Conjugated Polymers as Organic Electrodes for Batteries

  • Chapter
  • First Online:
Organic Electrodes

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 775 Accesses

Abstract

Attributed to various causes it is now established that organic matter-based electrodes possess the potential for further improvement in the existing battery technologies while creating novel playgrounds to generate ground-breaking cell configurations. Conjugated polymers (CPs) are characterized as redox-active organic materials exhibiting comparatively high electronic conductivity (as compared to the traditional polymers with insulating properties), superior flexibility, and high electrochemical stability. Credited to these advantages, growing research interest has been recently fixated on the implementation of CPs as potential high-performance organic electrodes for rechargeable batteries. The characteristics of CPs can be tuned through structural modification and incorporation of different functional moieties. With the aid of novel design strategies and core investigations, CPs garner attention as future potential candidates for rechargeable metal-ion batteries as well as for hydronium and proton batteries. To design CPs that can be electrodes for practical applications, it is therefore largely necessary to carry out further extensive investigations on the losses associated with hysteresis as well as the polarization effect of CP nanostructures. This chapter extends a detailed realization of the current state of the organic electrodes for rechargeable batteries. Also, it describes the existing challenges in the field and their possible mitigation strategies. Finally, the chapter highlights some recent remarkable works on the field and ends with a conclusive note about the future possible direction of the research in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thakur, A.K., Majumder, M., Patole, S.P., Zaghib, K., Reddy, M.V.: Metal-organic framework-based materials: advances, exploits, and challenges in promoting post Li-ion battery technologies. Mater. Adv. 2(8), 2457–2482 (2021)

    Article  CAS  Google Scholar 

  2. Majumder, M., Santosh, M.S., Viswanatha, R., Thakur, A.K., Dubal, D., Jayaramulu, K.: Two-dimensional conducting metal-organic frameworks enabled energy storage devices. Energy Storage Mater. (2021)

    Google Scholar 

  3. Reddy, M.V., Mauger, A., Julien, C.M., Paolella, A., Zaghib, K.: Brief history of early lithium-battery development. Materials 13(8), 1884 (2020)

    Article  CAS  Google Scholar 

  4. Smajic, J., Alazmi, A., Patole, S.P., Costa. P.M.F.J.: Single-walled carbon nanotubes as stabilizing agents in red phosphorus Li-ion battery anodes. RSC Adv. 7(63), 39997–40004 (2017)

    Google Scholar 

  5. Notter, D.A., Gauch, M., Widmer, R., Wager, P., Stamp, A., Zah, R., Althaus, H.-J.: Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ. Sci. Technol. 44(17), 6550–6556 (2010)

    Google Scholar 

  6. Poizot, P., Gaubicher, J., Renault, S., Dubois, L., Liang, Y., Yao, Y.: Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem. Rev. 120(14), 6490–6557 (2020)

    Article  CAS  Google Scholar 

  7. Lu, Y., Chen, J.: Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4(3), 127–142 (2020)

    Article  CAS  Google Scholar 

  8. Lee, S., Kwon, G., Ku, K., Yoon, K., Jung, S.-K., Lim, H.-D., Kang, K.: Recent progress in organic electrodes for Li and Na rechargeable batteries. Adv. Mater. 30(42), 1704682 (2018)

    Article  Google Scholar 

  9. Schon, T.B., McAllister, B.T., Li, P.-F., Seferos, D.S.: The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45(22), 6345–6404 (2016)

    Article  CAS  Google Scholar 

  10. Shea, J.J., Luo, C.: Organic electrode materials for metal ion batteries. ACS Appl. Mater. Interfaces 12(5), 5361–5380 (2020)

    Article  CAS  Google Scholar 

  11. Yin, X., Sarkar, S., Shi, S., Huang, Q.-A., Zhao, H., Yan, L., Zhao, Y., Zhang, J.: Recent progress in advanced organic electrode materials for sodium-ion batteries: synthesis, mechanisms, challenges and perspectives. Adv. Funct. Mater. 30(11), 1908445 (2020)

