated assessment of crop-livestock systems in farmers’ groups. Ecol Indic 72:340–351

    Article  Google Scholar 

  • Morgado MGDA, Passos CJS, Garnier J, Lima LAD, Mendes RDA, Samson-Brais É, Lucotte M (2023) Large-scale agriculture and environmental pollution of ground and surface water and sediment by pesticides in the Brazilian Amazon: the case of the Santarém region

    Google Scholar 

  • Nepstad DC, Stickler CM, Filho BS, Merry F (2008) Interactions among Amazon land use, forests and climate: prospects for a near-term forest tip** point. Philos Trans Royal Soc B: Biol Sci 363(1498):1737–1746

    Article  Google Scholar 

  • Nie Z, McLean T, Clough A, Tocker J, Christy B, Harris R, Riffkin P, Clark S, McCaskill M (2016) Benefits, challenges and opportunities of integrated croplivestock systems and their potential application in the high rainfall zone of southern Australia: a review. Agric Ecosyst Environ 235:17–31

    Article  Google Scholar 

  • Nobre AD (2014) The future climate of Amazonia: scientific assessment report. 1st Edition. Translation American Journal Experts, Margi Moss – São José dos Campos, SP: ARA: CCST-INPE: INPA. Available online at http://www.ccst.inpe.br/o-futuro-climatico-da-amazonia-relatorio-de-avaliacao-cientifica-antonio-donato-nobre/

  • Oliveira JM, Gollany HT, Polumsky RW, Madari BE, Leite LFC, Machado PLOA Carvalho MTM (2022) Predicting soil organic carbon dynamics of integrated crop-livestock system in Brazil using the CQESTR model. Front Environ Sci 10:826786. https://doi.org/10.3389/fenvs.2022.826786

  • Oliveira DMDS, Tavares RLM, Loss A, Madari BE, Cerri CEP, Alves BJR, Cherubin MR (2023) Climate-smart agriculture and soil C sequestration in Brazilian Cerrado: a systematic review. Rev Bras Ciênc Solo 47(spe)

    Google Scholar 

  • Osei AK, Kimaro AA, Peak D, Gillespie AW, Rees KCJV (2018) Soil carbon stocks in planted woodlots and Ngitili systems in Shinyanga, vol 92. Agrofor Syst, Tanzania, p 251. https://doi.org/10.1007/s10457-016-0028-7

    Book  Google Scholar 

  • Pereira GS, Angnes G, Franchini JC, Damian JM, Cerri CEP, Rocha CH, Tavares Filho J (2022) Soil nitrous oxide emissions after the introduction of integrated crop** systems in subtropical condition. Agric Ecosyst Environ 323:107684

    Article  CAS  Google Scholar 

  • Pérez-Flores J, Pérez AA, Suárez YP, Bolaina VC, Quiroga AL (2018) Leaf litter and its nutrient contribution in the cacao agroforestry system. Agrofor Syst 92(2):365–374

    Google Scholar 

  • Perosa B, Newton P, da Silva RFB (2023) A monitoring, reporting and verification system for low carbon agriculture: a case study from Brazil. Environ Sci Pol 140:286–296

    Article  Google Scholar 

  • Phillips OL, Aragão LE, Lewis SL, Fisher JB, Lloyd J, López-González G et al (2009) Drought sensitivity of the Amazon rainforest. Science 323(5919):1344–1347

    Article  CAS  Google Scholar 

  • Polidoro JC, De Freitas LP, Hernani LC et al (2020) The impact of plans, policies, practices and technologies based on the principles of conservation agriculture in the control of soil erosion in Brazil. https://doi.org/10.22541/au.158750264.42640167

  • Quandt A, Neufeldt H, Gorman K (2023) Climate change adaptation through agroforestry: opportunities and gaps. Cur Opinion Environ Sustain 60:101244

    Article  Google Scholar 

  • Ramos HMN, Vasconcelos SS, Kato OR, Castellani DC (2018) Above- and belowground carbon stocks of two organic, agroforestry-based oil palm production systems in eastern Amazonia. Agrofor Syst. https://doi.org/10.1007/s10457-017-0131-4

  • Reis NS, Ferreira IC, Mazocco LA, Souza ACB, Pinho GAS, da Fonseca Neto ÁM, Malaquias JV et al (2021) Shade modifies behavioral and physiological responses of low to medium production dairy cows at pasture in an integrated crop-livestock-Forest system. Animals 11:2411. https://doi.org/10.3390/ani11082411

    Article  Google Scholar 

  • Rudorff BFT, de Aguiar DA, da Silva WF, Sugawara LM, Adami M, Moreira MA (2010) Studies on the rapid expansion of sugarcane for ethanol production in São Paulo state (Brazil) using Landsat data. Remot Sens 2(4):1057–1076

    Article  Google Scholar 

  • Russelle MP, Entz MH, Franzluebbers AJ (2007) Reconsidering Integrated Crop–Livestock Systems in North America. Agron J 99:325

    Article  Google Scholar 

  • Singh N (2020) Soil physical and hydrological properties, and greenhouse gas emissions under integrated crop-livestock agroecosystems. Electronic Theses and Dissertations 4072. https://openprairie.sdstate.edu/etd/4072

  • Singh TR (2021) Quantifying the impacts of an integrated crop-livestock system on plant nutrient accumulation, crop yield, and economic performance. Electronic Theses and Dissertations

