Machine Learning for Building Energy Modeling

  • Reference work entry
  • First Online:
Handbook of Smart Energy Systems

Abstract

Machine learning (ML), a subset of artificial intelligence (AI), has emerged as a versatile tool for the design, analysis, and control of efficient and climate change-resilient smart energy systems in buildings. This chapter presents an overview of building energy modeling (BEM) using ML models and its implementation for the projection of building energy demand under future climate change scenarios generated by global circulation models (GCMs). It also provides a step-by-step practical guide for the development and use of ML-based BEM to project the deviation in future energy requirements in a prototype residential building due to the impact of climate change. This chapter concludes with the discussion on future directions in applied ML for BEM and long-term projections of building energy consumption with the particular emphasis on the use of explainable ML models. ML-based BEMs can potentially be used for scenario-specific life cycle cost-benefit analysis during the design or retrofitting stages and facilitate both short- and long-term decision-making when integrated with the data from smart energy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • J.T. Abatzoglou, T.J. Brown, A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol. 32(5), 772–780 (2012)

    Article  Google Scholar 

  • T. Ahmad, H. Chen, Y. Guo, J. Wang, A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: a review. Energy Build. 165, 301–320 (2018). https://doi.org/10.1016/j.enbuild.2018.01.017

    Article  Google Scholar 

  • K. Bamdad, M.E. Cholette, S. Omrani, J. Bell, Future energy-optimised buildings – addressing the impact of climate change on buildings. Energy Build. 231, 110610 (2021). https://doi.org/10.1016/j.enbuild.2020.110610

    Article  Google Scholar 

  • A. Barredo Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, F. Herrera, Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020). https://doi.org/10.1016/j.inffus.2019.12.012

    Article  Google Scholar 

  • N. Bauer, K. Calvin, J. Emmerling, O. Fricko, S. Fujimori, J. Hilaire, J. Eom, V. Krey, E. Kriegler, I. Mouratiadou et al., Shared socio-economic pathways of the energy sector–quantifying the narratives. Glob. Environ. Chang. 42, 316–330 (2017)

    Article  Google Scholar 

  • Y. Bengio, Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  Google Scholar 

  • K.P. Bennett, C. Campbell, Support vector machines: hype or hallelujah? ACM SIGKDD Explor. Newslett. 2(2), 1–13 (2000)

    Article  Google Scholar 

  • C. Bergmeir, J.M. Benítez, On the use of cross-validation for time series predictor evaluation. Inf. Sci. 191, 192–213 (2012)

    Article  Google Scholar 

  • B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers, in Proceedings of the Fifth Annual Workshop on Computational Learning Theory (1992), pp. 144–152

    Google Scholar 

  • L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  • E. Byers, M. Gidden, D. Leclère, J. Balkovic, P. Burek, K. Ebi, P. Greve, D. Grey, P. Havlik, A. Hillers, N. Johnson, T. Kahil, V. Krey, S. Langan, N. Nakicenovic, R. Novak, M. Obersteiner, S. Pachauri, A. Palazzo, S. Parkinson, n.d. Rao, J. Rogelj, Y. Satoh, Y. Wada, B. Willaarts, K. Riahi, Global exposure and vulnerability to multi-sector development and climate change hotspots. Environ. Res. Lett. 13(5), 055012 (2018)

    Google Scholar 

  • D. Chakraborty, H. Elzarka, Performance testing of energy models: are we using the right statistical metrics? J. Build. Perform. Simul. 11(4), 433–448 (2018)

    Article  Google Scholar 

  • D. Chakraborty, H. Elzarka, Advanced machine learning techniques for building performance simulation: a comparative analysis. J. Build. Perform. Simul. 12(2), 193–207 (2019a)

    Article  Google Scholar 

  • D. Chakraborty, H. Elzarka, Early detection of faults in HVAC systems using an XGBoost model with a dynamic threshold. Energy Build. 185, 326–344 (2019b)

    Article  Google Scholar 

  • D. Chakraborty, H. Elzarka, R. Bhatnagar, Generation of accurate weather files using a hybrid machine learning methodology for design and analysis of sustainable and resilient buildings. Sustain. Cities Soc. 24, 33–41 (2016)

