Biosensors in Point-of-Care: Molecular Analysis, Strategies and Perspectives to Health Care

  • Chapter
  • First Online:
Advances in Bioelectrochemistry Volume 3

Abstract

Nowadays, regardless of the place and situation, it is unmistakable that we are constantly surrounded by sensors of the most diversified types and characteristics. With the advancements of health science, there is an increasing and intense demand for sensors applied to health care to monitor, as frequently as possible, biomarkers of interest, whether in a hospital environment, in a domestic/bedside setting or even with the comfort and elegance of high-tech wearable devices. In the biosensing field, point-of-care (PoC) analyses are becoming progressively appealing in contrast to traditional routes of laboratory assays, and the advancement of nanotechnology with syntheses, characterisations and methods of micro/nanofabrication strongly boosted research in this area during the past two decades. This chapter aims to outline the progress of (nano)materials and biomolecules in PoC sensors, as well as offering readers a concise summary of some of the numerous production methods and processes to devices manufacture, where a few selected works will be discussed, among a lengthy catalogue of excellent and successful ones, in terms of their devices’ operational/building strategies. Undoubtedly, the historical evolution of the biosensing field is of utter importance, depicting a road of apprenticeship, and we offer readers a discussed compilation of some temporal milestones from the last decades, from the emergence of the first electrochemical biosensors to the contemporary pressure to incorporating (bio)sensing platforms to smartphones and wearable devices, ubiquitous in modern life. In the light of frontier science, we assess perspectives to the future of PoC biosensing for this decade, where some directions are conspicuous, notably by the foreseeable pathway of technological advances, with accessible and more powerful apparatuses and high-tech gadgets in an environment with the Internet of things (IoT) promoting integration, miniaturisation, dense electronic embedding, automation, real-time data acquisition, digital interconnection and cloud-linked information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nagel B, Dellweg H, Gierasch LM (1992) Glossary for chemists of terms used in biotechnology (IUPAC Recommendations 1992). Pure Appl Chem 64:143–168

    Article  CAS  Google Scholar 

  2. da Silva ETSG et al (2017) Electrochemical biosensors in point-of-care devices: recent advances and future trends. ChemElectroChem 4:778–794

    Google Scholar 

  3. Rengaraj S, Cruz-Izquierdo Á, Scott JL, Di Lorenzo M (2018) Impedimetric paper-based biosensor for the detection of bacterial contamination in water. Sensors Actuators B Chem 265:50–58

    Article  CAS  Google Scholar 

  4. Choi J, Yong K, Choi J, Cowie A (2019) Emerging point-of-care technologies for food safety analysis. Sensors 19:817

    Article  CAS  Google Scholar 

  5. Soper SA et al (2006) Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosens Bioelectron 21:1932–1942

    Article  CAS  Google Scholar 

  6. Jang A, Zou Z, Lee KK, Ahn CH, Bishop PL (2010) Potentiometric and voltammetric polymer lab chip sensors for determination of nitrate, pH and Cd(II) in water. Talanta 83:1–8

    Article  CAS  Google Scholar 

  7. Su F et al (2017) Two-dimensional zirconium-based metal-organic framework nanosheet composites embedded with Au nanoclusters: a highly sensitive electrochemical aptasensor toward detecting cocaine. ACS Sensors 2:998–1005

    Article  CAS  Google Scholar 

  8. Haleem A, Javaid M, Singh RP, Suman R, Rab S (2021) Biosensors applications in medical field: A brief review. Sensors Int 2:100100

    Google Scholar 

  9. Wang Y, Xu H, Zhang J, Li G (2008) Electrochemical sensors for clinic analysis. Sensors 8:2043–2081

    Article  CAS  Google Scholar 

  10. Huang Y, Xu J, Liu J, Wang X, Chen B (2017) Disease-related detection with electrochemical biosensors: a review. Sensors 17:2375

