An Overview of Drone Energy Consumption Factors and Models

  • Reference work entry
  • First Online:
Handbook of Smart Energy Systems

Abstract

At present, there is a growing demand for drones with diverse capabilities that can be used in both civilian and military applications, and this topic is receiving increasing attention. When it comes to drone operations, the amount of energy they consume is a determining factor in their ability to achieve their full potential. According to this, it appears that it is necessary to identify the factors affecting the energy consumption of the unmanned air vehicle (UAV) during the mission process, as well as examine the general factors that influence the consumption of energy. This chapter aims to provide an overview of the current state of research in the area of UAV energy consumption and provide general categorizations of factors affecting UAV’s energy consumption as well as an investigation of different energy models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • A. Abdilla, A. Richards, S. Burrow, Power and endurance modelling of battery-powered rotorcraft, in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2015), pp. 675–680

    Google Scholar 

  • H.V. Abeywickrama, B.A. Jayawickrama, Y. He, E. Dutkiewicz, Comprehensive energy consumption model for unmanned aerial vehicles, based on empirical studies of battery performance. IEEE access 6, 58383–58394 (2018a)

    Article  Google Scholar 

  • H.V. Abeywickrama, B.A. Jayawickrama, Y. He, E. Dutkiewicz, Empirical power consumption model for UAVs, in 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall) (IEEE, 2018b), pp. 1–5

    Google Scholar 

  • N. Agatz, P. Bouman, M. Schmidt, Optimization approaches for the traveling salesman problem with drone. Transp. Sci. 52(4), 965–981 (2018)

    Article  Google Scholar 

  • S. Aghakhani, B. Mohammadi, M.S. Rajabi, A new hybrid multi-objective scheduling model for hierarchical hub and flexible flow shop problems (2022). ar**v preprint ar**v:2205.06465

    Google Scholar 

  • S. Ahmed, A. Mohamed, K. Harras, M. Kholief, S. Mesbah, Energy efficient path planning techniques for UAV-based systems with space discretization, in 2016 IEEE Wireless Communications and Networking Conference (IEEE, 2016), pp. 1–6

    Google Scholar 

  • D. Aleksandrov, I. Penkov, Energy consumption of mini UAV helicopters with different number of rotors, in 11th International Symposium Topical Problems in the Field of Electrical and Power Engineering, 2012, pp. 259–262

    Google Scholar 

  • M. Alwateer, S.W. Loke, N. Fernando, Enabling drone services: drone crowdsourcing and drone scripting. IEEE access 7, 110035–110049 (2019)

    Article  Google Scholar 

  • S.F. Alyaqout, P.Y. Papalambros, A.G. Ulsoy, Combined robust design and robust control of an electric dc motor. IEEE/ASME Trans. Mechatron. 16(3), 574–582 (2011)

    Article  Google Scholar 

  • R. Alyassi, M. Khonji, S.C.-K. Chau, K. Elbassioni, C.-M. Tseng, A. Karapetyan, Autonomous recharging and flight mission planning for battery-operated autonomous drones (2017). ar**v preprint ar**v:1703.10049

    Google Scholar 

  • R. Alyassi, M. Khonji, A. Karapetyan, S.C.-K. Chau, K. Elbassioni, C.-M. Tseng, Autonomous recharging and flight mission planning for battery-operated autonomous drones. IEEE Trans. Autom. Sci. Eng. (2022)

    Google Scholar 

  • L. Apvrille, T. Tanzi, J.-L. Dugelay, Autonomous drones for assisting rescue services within the context of natural disasters, in 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS) (IEEE, 2014), pp. 1–4

    Google Scholar 

  • D. Baek, Y. Chen, A. Bocca, A. Macii, E. Macii, M. Poncino, Battery-aware energy model of drone delivery tasks, in Proceedings of the International Symposium on Low Power Electronics and Design, 2018, pp. 1–6