    Article  CAS  Google Scholar 

  12. Thakur, A.K., Choudhary, R.B.: High-performance supercapacitors based on polymeric binary composites of polythiophene (PTP)–titanium dioxide (TiO2). Synthetic Metals 220, 25–33 (2016)

    Google Scholar 

  13. Thakur, A.K., Majumder, M., Choudhary, R.B., Singh, S.B.: MoS2 flakes integrated with boron and nitrogen-doped carbon: striking gravimetric and volumetric capacitive performance for supercapacitor applications. J. Power Sources 402, 163–173 (2018)

    Article  CAS  Google Scholar 

  14. Thakur, A.K., Deshmukh, A.B., Choudhary, R.B., Karbhal, I., Majumder, M., Shelke, M.V.: Facile synthesis and electrochemical evaluation of PANI/CNT/MoS2 ternary composite as an electrode material for high performance supercapacitor. Mater. Sci. Eng.: B 223, 24–34 (2017)

    Google Scholar 

  15. Amin, K., Ashraf, N., Mao, L., Faul, C.F.J., Wei, Z.: Conjugated microporous polymers for energy storage: recent progress and challenges. Nano Energy 105958 (2021)

    Google Scholar 

  16. Xu, Y., **, S., Xu, H., Nagai, A., Jiang, D.: Conjugated microporous polymers: design, synthesis and application. Chem. Soc. Rev. 42(20), 8012–8031 (2013)

    Article  CAS  Google Scholar 

  17. **e, J., Gu, P., Zhang, Q.: Nanostructured conjugated polymers: toward high-performance organic electrodes for rechargeable batteries. ACS Energy Lett. 2(9), 1985–1996 (2017)

    Article  CAS  Google Scholar 

  18. Fuchigami, T., Atobe, M., Inagi, S.: Fundamentals and applications of organic electrochemistry: synthesis, materials, devices. Wiley, Japan (2014)

    Google Scholar 

  19. Yu, L., Wang, L.P., Liao, H., Wang, J., Feng, Z., Lev, O., Loo, J.S.C., Sougrati, M.T., Xu, Z.J.: Understanding fundamentals and reaction mechanisms of electrode materials for Na‐ion batteries. Small 14(16), 1703338 (2018)

    Google Scholar 

  20. Chen, Y., Wang, C.: Designing high performance organic batteries. Acc. Chem. Res. 53(11), 2636–2647 (2020)

    Article  CAS  Google Scholar 

  21. Zhang, L., Wang, H., Zhang, X., Tang, Y.: A review of emerging dual-ion batteries: fundamentals and recent advances. Adv. Funct. Mater. 31(20), 2010958 (2021)

    Article  CAS  Google Scholar 

  22. Jouhara, A., Dupré, N., Guyomard, D., Lakraychi, A.E., Dolhem, F., Poizot, P.: Playing with the p-do** mechanism to lower the carbon loading in n-type insertion organic electrodes: first feasibility study with binder-free composite electrodes. J. Electrochem. Soc. 167(7), 070540 (2020)

    Google Scholar 

  23. Huang, J., Dong, X., Guo, Z., Wang, Y.: Progress of organic electrodes in aqueous electrolyte for energy storage and conversion. Angew. Chem. 132(42), 18478–18489 (2020)

    Article  Google Scholar 

  24. Kausar, A.: Review on structure, properties and appliance of essential conjugated polymers. Am. J. Polym. Sci. Eng. 4(1), 91–102 (2016)

    CAS  Google Scholar 

  25. Harun, M.H., Saion, E., Kassim, A., Yahya, N., Mahmud, E.: Conjugated conducting polymers: a brief overview. UCSI Acad. J.: J. Adv. Sci. Arts 2, 63–68 (2007)

    Google Scholar 

  26. Novák, P., Müller, K., Santhanam, K.S.V., Haas, O.: Electrochemically active polymers for rechargeable batteries. Chem. Rev. 97(1), 207–282 (1997)

    Google Scholar 

  27. Baeriswyl, D., Campbell, D.K., Mazumdar, S.: An overview of the theory of π-conjugated polymers. Conjug. Conduct. Polym. 7–133 (1992)