    Article  CAS  Google Scholar 

  11. Yager P, Domingo GJ, Gerdes J (2008) Point-of-care diagnostics for global health. Annu Rev Biomed Eng 10:107–144

    Article  CAS  Google Scholar 

  12. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074

    Article  CAS  Google Scholar 

  13. Yang W et al (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed Engl 49:2114–2138

    Article  CAS  Google Scholar 

  14. Shao Y et al (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036

    Article  CAS  Google Scholar 

  15. Zhao H et al (2020) Nanofabrication approaches for functional three-dimensional architectures. Nano Today 30:100825

    Google Scholar 

  16. Zhang A, Bai H, Li L (2015) Breath figure: a nature-inspired preparation method for ordered porous films. Chem Rev 115:9801–9868

    Article  CAS  Google Scholar 

  17. Biswas A et al (2012) Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects. Adv Colloid Interface Sci 170:2–27

    Article  CAS  Google Scholar 

  18. Welch NG, Scoble JA, Muir BW, Pigram PJ (2017) Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases 12:02D301

    Article  CAS  Google Scholar 

  19. Liu Y, Yu J (2016) Oriented immobilization of proteins on solid supports for use in biosensors and biochips: a review. Microchim Acta 183:1–19

    Article  CAS  Google Scholar 

  20. Shen M, Rusling JF, Dixit CK (2017) Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods 116:95–111

    Article  CAS  Google Scholar 

  21. Bilal M et al (2018) State-of-the-art protein engineering approaches using biological macromolecules: a review from immobilization to implementation view point. Int J Biol Macromol 108:893–901

    Article  CAS  Google Scholar 

  22. Rashid JIA, Yusof NA (2017) The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: a review. Sens. Bio-Sensing Res 16:19–31

    Article  Google Scholar 

  23. Rasheed PA, Sandhyarani N (2017) Carbon nanostructures as immobilization platform for DNA: a review on current progress in electrochemical DNA sensors. Biosens Bioelectron 97:226–237

    Article  CAS  Google Scholar 

  24. Oberhaus FV, Frense D, Beckmann D (2020) Immobilization techniques for aptamers on gold electrodes for the electrochemical detection of proteins: a review. Biosensors 10:45

    Article  CAS  Google Scholar 

  25. Kudłak B, Wieczerzak M (2020) Aptamer based tools for environmental and therapeutic monitoring: a review of developments, applications, future perspectives. Crit Rev Environ Sci Technol 50:816–867

    Article  Google Scholar 

  26. Zhang W, Wang R, Luo F, Wang P, Lin Z (2020) Miniaturized electrochemical sensors and their point-of-care applications. Chin Chem Lett 31:589–600

    Article  CAS  Google Scholar 

  27. Liu D et al (2020) Trends in miniaturized biosensors for point-of-care testing. TrAC Trends Anal Chem 122:115701

    Google Scholar 

  28. Cirino NM, Musser KA, Egan C (2004) Multiplex diagnostic platforms for detection of biothreat agents. Expert Rev Mol Diagn 4:841–857

    Article  CAS  Google Scholar 

  29. Liu J, Geng Z, Fan Z, Liu J, Chen H (2019) Point-of-care testing based on smartphone: the current state-of-the-art (2017–2018). Biosens Bioelectron 132:17–37

    Article  CAS  Google Scholar 

  30. Gautam S, Batule BS, Kim HY, Park KS, Park HG (2017) Smartphone-based portable wireless optical system for the detection of target analytes. Biotechnol J 12:1600581

    Article  CAS  Google Scholar 

  31. Sun AC, Hall DA (2019) Point-of-care smartphone-based electrochemical biosensing. Electroanalysis 31:2–16

    Article  CAS  Google Scholar 

  32. Fan R, Andrew TL (2020) Perspective—challenges in develo** wearable electrochemical sensors for longitudinal health monitoring. J Electrochem Soc 167:037542

    Google Scholar 

  33. Arab Hassani F et al (2020) Smart materials for smart healthcare– moving from sensors and actuators to self-sustained nanoenergy nanosystems. Smart Mater Med 1:92–124

    Google Scholar 

  34. Sharma A, Badea M, Tiwari S, Marty JL (2021) Wearable biosensors: an alternative and practical approach in healthcare and disease monitoring. Molecules 26:748

    Article  CAS  Google Scholar 

  35. Katseli V, Economou A, Kokkinos C (2021) Smartphone-addressable 3D-printed electrochemical ring for nonenzymatic self-monitoring of glucose in human sweat. Anal Chem 93:3331–3336