    Article  Google Scholar 

  • D. Chakraborty, H. Başağaoğlu, J. Winterle, Interpretable vs. noninterpretable machine learning models for data-driven hydro-climatological process modeling. Expert Syst. Appl. 170, 114498 (2020)

    Google Scholar 

  • D. Chakraborty, A. Alam, S. Chaudhuri, H. Başağaoğlu, T. Sulbaran, S. Langar, Scenario-based prediction of climate change impacts on building cooling energy consumption with explainable artificial intelligence. Appl. Energy 291, 116807 (2021). https://doi.org/10.1016/j.apenergy.2021.116807

    Article  Google Scholar 

  • T. Chen, C. Guestrin, Xgboost: a scalable tree boosting system, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016), pp. 785–794

    Google Scholar 

  • V. Ciancio, F. Salata, S. Falasca, G. Curci, I. Golasi, P. de Wilde, Energy demands of buildings in the framework of climate change: an investigation across Europe. Sustain. Cities Soc. 60, 102213 (2020). https://doi.org/10.1016/j.scs.2020.102213

    Article  Google Scholar 

  • L. Clarke, J. Eom, E.H. Marten, R. Horowitz, P. Kyle, R. Link, B.K. Mignone, A. Mundra, Y. Zhou, Effects of long-term climate change on global building energy expenditures. Energy Econ. 72(C), 667–677 (2018)

    Article  Google Scholar 

  • A. Damm, J. Köberl, F. Prettenthaler, N. Rogler, C. Töglhofer, Impacts of +2oC global warming on electricity demand in Europe. Clim. Serv. 7, 12–30 (2017). https://doi.org/10.1016/j.cliser.2016.07.001

    Article  Google Scholar 

  • T. de Rubeis, S. Falasca, G. Curci, D. Paoletti, D. Ambrosini, Sensitivity of heating performance of an energy self-sufficient building to climate zone, climate change and hvac system solutions. Sustain. Cities Soc. 61, 102300 (2020). https://doi.org/10.1016/j.scs.2020.102300

    Article  Google Scholar 

  • R.E. Edwards, J. New, L.E. Parker, Predicting future hourly residential electrical consumption: a machine learning case study. Energy Build 49, 591–603 (2012)

    Article  Google Scholar 

  • V. Eyring, S. Bony, G.A. Meehl, C.A. Senior, B. Stevens, R.J. Stouffer, K.E. Taylor, Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9(5), 1937–1958 (2016)

    Article  Google Scholar 

  • X. Fan, Q. Duan, C. Shen, Y. Wu, C. **ng, Global surface air temperatures in CMIP6: historical performance and future changes. Environ. Res. Lett. 15(10), 104056 (2020)

    Google Scholar 

  • R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, D. Pedreschi, A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 93 (2018). https://doi.org/10.1145/3236009

  • IEA, World Energy Outlook 2019 (2019)

    Google Scholar 

  • IPCC, Summary for policymakers, in Climate Change 2013: The Physical Science Basis (Cambridge University Press, Cambridge/New York, 2013)

    Google Scholar 

  • R.K. Jain, K.M. Smith, P.J. Culligan, J.E. Taylor, Forecasting energy consumption of multi-family residential buildings using support vector regression: investigating the impact of temporal and spatial monitoring granularity on performance accuracy. Appl. Energy 123, 168–178 (2014)

    Article  Google Scholar 

  • R.Ž. Jovanović, A.A. Sretenović, B.D. Živković, Ensemble of various neural networks for prediction of heating energy consumption. Energy Build. 94, 189–199 (2015)

    Article  Google Scholar 

  • A. Levesque, R.C. Pietzcker, L. Baumstark, S. De Stercke, A. Grübler, G. Luderer, How much energy will buildings consume in 2100? A global perspective within a scenario framework. Energy 148, 514–527 (2018)

    Google Scholar 

  • A. Levesque, R.C. Pietzcker, G. Luderer, Halving energy demand from buildings: the impact of low consumption practices. Technol. Forecast. Soc. Chang. 146, 253–266 (2019)

    Article  Google Scholar 

  • T. Liu, Z. Tan, C. Xu, H. Chen, Z. Li, Study on deep reinforcement learning techniques for building energy consumption forecasting. Energy Build. 208, 109675 (2020). https://doi.org/10.1016/j.enbuild.2019.109675