    Google Scholar 

  28. Mishra, A.K.: Conducting polymers: concepts and applications. J. At. Mol. Condens. Matter Nano Phys. 5(2), 159–193 (2018)

    Google Scholar 

  29. Han, X., Chang, C., Yuan, L., Sun, T., Sun, J.: Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials. Adv. Mater. 19(12), 1616–1621 (2007)

    Article  CAS  Google Scholar 

  30. Kou, Y., Xu, Y., Guo, Z., Jiang, D.: Supercapacitive energy storage and electric power supply using an aza-fused π-conjugated microporous framework. Angew. Chem. 123(37), 8912–8916 (2011)

    Article  Google Scholar 

  31. Muench, S., Wild, A., Friebe, C., Häupler, B., Janoschka, T., Schubert, U.S.: Polymer-based organic batteries. Chem. Rev. 116(16), 9438–9484 (2016)

    Article  CAS  Google Scholar 

  32. Mike, J.F., Lutkenhaus, J.L.: Recent advances in conjugated polymer energy storage. J. Polym. Sci. Part B: Polym. Phys. 51(7), 468–480 (2013)

    Article  CAS  Google Scholar 

  33. Molina, A., Patil, N., Ventosa, E., Liras, M., Palma, J., Marcilla, R.: Electrode engineering of redox-active conjugated microporous polymers for ultra-high areal capacity organic batteries. ACS Energy Lett. 5(9), 2945–2953 (2020)

    Article  CAS  Google Scholar 

  34. Zhang, C., He, Y., Mu, P., Wang, X., He, Q., Chen, Y., Zeng, J., Wang, F., Xu, Y., Jiang, J.‐X.: Toward high performance thiophene‐containing conjugated microporous polymer anodes for lithium‐ion batteries through structure design. Adv. Funct. Mater. 28(4), 1705432 (2018)

    Google Scholar 

  35. Zeng, S., Li, L., **e, L., Zhao, D., Wang, N., Chen, S.: Conducting polymers crosslinked with sulfur as cathode materials for high-rate, ultralong-life lithium-sulfur batteries. Chemsuschem 10(17), 3378–3386 (2017)

    Article  CAS  Google Scholar 

  36. Fu, Y., Manthiram, A.: Core-shell structured sulfur-polypyrrole composite cathodes for lithium-sulfur batteries. RSC Adv. 2(14), 5927–5929 (2012)

    Article  CAS  Google Scholar 

  37. Liang, X., Liu, Y., Wen, Z., Huang, L., Wang, X., Zhang, H.: A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium–sulfur batteries. J. Power Sources 196(16), 6951–6955 (2011)

    Article  CAS  Google Scholar 

  38. Zhang, J., Shi, Y., Ding, Y., Zhang, W., Yu, G.: In situ reactive synthesis of polypyrrole-MnO2 coaxial nanotubes as sulfur hosts for high-performance lithium–sulfur battery. Nano Lett. 16(11), 7276–7281 (2016)

    Google Scholar 

  39. Liu, X., Wang, S., Wang, A., Chen, J., Wang, Z., Zeng, Q., Liu, W., Li, Z., Zhang, L.: A new conjugated porous polymer with covalently linked polysulfide as cathode material for high-rate capacity and high coulombic efficiency lithium-sulfur batteries. J. Phys. Chem. C 123(35), 21327–21335 (2019)

    Article  CAS  Google Scholar 

  40. Xu, S., Li, H., Chen, Y., Wu, Y., Jiang, C., Wang, E., Wang, C.: Branched conjugated polymers for fast capacitive storage of sodium ions. J. Mater. Chem. A 8(45), 23851–23856 (2020)

    Article  CAS  Google Scholar 

  41. Chen, Y., Li, H., Tang, M., Zhuo, S., Xu, Y., Wang, E., Wang, S., Wang, C., Hu, W.: Capacitive conjugated ladder polymers for fast-charge and-discharge sodium-ion batteries and hybrid supercapacitors. J. Mater. Chem. A 7(36), 20891–20898 (2019)