    Article  CAS  Google Scholar 

  36. Mohan AMV, Rajendran V, Mishra RK, Jayaraman M (2020) Recent advances and perspectives in sweat based wearable electrochemical sensors. TrAC Trends Anal Chem 131:116024

    Google Scholar 

  37. Kim J, Cha E, Park JU (2020) Recent advances in smart contact lenses. Adv Mater Technol 5:1–17

    Google Scholar 

  38. Dochez AR, Avery OT (1917) The elaboration of specific soluble substance by pneumococcus during growth. J Exp Med 26:477–493

    Article  CAS  Google Scholar 

  39. Berson SA, Yalow RS (1959) Recent studies on insulin-binding antibodies. Ann N Y Acad Sci 82:338–344

    Article  CAS  Google Scholar 

  40. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Article  CAS  Google Scholar 

  41. Guilbault GG, Montalvo JG (1970) Enzyme electrode for the substrate urea. J Am Chem Soc 92:2533–2538

    Article  CAS  Google Scholar 

  42. Schläpfer P, Mindt W, Racine PH (1974) Electrochemical measurement of glucose using various electron acceptors. Clin Chim Acta 57:283–289

    Article  Google Scholar 

  43. Varfolomeev SD, Berezin LV (1978) Enzymes as catalysts of electrochemical reactions. J Mol Catal 4:387–399

    Article  CAS  Google Scholar 

  44. Bartlett PN, Al-Lolage FA (2017) There is no evidence to support literature claims of direct electron transfer (DET) for native glucose oxidase (GOx) at carbon nanotubes or graphene. J Electroanal Chem 1. https://doi.org/10.1016/j.jelechem.2017.06.021

  45. Wilson GS (2016) Native glucose oxidase does not undergo direct electron transfer. Biosens Bioelectron 82:vii–viii

    Google Scholar 

  46. Gonçales VR et al (2016) Three-dimensional graphene/carbon nanotubes hybrid composites for exploring interaction between glucose oxidase and carbon based electrodes. J Electroanal Chem 775:235–242

    Article  CAS  Google Scholar 

  47. Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 8:871–874

    Article  CAS  Google Scholar 

  48. Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4:299–304

    Article  CAS  Google Scholar 

  49. Shichiri M, Yamasaki Y, Kawamori R, Hakui N, Abe H (1982) Wearable artificial endocrine pancreas with needle-type glucose sensor. Lancet 320:1129–1131

    Article  Google Scholar 

  50. Cass AEG et al (1984) Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem 56:667–671

    Article  CAS  Google Scholar 

  51. Matthews DR et al (1987) Pen-sized digital 30-second blood glucose meter. Lancet 329:778–779

    Article  Google Scholar 

  52. Wang J (2001) Glucose biosensors: 40 years of advances and challenges. Electroanalysis 13:983–988

    Article  CAS  Google Scholar 

  53. Yoo E-H, Lee S-Y (2010) Glucose biosensors: an overview of use in clinical practice. Sensors 10:4558–4576

    Article  Google Scholar 

  54. Campbell RL, Wagner DB, O’Connell JP (1984) Solid phase assay with visual readout

    Google Scholar 

  55. Kost GJ et al (2000) Multicenter study of whole-blood creatinine, total carbon dioxide content, and chemistry profiling for laboratory and point-of-care testing in critical care in the United States. Crit Care Med 28:2379–2389

    Article  CAS  Google Scholar 

  56. Louie RF, Tang Z, Shelby DG, Kost GJ (2000) Point-of-care testing: millennium technology for critical care. Lab Med 31:402–408

    Article  Google Scholar 

  57. Gilbert HC, Szokol JW (2004) Point of care technologies. Int Anesthesiol Clin 42:73–94

    Article  Google Scholar 

  58. de Vasconcelos EA et al (2009) Potential of a simplified measurement scheme and device structure for a low cost label-free point-of-care capacitive biosensor. Biosens Bioelectron 25:870–876