    Google Scholar 

  • E. Bongermino, F. Mastrorocco, M. Tomaselli, V.G. Monopoli, D. Naso, Model and energy management system for a parallel hybrid electric unmanned aerial vehicle, in 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE) (IEEE, 2017), pp. 1868–1873

    Google Scholar 

  • I. Budhiraja, N. Kumar, S. Tyagi, S. Tanwar, Energy consumption minimization scheme for noma-based mobile edge computation networks underlaying uav. IEEE Syst. J. 15(4), 5724–5733 (2021)

    Article  Google Scholar 

  • J.G. Carlsson, S. Song, Coordinated logistics with a truck and a drone. Manag. Sci. 64(9), 4052–4069 (2018)

    Article  Google Scholar 

  • D. Chauhan, A. Unnikrishnan, M. Figliozzi, Maximum coverage capacitated facility location problem with range constrained drones. Transp. Res. C: Emerg. Technol. 99, 1–18 (2019)

    Article  Google Scholar 

  • M. Chen, G.A. Rincon-Mora, Accurate electrical battery model capable of predicting runtime and iv performance. IEEE Trans. Energy Convers. 21(2), 504–511 (2006)

    Article  Google Scholar 

  • Y. Chen, D. Baek, A. Bocca, A. Macii, E. Macii, M. Poncino, A case for a battery-aware model of drone energy consumption, in 2018 IEEE International Telecommunications Energy Conference (INTELEC) (IEEE, 2018), pp. 1–8

    Google Scholar 

  • C. Cheng, Y. Adulyasak, L.-M. Rousseau, Drone routing with energy function: Formulation and exact algorithm. Transp. Res. B: Methodol. 139, 364–387 (2020)

    Article  Google Scholar 

  • W.-C. Chiang, Y. Li, J. Shang, T.L. Urban, Impact of drone delivery on sustainability and cost: realizing the uav potential through vehicle routing optimization. Appl. Energy 242, 1164–1175 (2019)

    Article  Google Scholar 

  • S. Choudhury, K. Solovey, M.J. Kochenderfer, M. Pavone, Efficient large-scale multi-drone delivery using transit networks. J. Artif. Intell. Res. 70, 757–788 (2021)

    Article  Google Scholar 

  • S.H. Chung, B. Sah, J. Lee, Optimization for drone and drone-truck combined operations: a review of the state of the art and future directions. Comput. Oper. Res. 123, 105004 (2020)

    Article  Google Scholar 

  • C. Coulombe, J.-F. Gamache, A. Mohebbi, U. Chouinard, S. Achiche et al., Applying robust design methodology to a quadrotor drone, in DS 87-4 Proceedings of the 21st International Conference on Engineering Design (ICED 17), vol. 4, 21–25 Aug 2017. Design Methods and Tools, Vancouver (2017), pp. 395–404

    Google Scholar 

  • R. D’Andrea, Guest editorial can drones deliver? IEEE Trans. Autom. Sci. Eng. 11(3), 647–648 (2014)

    Article  Google Scholar 

  • E. Demir, T. BektaĹź, G. Laporte, A review of recent research on green road freight transportation. Eur. J. Oper. Res. 237(3), 775–793 (2014)

    Article  Google Scholar 

  • C. Deng, W. Xu, C.-H. Lee, H. Gao, W. Xu, Z. Feng, Energy efficient uav-enabled multicast systems: Joint grou** and trajectory optimization, in 2019 IEEE Global Communications Conference (GLOBECOM) (IEEE, 2019), pp. 1–7

    Google Scholar 

  • X. Deng, M. Guan, Y. Ma, X. Yang, T. **ang, Vehicle-assisted uav delivery scheme considering energy consumption for instant delivery. Sensors 22(5), 2045 (2022)

    Google Scholar 

  • C. Di Franco, G. Buttazzo, Energy-aware coverage path planning of uavs, in 2015 IEEE International Conference on Autonomous Robot Systems and Competitions (IEEE, 2015), pp. 111–117