    Article  CAS  Google Scholar 

  42. Li, Z., Zhou, J., Xu, R., Liu, S., Wang, Y., Li, P., Wu, W., Wu, M.: Synthesis of three dimensional extended conjugated polyimide and application as sodium-ion battery anode. Chem. Eng. J. 287, 516–522 (2016)

    Article  CAS  Google Scholar 

  43. Su, D., Zhang, J., Dou, S., Wang, G.: Polypyrrole hollow nanospheres: stable cathode materials for sodium-ion batteries. Chem. Commun. 51(89), 16092–16095 (2015)

    Article  CAS  Google Scholar 

  44. Zhou, M., Li, W., Gu, T., Wang, K., Cheng, S., Jiang, K.: A sulfonated polyaniline with high density and high rate Na-storage performances as a flexible organic cathode for sodium ion batteries. Chem. Commun. 51(76), 14354–14356 (2015)

    Article  CAS  Google Scholar 

  45. Zhang, C., Qiao, Y., **ong, P., Ma, W., Bai, P., Wang, X., Li, Q., Zhao, J., Xu, Y., Chen, Y., Zeng, J.H., Wang, F., Xu, Y., Jiang, J.-X.: Conjugated microporous polymers with tunable electronic structure for high-performance potassium-ion batteries. ACS Nano 13(1), 745–754 (2019)

    Google Scholar 

  46. Xue, Q., Li, L., Huang, Y., Huang, R., Wu, F., Chen, R.: Polypyrrole-modified Prussian blue cathode material for potassium ion batteries via in situ polymerization coating. ACS Appl. Mater. Interfaces 11(25), 22339–22345 (2019)

    Article  CAS  Google Scholar 

  47. Tian, B., Zheng, J., Zhao, C., Liu, C., Su, C., Tang, W., Li, X., Ning, G.-H.: Carbonyl-based polyimide and polyquinoneimide for potassium-ion batteries. J. Mater. Chem. A 7(16), 9997–10003 (2019)

    Article  CAS  Google Scholar 

  48. Min, X., **ao, J., Fang, M., Wang, W.A., Zhao, Y., Liu, Y., Abdelkader, A.M., **, K., Vasant Kumar, R., Huang, Z.: Potassium-ion batteries: outlook on present and future technologies. Energy Environ. Sci. 14(4), 2186–2243 (2021)

    Google Scholar 

  49. Liu, Y., **e, L., Zhang, W., Dai, Z., Wei, W., Luo, S., Chen, X., Chen, W., Rao, F., Wang, L., Huang, Y.: Conjugated system of PEDOT:PSS-induced self-doped PANI for flexible zinc-ion batteries with enhanced capacity and cyclability. ACS Appl. Mater. Interfaces 11(34), 30943–30952 (2019)

    Article  CAS  Google Scholar 

  50. Chen, C., Yu, T., Yang, M., Zhao, X., Shen, X.: An all-solid-state rechargeable chloride ion battery. Adv. Sci. 6(6), 1802130 (2019)

    Article  Google Scholar 

  51. Zhao, X., Zhao, Z., Yang, M., ** polymer cathode material for the chloride ion battery. ACS Appl. Mater. Interfaces 9(3), 2535–2540 (2017)

    Article  CAS  Google Scholar 

  52. Zhang, Y., An, Y., Yin, B., Jiang, J., Dong, S., Dou, H., Zhang, X.: A novel aqueous ammonium dual-ion battery based on organic polymers. J. Mater. Chem. A 7(18), 11314–11320 (2019)

    Article  CAS  Google Scholar 

  53. Wang, Y., Liu, Z., Wang, C., Hu, Y., Lin, H., Kong, W., Ma, J., **, Z.: π-Conjugated polyimide-based organic cathodes with extremely-long cycling life for rechargeable magnesium batteries. Energy Storage Mater. 26, 494–502 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashikant P. Patole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majumder, M., Thakur, A.K., Patole, A.S., Patole, S.P. (2022). Conjugated Polymers as Organic Electrodes for Batteries. In: Gupta, R.K. (eds) Organic Electrodes. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-98021-4_10

Download citation

Publish with us

Policies and ethics

Navigation