    Article  CAS  Google Scholar 

  59. Ahn CH et al (2004) Disposable smart lab on a chip for point-of-care clinical diagnostics. Proc IEEE 92:154–173

    Article  CAS  Google Scholar 

  60. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1301

    Article  CAS  Google Scholar 

  61. Gates BD et al (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105:1171–1196

    Article  CAS  Google Scholar 

  62. Gao W et al (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529:509–514

    Article  CAS  Google Scholar 

  63. Vasudev A, Kaushik A, Tomizawa Y, Norena N, Bhansali S (2013) An LTCC-based microfluidic system for label-free, electrochemical detection of cortisol. Sensors Actuators B Chem 182:139–146

    Article  CAS  Google Scholar 

  64. Fu Y, Guo J (2018) Blood cholesterol monitoring with smartphone as miniaturized electrochemical analyzer for cardiovascular disease prevention. IEEE Trans Biomed Circuits Syst 12:784–790

    Article  Google Scholar 

  65. Mannoor MS et al (2012) Graphene-based wireless bacteria detection on tooth enamel. Nat Commun 3:763

    Article  CAS  Google Scholar 

  66. Yoon S et al (2021) Multifunctional hybrid skin patch for wearable smart healthcare applications. Biosens Bioelectron 113685. https://doi.org/10.1016/j.bios.2021.113685

  67. Sheng X et al (2021) Point-of-care monitoring of colitis using intestinal alkaline phosphatase in inflammatory bowel disease. ACS Sensors 6:698–702

    Article  CAS  Google Scholar 

  68. Xu J et al (2012) Sensitive point-of-care monitoring of HIV related DNA sequences with a personal glucometer. Chem Commun 48:10733

    Article  CAS  Google Scholar 

  69. Narang J et al (2018) Portable bioactive paper based genosensor incorporated with Zn-Ag nanoblooms for herpes detection at the point-of-care. Int J Biol Macromol 107:2559–2565

    Article  CAS  Google Scholar 

  70. Tseng CC et al (2021) Rapid electrochemical-biosensor microchip platform for determination of microalbuminuria in CKD patients. Anal Chim Acta 1146:70–76

    Article  CAS  Google Scholar 

  71. Kamakoti V, Kinnamon D, Choi K H, Jagannath B, Prasad S (2018) Fully electronic urine dipstick probe for combinatorial detection of inflammatory biomarkers. Futur Sci OA 4:FSO301

    Google Scholar 

  72. Chen C-H, Lin MS (2012) A novel structural specific creatinine sensing scheme for the determination of the urine creatinine. Biosens Bioelectron 31:90–94

    Article  CAS  Google Scholar 

  73. Sánchez-Tirado E, Martínez-García G, González-Cortés A, Yáñez-Sedeño P, **arrón JM (2017) Electrochemical immunosensor for sensitive determination of transforming growth factor (TGF)—β1 in urine. Biosens Bioelectron 88:9–14

    Article  CAS  Google Scholar 

  74. Pan Y et al (2010) Electrochemical immunosensor detection of urinary lactoferrin in clinical samples for urinary tract infection diagnosis. Biosens Bioelectron 26:649–654

    Article  CAS  Google Scholar 

  75. Lam B, Fang Z, Sargent EH, Kelley SO (2012) Polymerase chain reaction-free, sample-to-answer bacterial detection in 30 minutes with integrated cell lysis. Anal Chem 84:21–25

    Article  CAS  Google Scholar 

  76. Ogden NE, Kurnik M, Parolo C, Plaxco KW (2019) An electrochemical scaffold sensor for rapid syphilis diagnosis. Analyst 144:5277–5283

    Article  CAS  Google Scholar 

  77. Uludag Y et al (2016) An integrated lab-on-a-chip-based electrochemical biosensor for rapid and sensitive detection of cancer biomarkers. Anal Bioanal Chem 408:7775–7783

    Article  CAS  Google Scholar 

  78. UNODC (2016) World drug report 2021. in 11–11. https://doi.org/10.18356/a6fa3135-en

  79. Hassan SA, ElDin NB, Zaazaa HE, Moustafa AA, Mahmoud AM (2020) Point-of-care diagnostics for drugs of abuse in biological fluids: application of a microfabricated disposable copper potentiometric sensor. Microchim Acta 187:491