    Google Scholar 

  • K. Dorling, J. Heinrichs, G.G. Messier, S. Magierowski, Vehicle routing problems for drone delivery. IEEE Trans. Syst. Man Cybern. Syst. 47(1), 70–85 (2016)

    Article  Google Scholar 

  • O. Dukkanci, B.-Y. Kara, T. BektaĹź, Minimizing energy and cost in range-limited drone deliveries with speed optimization. Transp. Res. C: Emerg. Technol. 125, 102985 (2021)

    Article  Google Scholar 

  • M. Elloumi, B. Escrig, R. Dhaou, H. Idoudi, L.A. Saidane, Designing an energy efficient uav tracking algorithm. in 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC) (IEEE, 2017), pp. 127–132

    Google Scholar 

  • A. Erfani, M. Tavakolan, Risk evaluation model of wind energy investment projects using modified fuzzy group decision-making and monte carlo simulation. Arthaniti: J. Econ. Theory Pract. 0976747920963222 (2020)

    Google Scholar 

  • A. Famili, A. Stavrou, H. Wang et al., Optilod: optimal beacon placement for high-accuracy indoor localization of drones (2022). ar**v preprint ar**v:2201.10691

    Google Scholar 

  • S.M. Ferrandez, T. Harbison, T. Weber, R. Sturges, R. Rich, Optimization of a truck-drone in tandem delivery network using k-means and genetic algorithm. J. Ind. Eng. Manag. (JIEM) 9(2), 374–388 (2016)

    Google Scholar 

  • M.A. Figliozzi, Lifecycle modeling and assessment of unmanned aerial vehicles (drones) co2e emissions. Transp. Res. D: Transp. Environ. 57, 251–261 (2017)

    Article  Google Scholar 

  • E. Frazzoli, F. Bullo, Decentralized algorithms for vehicle routing in a stochastic time-varying environment, in 2004 43rd IEEE Conference on Decision and Control (CDC)(IEEE Cat. No. 04CH37601), vol. 4 (IEEE, 2004), pp. 3357–3363

    Google Scholar 

  • D.C. Gandolfo, L.R. Salinas, A. BrandĂŁo, J.M. Toibero, Stable path-following control for a quadrotor helicopter considering energy consumption. IEEE Trans. Cont. Syst. Technol. 25(4), 1423–1430 (2016)

    Article  Google Scholar 

  • T. Gulden, The energy implications of drones for package delivery. A Geographic Information System Comparison, Report (2017)

    Google Scholar 

  • Q.M. Ha, Y. Deville, Q.D. Pham, M.H. HĂ , On the min-cost traveling salesman problem with drone. Transp. Res. C: Emerg. Technol. 86, 597–621 (2018)

    Article  Google Scholar 

  • Z. He, J.-X. Xu, S. Yang, Q. Ren, X. Deng, On trackability of a moving target by fixed-wing uav using geometric approach, in 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE) (IEEE, 2014), pp. 1572–1577

    Google Scholar 

  • F. Heintz, P. Rudol, P. Doherty, From images to traffic behavior-a uav tracking and monitoring application, in 2007 10th International Conference on Information Fusion (IEEE, 2007), pp. 1–8

    Google Scholar 

  • I. Hong, M. Kuby, A.T. Murray, A range-restricted recharging station coverage model for drone delivery service planning. Transp. Res. C: Emerg. Technol. 90, 198–212 (2018)

    Article  Google Scholar 

  • R.Q. Hu, Y. Qian, An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Commun. Mag. 52(5), 94–101 (2014)

    Article  Google Scholar 

  • M. Hua, Y. Wang, Z. Zhang, C. Li, Y. Huang, L. Yang, Optimal resource partitioning and bit allocation for uav-enabled mobile edge computing, in 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall) (IEEE, 2018), pp. 1–6