    Article  Google Scholar 

  • S.M. Lundberg, G. Erion, H. Chen, A. DeGrave, J.M. Prutkin, B. Nair, R. Katz, J. Himmelfarb, N. Bansal, S.I. Lee, From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2(1), 2522–5839 (2020)

    Article  Google Scholar 

  • R. Manzanas, J. Gutiérrez, J. Fernández, E. van Meijgaard, S. Calmanti, M. Magariño, A. Cofiño, S. Herrera, Dynamical and statistical downscaling of seasonal temperature forecasts in Europe: added value for user applications. Clim. Serv. 9, 44–56 (2018). https://doi.org/10.1016/j.cliser.2017.06.004

    Article  Google Scholar 

  • G.A. Meehl, C.A. Senior, V. Eyring, G. Flato, J.F. Lamarque, R.J. Stouffer, K.E. Taylor, Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv. 6(26), eaba1981 (2020). https://doi.org/10.1126/sciadv.aba1981

  • R. Mohammadiziazi, M.M. Bilec, Application of machine learning for predicting building energy use at different temporal and spatial resolution under climate change in USA. Buildings 10(8) (2020). https://doi.org/10.3390/buildings10080139

  • R.H. Moss, J.A. Edmonds, K.A. Hibbard, M.R. Manning, S.K. Rose, D.P. Van Vuuren, T.R. Carter, S. Emori, M. Kainuma, T. Kram et al., The next generation of scenarios for climate change research and assessment. Nature 463(7282), 747–756 (2010)

    Article  Google Scholar 

  • T.D. Mushore, J. Odindi, T. Dube, O. Mutanga, Understanding the relationship between urban outdoor temperatures and indoor air-conditioning energy demand in Zimbabwe. Sustain. Cities Soc. 34, 97–108 (2017). https://doi.org/10.1016/j.scs.2017.06.007

    Article  Google Scholar 

  • C. Navarro-Racines, J. Tarapues, P. Thornton, A. Jarvis, J. Ramirez-Villegas, High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci. Data 7, 7 (2020). https://doi.org/10.1038/s41597-019-0343-8

    Article  Google Scholar 

  • J.L. Nguyen, J. Schwartz, D.W. Dockery, The relationship between indoor and outdoor temperature, apparent temperature, relative humidity, and absolute humidity. Indoor Air 24(1), 103–112 (2014)

    Article  Google Scholar 

  • B.C. O’Neill, E. Kriegler, K.L. Ebi, E. Kemp-Benedict, K. Riahi, D.S. Rothman, B.J. van Ruijven, D.P. van Vuuren, J. Birkmann, K. Kok et al., The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Chang. 42, 169–180 (2017)

    Article  Google Scholar 

  • L. Ortiz, J.E. González, W. Lin, Climate change impacts on peak building cooling energy demand in a coastal megacity. Environ. Res. Lett. 13(9), 094008 (2018)

    Google Scholar 

  • K. Papakostas, T. Mavromatis, N. Kyriakis, Impact of the ambient temperature rise on the energy consumption for heating and cooling in residential buildings of Greece. Renew Energy 35(7), 1376–1379 (2010)

    Article  Google Scholar 

  • A. Quinn, J.D. Tamerius, M. Perzanowski, J.S. Jacobson, I. Goldstein, L. Acosta, J. Shaman, Predicting indoor heat exposure risk during extreme heat events. Sci. Total Environ. 490, 686–693 (2014)

    Article  Google Scholar 

  • A.E. Raftery, A. Zimmer, D.M. Frierson, R. Startz, P. Liu, Less than 2oC warming by 2100 unlikely. Nat. Clim. Chang. 7(9), 637 (2017)

    Google Scholar 

  • K. Riahi, D.P. Van Vuuren, E. Kriegler, J. Edmonds, B.C. O’neill, S. Fujimori, N. Bauer, K. Calvin, R. Dellink, O. Fricko et al., The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Chang. 42, 153–168 (2017)

    Article  Google Scholar 

  • M.T. Ribeiro, S. Singh, C. Guestrin, “Why should I trust you?” Explaining the predictions of any classifier, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016), pp. 1135–1144