    Article  CAS  Google Scholar 

  80. Tanak AS, Muthukumar S, Hashim IA, Prasad S (2020) Establish pre-clinical diagnostic efficacy for parathyroid hormone as a point-of-surgery-testing-device (POST). Sci Rep 10:1–9

    Article  CAS  Google Scholar 

  81. Gattani A, Singh SV, Agrawal A, Khan MH, Singh P (2019) Recent progress in electrochemical biosensors as point of care diagnostics in livestock health. Anal Biochem 579:25–34

    Article  CAS  Google Scholar 

  82. Turner AP, Magan N (2004) Electronic noses and disease diagnostics. Nat Rev Microbiol 2(2):161–166

    Google Scholar 

  83. Gabig-Ciminska M, Andresen H, Albers J, Hintsche R, Enfors SO (2004) Identification of pathogenic microbial cells and spores by electrochemical detection on a biochip. Microb Cell Fact 3:1–11

    Article  Google Scholar 

  84. MacLeod JA et al (2016) Fast, sensitive point of care electrochemical molecular system for point mutation and select agent detection. Lab Chip 16:2513–2520

    Article  CAS  Google Scholar 

  85. Batista Deroco P, Wachholz Junior D, Tatsuo Kubota L (2021) Recent advances in point-of-care biosensors for the diagnosis of neglected tropical diseases. Sensors Actuators B Chem 130821. https://doi.org/10.1016/j.snb.2021.130821

  86. Garrote BL, Santos A, Bueno PR (2020) Label-free capacitive assaying of biomarkers for molecular diagnostics. Nat Protoc 15:3879–3893

    Article  CAS  Google Scholar 

  87. Lenyk B et al (2020) Dual-transducer malaria aptasensor combining electrochemical impedance and surface plasmon polariton detection on gold nanohole arrays. ChemElectroChem 7:4594–4600

    Article  CAS  Google Scholar 

  88. Rosa BMG, Yang GZ (2020) Portable impedance analyzer as a rapid screening tool for malaria: an experimental study with culture and blood infected samples by early forms of plasmodium falciparum. IEEE Trans Biomed Eng 67:3531–3541

    Article  Google Scholar 

  89. Santos GS et al (2019) Label-free nanostructured biosensor for Schistosoma mansoni detection in complex biological fluids. Talanta 204:395–401

    Article  CAS  Google Scholar 

  90. Singhal C, Khanuja M, Chaudhary N, Pundir CS, Narang J (2018) Detection of chikungunya virus DNA using two-dimensional MoS2 nanosheets based disposable biosensor. Sci Rep 8:7734

    Article  CAS  Google Scholar 

  91. Nazari-Vanani R, Heli H, Sattarahmady N (2020) An impedimetric genosensor for Leishmania infantum based on electrodeposited cadmium sulfide nanosheets. Talanta 217:121080

    Google Scholar 

  92. Cajigas S, Alzate D, Orozco J (2020) Gold nanoparticle/DNA-based nanobioconjugate for electrochemical detection of Zika virus. Microchim Acta 187:594

    Article  CAS  Google Scholar 

  93. Chen Y et al (2017) Field-effect transistor biosensor for rapid detection of Ebola antigen. Sci Rep 7:10974

    Article  CAS  Google Scholar 

  94. ** X et al (2019) A field effect transistor modified with reduced graphene oxide for immunodetection of Ebola virus. Microchim Acta 186:223

    Article  CAS  Google Scholar 

  95. Mattioli IA, Hassan A, Oliveira ON, Crespilho FN (2020) On the challenges for the diagnosis of SARS-CoV-2 based on a review of current methodologies. ACS Sensors 5:3655–3677

    Article  CAS  Google Scholar 

  96. Mattioli IA, Crespilho FN (2020) Problems of interpreting diagnostic tests for SARS-CoV-2: analytical chemistry concerns. An Acad Bras Cienc 92

    Google Scholar 

  97. Torres MDT, de Araujo WR, de Lima LF, Ferreira AL, de la Fuente-Nunez C (2021) Low-cost biosensor for rapid detection of SARS-CoV-2 at the point of care. Matter 4:2403–2416

    Article  CAS  Google Scholar 

  98. Narang J et al (2017) Point of care with micro fluidic paper based device integrated with nano zeolite–graphene oxide nanoflakes for electrochemical sensing of ketamine. Biosens Bioelectron 88:249–257