    Google Scholar 

  • Sjodin NE, Bengtsson J, Ekbom B (2008) The influence of grazing intensity and landscape composition on the diversity and abundance of flower-visiting insects. J Appl Ecol 45:763–772

    Article  Google Scholar 

  • Souza B, Haddad E (2022) Climate change in Brazil: dealing with uncertainty in agricultural productivity models and the implications for economy-wide impacts. Spatial Econ Anal 17(1):83–100

    Article  Google Scholar 

  • Souza KW, Pulrolnik K, Guimarães-Júnior R, Marchão RL, Vilela L, Carvalho AM, Maciel GA, Moraes-Neto SP, Oliveira AD (2020) Offsetting greenhouse gas (GHG) emissions through crop–livestock–forest integration. Embrapa Cerrados-Circular Técnica (INFOTECAE)

    Google Scholar 

  • St-Martin A, Vico G, Bergkvist G, Bommarco R (2017) Diverse crop** systems enhanced yield but did not improve yield stability in a 52-year long experiment. Agric Ecosysts Enviro 247:337–342

    Article  Google Scholar 

  • Sulc RM, Franzluebbers AJ (2014) Exploring integrated crop–livestock systems in different ecoregions of the United States. Eur J Agron 57:21–30

    Article  Google Scholar 

  • Sun Z, Ouyang Z, Li F, Wu L (2012) Impact of cutting a clover crop on the nitrogen supplied to winter wheat in an intercrop** system. J Resour Ecol 3:73–79

    Google Scholar 

  • Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D et al (2011) Multifunctional shade-tree management in tropical agroforestry landscapes – a review. J Appl Ecol 48:619–629

    Article  Google Scholar 

  • Valani GP, Martíni AF, da Silva LFS, Bovi RC, Cooper M (2021) Soil quality assessments in integrated crop–livestock–forest systems: a review. Soil Use Manag 37(1):22–36

    Article  Google Scholar 

  • Van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric map**. Scientometrics 84(2):523–538

    Article  Google Scholar 

  • Velozo AP, Pacheco AR, Calil FN, Silva-Neto CDM (2022) Nutrients in litter of four eucalyptus clones under an integrated crop-livestock-forest system (CLFS). Ecologia e Nutrição Floresta

    Google Scholar 

  • Viana CM, Freire D, Abrantes P, Rocha J, Pereira P (2022) Agricultural land systems importance for supporting food security and sustainable development goals: a systematic review. Sci Tol Environ 806:150718

    Article  CAS  Google Scholar 

  • Vilela L, Martha Junior GB, Macedo MCM, Marchão RL, Júnior RG, Pulrolnik K, Maciel GA (2011) Sistemas de integrac¸a˜o lavoura-pecua’ria na regia˜o do Cerrado. Pesquisa Agropecua’ria Brasileira 46:1127–1138. (Abstract available in English)

    Article  Google Scholar 

  • Waters-Bayer A, Bayer W (2009) Enhancing local innovation to improve water productivity in crop–livestock systems. Rangel J 31:231–235

    Article  Google Scholar 

  • Weis T (2010) The accelerating biophysical contradictions of industrial capitalist agriculture. J Agrar Change 10:315–341

    Article  Google Scholar 

  • Wolfe EC (2011) Interactions between crop and livestock activities in rainfed farming systems. In: Tow P, Cooper I, Partridge I, Birch C (eds) Rainfed farming systems. Springer, pp 271–298

    Chapter  Google Scholar 

  • Yasin G, Nawaz MF, Zubair M, Azhar MF, Mohsin Gilani M, Ashraf MN, Ur Rahman S (2023) Role of traditional agroforestry systems in climate change mitigation through carbon sequestration: an investigation from the semi-arid region of Pakistan. Land 12(2):513

    Article  Google Scholar 

  • Zago LMS, Moreira AKO, Silva-Neto CM, Nabout JC, Ferreira ME, Caramori SS (2018) Biochemical activity in Brazilian Cerrado soils is differentially affected by perennial and annual crops. Aust J Crop Sci 12(2):235–242

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the RCGI – Research Centre for Greenhouse Gas Innovation, hosted by the University of São Paulo (USP) and sponsored by FAPESP – São Paulo Research Foundation (2014/50279-4 and 2020/15230-5) and Shell Brasil, and the strategic importance of the support given by ANP (Brazil’s National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation. C.N. thanks the FAPESP for the postdoc scholarships in Brazil and BEPE (2021/11757-1 and 2023/05122-9), and M.R.C thanks CNPq for his Research Productivity Fellowship (311787/2021-5).

CRediT Authorship Contribution Statement

All authors contributed to the review research, writing, and revision of the manuscript.

Data Availability

Data will be made available on request.

Declaration of Competing Statement

The authors declared that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chukwudi Nwaogu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nwaogu, C., Oti, N.N., Enaruvbe, G.O., Cherubin, M.R. (2024). Crop-Livestock-Forest System as Nature-Based Solutions to Combating Climate Change, and Achieving SDGs in Brazil. In: Leal Filho, W., Nagy, G.J., Ayal, D.Y. (eds) Handbook of Nature-Based Solutions to Mitigation and Adaptation to Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-98067-2_124-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98067-2_124-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98067-2

  • Online ISBN: 978-3-030-98067-2

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Navigation