    Google Scholar 

  • H. Huang, A.V. Savkin, C. Huang, A new parcel delivery system with drones and a public train. J. Intell. Robotic Syst. 100(3), 1341–1354 (2020a)

    Article  Google Scholar 

  • H. Huang, A.V. Savkin, C. Huang, Reliable path planning for drone delivery using a stochastic time-dependent public transportation network. IEEE Trans. Intell. Transp. Syst. 22(8), 4941–4950 (2020b)

    Article  Google Scholar 

  • J. Ji, K. Zhu, C. Yi, D. Niyato, Energy consumption minimization in uav-assisted mobile-edge computing systems: joint resource allocation and trajectory design. IEEE Internet Things J. 8(10), 8570–8584 (2020)

    Article  Google Scholar 

  • E. Kalantari, H. Yanikomeroglu, A. Yongacoglu, On the number and 3D placement of drone base stations in wireless cellular networks, in 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), 2016, pp. 1–6

    Google Scholar 

  • G.W. Kinney, R.R. Hill, J.T. Moore, Devising a quick-running heuristic for an unmanned aerial vehicle (uav) routing system. J. Oper. Res. Soc. 56(7), 776–786 (2005)

    Article  Google Scholar 

  • T. Kirschstein, Comparison of energy demands of drone-based and ground-based parcel delivery services. Transp. Res. D: Transp. Environ. 78, 102209 (2020)

    Article  Google Scholar 

  • P. Kitjacharoenchai, B.-C. Min, S. Lee, Two echelon vehicle routing problem with drones in last mile delivery. Int. J. Prod. Econ. 225, 107598 (2020)

    Article  Google Scholar 

  • C.H. Liu, Z. Chen, J. Tang, J. Xu, C. Piao, Energy-efficient uav control for effective and fair communication coverage: a deep reinforcement learning approach. IEEE J. Sel. Areas Commun. 36(9), 2059–2070 (2018)

    Article  Google Scholar 

  • Y. Liu, An optimization-driven dynamic vehicle routing algorithm for on-demand meal delivery using drones. Comput. Oper. Res. 111, 1–20 (2019)

    Article  Google Scholar 

  • Z. Liu, R. Sengupta, A. Kurzhanskiy, A power consumption model for multi-rotor small unmanned aircraft systems, in 2017 International Conference on Unmanned Aircraft Systems (ICUAS) (IEEE, 2017), pp. 310–315

    Google Scholar 

  • A.J. Lohn, What’s the buzz? The city-scale impacts of drone delivery, Technical report, 2017

    Book  Google Scholar 

  • P. Moeinifard, M.S. Rajabi, M. Bitaraf, Lost vibration test data recovery using convolutional neural network: a case study, 2022. ar**v preprint ar**v:2204.05440

    Google Scholar 

  • A. Mohebbi, S. Achiche, L. Baron, Integrated design of a vision-guided quadrotor uav: a mechatronics approach, in Proceedings of the 2015 CCToMM Symposium on Mechanisms, Machines, and Mechatronics, 2015

    Google Scholar 

  • A. Mohebbi, L. Baron, S. Achiche, L. Birglen, Trends in concurrent, multi-criteria and optimal design of mechatronic systems: a review, in Proceedings of the 2014 International Conference on Innovative Design and Manufacturing (ICIDM) (IEEE, 2014), pp. 88–93

    Google Scholar 

  • A.M. Moore, Innovative scenarios for modeling intra-city freight delivery. Transp. Res. Interdiscip. Perspect. 3, 100024 (2019)

    Google Scholar 

  • F. Morbidi, R. Cano, D. Lara, Minimum-energy path generation for a quadrotor UAV, in 2016 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2016), pp. 1492–1498

    Google Scholar 

  • M. Mozaffari, W. Saad, M. Bennis, M. Debbah, Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Commun. Lett. 20(8), 1647–1650 (2016a)