    Article  CAS  Google Scholar 

  99. da Costa Oliveira T, Santana MHP, Banks CE, Munoz RAA, Richter EM (2018) Electrochemical portable method for on‐site screening of scopolamine in beverage and urine samples. Electroanalysis elan.201800707. https://doi.org/10.1002/elan.201800707

  100. Akyazi T, Basabe-Desmonts L, Benito-Lopez F (2018) Review on microfluidic paper-based analytical devices towards commercialisation. Anal Chim Acta 1001:1–17

    Article  CAS  Google Scholar 

  101. Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81:5821–5826

    Article  CAS  Google Scholar 

  102. Cunningham JC, Brenes NJ, Crooks RM (2014) Paper electrochemical device for detection of DNA and thrombin by target-induced conformational switching. Anal Chem 86:6166–6170

    Article  CAS  Google Scholar 

  103. Silva ETSG, Santhiago M, Barragan JTC, Kubota LT (2014) Construction of a new versatile point-of-care testing device with electrochemical detection employing paper as a microfluidic platform. Anal Methods 6:6133–6136

    Article  CAS  Google Scholar 

  104. Gao W (2015) The chemistry of graphene oxide. Graphene Oxide Reduct Recipes Spectrosc Appl 61–95. https://doi.org/10.1007/978-3-319-15500-5_3

  105. Shin Low S et al (2020) Smartphone-based portable electrochemical biosensing system for detection of circulating microRNA-21 in saliva as a proof-of-concept. Sensors Actuators, B Chem 308:127718

    Google Scholar 

  106. Wang C et al (2016) A label-free and portable graphene FET aptasensor for children blood lead detection. Sci Rep 6:21711

    Article  CAS  Google Scholar 

  107. Lu J, Ge S, Ge L, Yan M, Yu J (2012) Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochim Acta 80:334–341

    Article  CAS  Google Scholar 

  108. Moazzam P et al (2021) Ultrasensitive detection of programmed death-ligand 1 (PD-L1) in whole blood using dispersible electrodes. Chem Commun 57:2559–2562

    Article  CAS  Google Scholar 

  109. Henry AC et al (2000) Surface modification of poly(methyl methacrylate) used in the fabrication of microanalytical devices. Anal Chem 72:5331–5337

    Article  CAS  Google Scholar 

  110. Rossier J, Reymond F, Michel PE (2002) Polymer microfluidic chips for electrochemical and biochemical analyses. Electrophoresis 23:858–867

    Article  CAS  Google Scholar 

  111. da Silva AC, Córdoba de Torresi SI (2019) Advances in conducting, biodegradable and biocompatible copolymers for biomedical applications. Front Mater 6

    Google Scholar 

  112. Sonawane A, Manickam P, Bhansali S (2017) Stability of enzymatic biosensors for wearable applications. IEEE Rev Biomed Eng 10:174–186

    Article  Google Scholar 

  113. Sharma S, Byrne H, O’Kennedy RJ (2016) Antibodies and antibody-derived analytical biosensors. Essays Biochem 60:9–18

    Article  Google Scholar 

  114. Sabaté del Río J, Henry OYF, Jolly P, Ingber DE (2019) An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids. Nat Nanotechnol 14:1143–1149

    Google Scholar 

  115. Odenthal KJ, Gooding JJ (2007) An introduction to electrochemical DNA biosensors. Analyst 132:603

    Article  CAS  Google Scholar 

  116. Mearns FJ, Wong ELS, Short K, Hibbert DB, Gooding JJ (2006) DNA biosensor concepts based on a change in the DNA persistence length upon hybridization. Electroanalysis 18:1971–1981

    Article  CAS  Google Scholar 

  117. Farzin L, Shamsipur M, Samandari L, Sheibani S (2018) Advances in the design of nanomaterial-based electrochemical affinity and enzymatic biosensors for metabolic biomarkers: a review. Microchim Acta 185:276