    Google Scholar 

  • E.P. Salathé Jr., P.W. Mote, M.W. Wiley, Review of scenario selection and downscaling methods for the assessment of climate change impacts on hydrology in the United States Pacific Northwest. Int. J. Climatol.: J. R. Meteorol. Soc. 27(12), 1611–1621 (2007)

    Google Scholar 

  • S. Seyedzadeh, F.P. Rahimian, P. Rastogi, I. Glesk, Tuning machine learning models for prediction of building energy loads. Sustain. Cities Soc. 47, 101484 (2019)

    Article  Google Scholar 

  • L. Troup, M.J. Eckelman, D. Fannon, Simulating future energy consumption in office buildings using an ensemble of morphed climate data. Appl. Energy 255, 113821 (2019)

    Article  Google Scholar 

  • D.P. Van Vuuren, J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G.C. Hurtt, T. Kram, V. Krey, J.F. Lamarque et al., The representative concentration pathways: an overview. Clim. Chang. 109(1–2), 5 (2011)

    Google Scholar 

  • D.P. Van Vuuren, K. Riahi, R. Moss, J. Edmonds, A. Thomson, N. Nakicenovic, T. Kram, F. Berkhout, R. Swart, A. Janetos et al., A proposal for a new scenario framework to support research and assessment in different climate research communities. Glob. Environ. Chang. 22(1), 21–35 (2012)

    Article  Google Scholar 

  • D.P. van Vuuren, K. Riahi, K. Calvin, R. Dellink, J. Emmerling, S. Fujimori, S. Kc, E. Kriegler, B. O’Neill, The shared socio-economic pathways: trajectories for human development and global environmental change. Glob. Environ. Chang. 42, 148–152 (2017)

    Article  Google Scholar 

  • X. Wang, D. Chen, Z. Ren, Assessment of climate change impact on residential building heating and cooling energy requirement in Australia. Build. Environ. 45(7), 1663–1682 (2010). https://doi.org/10.1016/j.buildenv.2010.01.022

    Article  Google Scholar 

  • Z. Wang, Y. Wang, R. Zeng, R.S. Srinivasan, S. Ahrentzen, Random forest based hourly building energy prediction. Energy Build. 171, 11–25 (2018). https://doi.org/10.1016/j.enbuild.2018.04.008

    Article  Google Scholar 

  • M. Wewerinke-Singh, C. Doebbler, The Paris agreement: some critical reflections on process and substance. Univ. New South Wales Law J. 39, 1486 (2016)

    Google Scholar 

  • K. Wyser, E. Kjellström, T. Koenigk, H. Martins, R. Döscher, Warmer climate projections in EC-Earth3-Veg: the role of changes in the greenhouse gas concentrations from CMIP5 to CMIP6. Environ. Res. Lett. 15(5), 054020 (2020)

    Google Scholar 

  • Z. Yu, F. Haghighat, B.C. Fung, H. Yoshino, A decision tree method for building energy demand modeling. Energy Build. 42(10), 1637–1646 (2010). https://doi.org/10.1016/j.enbuild.2010.04.006

    Article  Google Scholar 

  • M.D. Zelinka, T.A. Myers, D.T. McCoy, S. Po-Chedley, P.M. Caldwell, P. Ceppi, S.A. Klein, K.E. Taylor, Causes of higher climate sensitivity in cmip6 models. Geophys. Res. Lett. 47(1), e2019GL085782 (2020)

    Google Scholar 

  • L. Zhang, Y. Xu, C. Meng, X. Li, H. Liu, C. Wang, Comparison of statistical and dynamic downscaling techniques in generating high-resolution temperatures in China from CMIP5 GCMs. J. Appl. Meteorol. Climatol. 59(2), 207–235 (2020). https://doi.org/10.1175/JAMC-D-19-0048.1

    Article  Google Scholar 

  • T. Zhao, A. Dai, Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes. Clim. Chang. 144(3), 535–548 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debaditya Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chakraborty, D., Başağaoğlu, H. (2023). Machine Learning for Building Energy Modeling. In: Fathi, M., Zio, E., Pardalos, P.M. (eds) Handbook of Smart Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-97940-9_28

Download citation

Publish with us

Policies and ethics

Navigation