    Article  Google Scholar 

  • M. Mozaffari, W. Saad, M. Bennis, M. Debbah, Unmanned aerial vehicle with underlaid device-to-device communications: Performance and tradeoffs. IEEE Trans. Wireless Commun. 15(6), 3949–3963 (2016b)

    Article  Google Scholar 

  • S.E. Mudiyanselage, P.H.D. Nguyen, M.S. Rajabi, R. Akhavian, Automated worker’s ergonomic risk assessment in manual material handling using semg wearable sensors and machine learning. Electronics 10(20), 2558 (2021)

    Google Scholar 

  • C.C. Murray, A.G. Chu, The flying sidekick traveling salesman problem: optimization of drone-assisted parcel delivery. Transp. Res. C: Emerg. Technol. 54, 86–109 (2015)

    Article  Google Scholar 

  • C.C. Murray, R. Raj, The multiple flying sidekicks traveling salesman problem: parcel delivery with multiple drones. Transp. Res. C: Emerg. Technol. 110, 368–398 (2020)

    Article  Google Scholar 

  • M. Othman, S.A. Madani, S.U. Khan et al., A survey of mobile cloud computing application models. IEEE commun. Surv. Tutorials 16(1), 393–413 (2013)

    Google Scholar 

  • A. Otto, N. Agatz, J. Campbell, B. Golden, E. Pesch, Optimization approaches for civil applications of unmanned aerial vehicles (uavs) or aerial drones: a survey. Networks 72(4), 411–458 (2018)

    Article  Google Scholar 

  • M. Podhradskỳ, C. Coopmans, A. Jensen, Battery state-of-charge based altitude controller for small, low cost multirotor unmanned aerial vehicles. J. Intell. Robotic Syst. 74(1), 193–207 (2014)

    Google Scholar 

  • S. Poikonen, B. Golden, Multi-visit drone routing problem. Comput. Oper. Res. 113, 104802 (2020)

    Article  Google Scholar 

  • S. Poikonen, X. Wang, B. Golden, The vehicle routing problem with drones: extended models and connections. Networks 70(1), 34–43 (2017)

    Article  Google Scholar 

  • H. Sallouha, M.M. Azari, S. Pollin, Energy-constrained uav trajectory design for ground node localization, in 2018 IEEE Global Communications Conference (GLOBECOM) (IEEE, 2018), pp. 1–7

    Google Scholar 

  • Y.A. Sambo, P.V. Klaine, J.P.B. Nadas, M.A. Imran, Energy minimization uav trajectory design for delay-tolerant emergency communication, in 2019 IEEE International Conference on Communications Workshops (ICC Workshops) (IEEE, 2019), pp. 1–6

    Google Scholar 

  • S. Sardellitti, G. Scutari, S. Barbarossa, Joint optimization of radio and computational resources for multicell mobile-edge computing. IEEE Trans. Signal Inf. Process. Netw. 1(2), 89–103 (2015)

    Google Scholar 

  • D. Schermer, M. Moeini, O. Wendt, A hybrid vns/tabu search algorithm for solving the vehicle routing problem with drones and en route operations. Comput. Oper. Res. 109, 134–158 (2019)

    Article  Google Scholar 

  • M. Shakerian, M.S. Rajabi, M. Tajik, H. Taghaddos, Hybrid simulation-based resource planning and constructability analysis of RCC pavement projects, 2022. ar**v preprint ar**v:2204.05659

    Google Scholar 

  • H. Shakhatreh, A. Khreishah, A. Alsarhan, I. Khalil, A. Sawalmeh, N.S. Othman, Efficient 3d placement of a UAV using particle swarm optimization, in 2017 8th International Conference on Information and Communication Systems (ICICS) (IEEE, 2017), pp. 258–263

    Google Scholar 

  • V.K. Shetty, M. Sudit, R. Nagi, Priority-based assignment and routing of a fleet of unmanned combat aerial vehicles. Comput. Oper. Res. 35(6), 1813–1828 (2008)