    Article  CAS  Google Scholar 

  118. Sassolas A, Blum LJ, Leca-Bouvier BD (2009) Electrochemical aptasensors. Electroanalysis 21:1237–1250

    Article  CAS  Google Scholar 

  119. Couto RAS, Lima JLFC, Quinaz MB (2016) Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis. Talanta 146:801–814

    Article  CAS  Google Scholar 

  120. de Oliveira TR, Fonseca WT, de Oliveira Setti G, Faria RC (2019) Fast and flexible strategy to produce electrochemical paper-based analytical devices using a craft cutter printer to create wax barrier and screen-printed electrodes. Talanta 195:480–489

    Google Scholar 

  121. Middya S, Kaminski Schierle GS, Malliaras GG, Curto VF (2021) Lithography and electrodes. In: Chemical solution synthesis for materials design and thin film device applications. Elsevier, pp. 277–307. https://doi.org/10.1016/B978-0-12-819718-9.00005-4

  122. Norrman K, Ghanbari-Siahkali A, Larsen NB (2005) Studies of spin-coated polymer films. Annu Rep Prog Chem Sect C 101:174–201

    Google Scholar 

  123. Cheng R et al (2020) Porous graphene oxide films prepared via the breath-figure method: a simple strategy for switching access of redox species to an electrode surface. ACS Appl Mater Interfaces 12:55181–55188

    Article  CAS  Google Scholar 

  124. Urban GA, Weiss T (2009) Hydrogels for biosensors, pp. 197–220. https://doi.org/10.1007/978-3-540-75645-3_6

  125. Bahia K, Delaporte A (2020) The state of mobile internet connectivity 2020. GSMA Reports 61

    Google Scholar 

  126. Bahia K, Delaporte A (2021) The state of mobile internet connectivity 2021. GSMA Reports 61

    Google Scholar 

  127. Muralidharan R, Chandrashekhar V, Butler D, Ebrahimi A (2020) A smartphone-interfaced, flexible electrochemical biosensor based on graphene ink for selective detection of dopamine. IEEE Sens J 20:13204–13211

    Article  CAS  Google Scholar 

  128. Guan T et al (2019) Point-of-need detection of microcystin-LR using a smartphone-controlled electrochemical analyzer. Sensors Actuators B Chem 294:132–140

    Article  CAS  Google Scholar 

  129. Zhao H et al (2021) Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone. Sensors Actuators B Chem 327:128899

    Google Scholar 

  130. Bai Y et al (2021) An inkjet-printed smartphone-supported electrochemical biosensor system for reagentless point-of-care analyte detection. Sensors Actuators B Chem 346:130447

    Google Scholar 

  131. Aymerich J et al (2018) Cost-effective smartphone-based reconfigurable electrochemical instrument for alcohol determination in whole blood samples. Biosens Bioelectron 117:736–742

    Article  CAS  Google Scholar 

  132. Guo J, Huang X, Ma X (2018) Clinical identification of diabetic ketosis/diabetic ketoacidosis acid by electrochemical dual channel test strip with medical smartphone. Sensors Actuators B Chem 275:446–450

    Article  CAS  Google Scholar 

  133. Teengam P et al (2021) NFC-enabling smartphone-based portable amperometric immunosensor for hepatitis B virus detection. Sensors Actuators B Chem 326:128825

    Google Scholar 

  134. Zhang L, Yang W, Yang Y, Liu H, Gu Z (2015) Smartphone-based point-of-care testing of salivary α-amylase for personal psychological measurement. Analyst 140:7399–7406

    Article  CAS  Google Scholar 

  135. Zhang D et al (2016) Protein detecting with smartphone-controlled electrochemical impedance spectroscopy for point-of-care applications. Sensors Actuators B Chem 222:994–1002

    Article  CAS  Google Scholar 

  136. Talukder N et al (2017) A portable battery powered microfluidic impedance cytometer with smartphone readout: towards personal health monitoring. Biomed Microdevices 19:36

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RNPC is grateful to FAPESP (process 2021/05665-7) for the funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael N. P. Colombo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Colombo, R.N.P. (2022). Biosensors in Point-of-Care: Molecular Analysis, Strategies and Perspectives to Health Care. In: Crespilho, F.N. (eds) Advances in Bioelectrochemistry Volume 3. Springer, Cham. https://doi.org/10.1007/978-3-030-97921-8_7

Download citation

Publish with us

Policies and ethics

Navigation