    Article  Google Scholar 

  • M. Siam, R. ElSayed, M. ElHelw, On-board multiple target detection and tracking on camera-equipped aerial vehicles, in 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO) (IEEE, 2012), pp. 2399–2405

    Google Scholar 

  • Q. Song, S. **, F.-C. Zheng, Completion time and energy consumption minimization for uav-enabled multicasting. IEEE Wirel. Commun. Lett. 8(3), 821–824 (2019)

    Article  Google Scholar 

  • A. Sonmez, E. Kocyigit, E. Kugu, Optimal path planning for uavs using genetic algorithm, in 2015 International Conference on Unmanned Aircraft Systems (ICUAS) (IEEE, 2015), pp. 50–55

    Google Scholar 

  • J.K. Stolaroff, C. Samaras, E.R. O’Neill, A. Lubers, A.S. Mitchell, D. Ceperley, Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery. Nat. Commun. 9(1), 1–13 (2018)

    Google Scholar 

  • L. Tang, G. Shao, Drone remote sensing for forestry research and practices. J. Forestry Res. 26(4), 791–797 (2015)

    Article  Google Scholar 

  • H. Tennekes, The Simple Science of Flight, Revised and Expanded Edition: From Insects to Jumbo Jets (MIT Press, 2009)

    Google Scholar 

  • C. Teuliere, L. Eck, E. Marchand, Chasing a moving target from a flying uav, in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2011), pp. 4929–4934

    Google Scholar 

  • A. Thibbotuwawa, G. Bocewicz, P. Nielsen, B. Zbigniew, Planning deliveries with uav routing under weather forecast and energy consumption constraints. IFAC-PapersOnLine 52(13), 820–825 (2019)

    Article  Google Scholar 

  • A. Thibbotuwawa, P. Nielsen, B. Zbigniew, G. Bocewicz, Energy consumption in unmanned aerial vehicles: a review of energy consumption models and their relation to the uav routing, in International Conference on Information Systems Architecture and Technology (Springer, 2018a), pp. 173–184

    Google Scholar 

  • A. Thibbotuwawa, P. Nielsen, B. Zbigniew, G. Bocewicz, Factors affecting energy consumption of unmanned aerial vehicles: an analysis of how energy consumption changes in relation to uav routing, in International Conference on Information Systems Architecture and Technology (Springer, 2018b), pp. 228–238

    Google Scholar 

  • D.-H. Tran, T.X. Vu, S. Chatzinotas, S. ShahbazPanahi, B. Ottersten, Coarse trajectory design for energy minimization in uav-enabled. IEEE Trans. Veh. Technol. 69(9), 9483–9496 (2020)

    Article  Google Scholar 

  • A. Troudi, S.-A. Addouche, S. Dellagi, A.E. Mhamedi, Sizing of the drone delivery fleet considering energy autonomy. Sustainability 10(9), 3344 (2018)

    Google Scholar 

  • C.-M. Tseng, C.-K. Chau, K.M. Elbassioni, M. Khonji, Flight tour planning with recharging optimization for battery-operated autonomous drones, 2017. CoRR, abs/1703.10049

    Google Scholar 

  • D. Van Huynh, T. Do-Duy, L.D. Nguyen, M.-T. Le, N.-S. Vo, T.Q. Duong, Real-time optimised path planning and energy consumption for data collection in uav-aided intelligent wireless sensing. IEEE Trans. Ind. Inf. 18(4), 2753–2761 (2021)

    Article  Google Scholar 

  • R.-J. Wai, A.S. Prasetia, Adaptive neural network control and optimal path planning of uav surveillance system with energy consumption prediction. IEEE Access 7, 126137–126153 (2019)

    Article  Google Scholar 

  • X. Wang, S. Poikonen, B. Golden, The vehicle routing problem with drones: several worst-case results. Optim. Lett. 11(4), 679–697 (2017)

    Article  Google Scholar 

  • F. Wu, D. Yang, L. **ao, L. Cuthbert, Energy consumption and completion time tradeoff in rotary-wing uav enabled wpcn. IEEE Access 7, 79617–79635 (2019)

    Article  Google Scholar 

  • J. Wu, D. Zhang, D. Pei, Autonomous route planning for uav when threats are uncertain, in Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference (IEEE, 2014) pp. 19–22

    Google Scholar 

  • J. Xu, Design Perspectives on Delivery Drones (RAND, London, 2017)

    Book  Google Scholar 

  • F. Yacef, N. Rizoug, O. Bouhali, M. Hamerlain, Optimization of energy consumption for quadrotor UAV, in Proceedings of the International Micro Air Vehicle Conference and Flight Competition (IMAV) (Toulouse, 2017), pp. 18–21

    Google Scholar 

  • P. Yang, X. Cao, X. **, W. Du, Z. **ao, D. Wu, Three-dimensional continuous movement control of drone cells for energy-efficient communication coverage. IEEE Trans. Veh. Technol. 68(7), 6535–6546 (2019)

    Article  Google Scholar 

  • Y. Yang, X. Zhang, J. Zhou, B. Li, K. Qin, Global energy consumption optimization for UAV swarm topology sha**. Energies 15(7), 2416 (2022)

    Google Scholar 

  • C. You, K. Huang, H. Chae, Energy efficient mobile cloud computing powered by wireless energy transfer. IEEE J. Sel. Areas Commun. 34(5), 1757–1771 (2016)

    Article  Google Scholar 

  • Y. Zeng, J. Xu, R. Zhang, Energy minimization for wireless communication with rotary-wing UAV. IEEE Trans. Wirel. Commun. 18(4), 2329–2345 (2019)

    Article  Google Scholar 

  • Y. Zeng, X. Xu, R. Zhang, Trajectory design for completion time minimization in UAV-enabled multicasting. IEEE Trans. Wirel. Commun. 17(4), 2233–2246 (2018)

    Article  Google Scholar 

  • Y. Zeng, R. Zhang, Energy-efficient UAV communication with trajectory optimization. IEEE Trans. Wirel. Commun. 16(6), 3747–3760 (2017)

    Article  Google Scholar 

  • J. Zhang, J.F. Campbell, D.C. Sweeney II, A.C. Hupman, Energy consumption models for delivery drones: a comparison and assessment. Transp. Res. D: Transp. Environ. 90, 102668 (2021)

    Article  Google Scholar 

  • J. Zhang, L. Jia, S. Niu, F. Zhang, L. Tong, X. Zhou, A space-time network-based modeling framework for dynamic unmanned aerial vehicle routing in traffic incident monitoring applications. Sensors 15(6), 13874–13898 (2015)

    Article  Google Scholar 

  • J. Zhang, L. Zhou, Q. Tang, E.C.-H. Ngai, X. Hu, H. Zhao, J. Wei, Stochastic computation offloading and trajectory scheduling for UAV-assisted mobile edge computing. IEEE Internet Things J. 6(2), 3688–3699 (2018)

    Article  Google Scholar 

  • F. Zhou, Y. Wu, H. Sun, Z. Chu, Uav-enabled mobile edge computing: offloading optimization and trajectory design, in 2018 IEEE International Conference on Communications (ICC) (IEEE, 2018), pp. 1–6

    Google Scholar 

  • D. Zorbas, T. Razafindralambo, F. Guerriero et al., Energy efficient mobile target tracking using flying drones. Proc. Comput. Sci. 19, 80–87 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Beigi, P., Rajabi, M.S., Aghakhani, S. (2023). An Overview of Drone Energy Consumption Factors and Models. In: Fathi, M., Zio, E., Pardalos, P.M. (eds) Handbook of Smart Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-97940-9_200

Download citation

Publish with us

Policies and ethics

Navigation