Weak Form of Peridynamic Equilibrium Equations

  • Chapter
  • First Online:
Advances in Peridynamics

Abstract

This chapter presents the weak form of peridynamic (PD) equilibrium equations to impose displacement and traction boundary conditions without a fictitious material layer. It permits the direct imposition of traction and displacement boundary conditions. The nonlocal deformation gradient tensor is computed in a bond-associated (BA) domain of interaction using the PD differential operator. The weak form of PD equilibrium equation is derived for the neo-Hookean material model with slight compressibility. The results are free of oscillations and spurious zero-energy modes that are commonly observed in the PD correspondence models. The fidelity of the approach is established by comparison with those of finite element analysis. Numerical results concern the finite elastic deformation of a rubber sheet with a hole under stretch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 232.09
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 232.09
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 30 October 2022

    Extra supplementary materials were provided for chapters 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 16 after the publication of the book. These were then updated in the chapters.

References

  • Behera, D., Roy, P., & Madenci, E. (2020). Peridynamic correspondence model for finite elastic deformation and rupture in Neo-Hookean materials. International Journal of Non-Linear Mechanics, 126, 103564.

    Article  Google Scholar 

  • Chen, H. (2018). Bond-associated deformation gradients for peridynamic correspondence model. Mechanics Research Communications, 90, 34–41.

    Article  Google Scholar 

  • Chen, H., & Spencer, B. W. (2019). Peridynamic bond-associated correspondence model: Stability and convergence properties. International Journal for Numerical Methods in Engineering, 117(6), 713–727.

    Article  MathSciNet  Google Scholar 

  • Gu, X., Madenci, E., & Zhang, Q. (2018). Revisit of non-ordinary state-based peridynamics. Engineering Fracture Mechanics, 190, 31–52.

    Article  Google Scholar 

  • Lehoucq, R. B., & Silling, S. A. (2008). Force flux and the peridynamic stress tensor. Journal of the Mechanics and Physics of Solids, 56(4), 1566–1577.

    Article  MathSciNet  MATH  Google Scholar 

  • Madenci, E., Dorduncu, M., Barut, A., & Phan, N. (2018). Weak form of peridynamics for nonlocal essential and natural boundary conditions. Computer Methods in Applied Mechanics and Engineering, 337, 598–631.

    Article  MathSciNet  MATH  Google Scholar 

  • Madenci, E., & Oterkus, E. (2014). Peridynamic theory and its applications. Springer.

    Book  MATH  Google Scholar 

  • Mooney, M. (1940). A theory of large elastic deformation. Journal of Applied Physics, 11(9), 582–592.

    Article  MATH  Google Scholar 

  • Pence, T. J., & Gou, K. (2015). On compressible versions of the incompressible neo-Hookean material. Mathematics and Mechanics of Solids, 20(2), 157–182.

    Article  MATH  Google Scholar 

  • Rivlin, R. (1948a). Large elastic deformations of isotropic materials. I. Fundamental concepts. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 240(822), 459–490.

    MathSciNet  MATH  Google Scholar 

  • Rivlin, R. S. (1948b). Large elastic deformations of isotropic materials. II. Some uniqueness theorems for pure, homogeneous deformation. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 240(822), 491–508.

    MathSciNet  Google Scholar 

  • Roy, P., Behera, D., & Madenci, E. (2020). Peridynamic simulation of finite elastic deformation and rupture in polymers. Engineering Fracture Mechanics, 236, 107226.

    Article  Google Scholar 

  • Talamini, B., Mao, Y., & Anand, L. (2018). Progressive damage and rupture in polymers. Journal of the Mechanics and Physics of Solids, 111, 434–457.

    Article  MathSciNet  MATH  Google Scholar 

  • Treloar, L. R. G. (1943). The elasticity of a network of long-chain molecules—II. Transactions of the Faraday Society, 39, 241–246.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdogan Madenci .

4.1 Electronic Supplementary Materials

Data 1

(ZIP 178 kb)

Appendix

Appendix

Under plane strain assumptions of (∂/∂x3) = 0 and y3 = x3, the deformation gradient tensor reduces to F ∼ Fαβ with (α, β = 1, 2). For two-dimensional analysis, the isochoric part of Eq. (4.53) can be modified as

$$ \Psi \left({\overline{I}}_1,J\right)=\frac{\mu }{2}\left(\frac{\mathrm{tr}\mathbf{C}}{J^{n/m}}-2\right)+\frac{\kappa }{8}{\left(J-\frac{1}{J}\right)}^2 $$
(4.59a)

or

$$ \Psi \left({\overline{I}}_1,J\right)=\frac{\mu }{2}\left(\frac{\mathrm{tr}\left(\mathbf{C}\right)}{{\left(\det \mathbf{C}\right)}^{n/(2m)}}-2\right)+\frac{\kappa }{8}{\left(J-\frac{1}{J}\right)}^2 $$
(4.59b)

For a scaled right Cauchy–Green tensor aC, this equation becomes

$$ \Psi \left({\overline{I}}_1,J\right)=\frac{\mu }{2}\left(\frac{\mathrm{tr}\left(a\mathbf{C}\right)}{{\left({a}^2\det \mathbf{C}\right)}^{n/(2m)}}-2\right)+\frac{\kappa }{8}{\left(J-\frac{1}{J}\right)}^2 $$
(4.60a)

or

$$ \Psi \left({\overline{I}}_1,J\right)=\frac{\mu }{2}\left(\frac{a\mathrm{tr}\left(\mathbf{C}\right)}{a^{n/m}{\left(\det \mathbf{C}\right)}^{n/(2m)}}-2\right)+\frac{\kappa }{8}{\left(J-\frac{1}{J}\right)}^2 $$
(4.60b)

Specifying n = m = 1 makes the isochoric part invariant, and the strain energy density function becomes

$$ \Psi \left({\overline{I}}_1,J\right)=\frac{\mu }{2}\left(\frac{\mathrm{tr}\mathbf{C}}{{\left(\det \mathbf{C}\right)}^{1/2}}-2\right)+\frac{\kappa }{8}{\left(J-\frac{1}{J}\right)}^2 $$
(4.61)

Finally, it can be rewritten as

$$ \Psi \left({\overline{I}}_1,J\right)=\frac{\mu }{2}\left({\overline{I}}_1-2\right)+\frac{\kappa }{8}{\left(J-\frac{1}{J}\right)}^2 $$
(4.62)

where, \( {\overline{I}}_1=\frac{\mathrm{tr}\mathbf{C}}{J} \).

Thus, the first Piola–Kirchhoff stress tensor can be obtained as

$$ \mathbf{P}=\frac{\mathrm{\partial \Psi }}{\partial \mathbf{F}}=\mu \left(\mathbf{F}-\frac{1}{2}\mathrm{tr}{\mathbf{CF}}^{-T}\right){J}^{-1}+\frac{\kappa }{4}\left({J}^2-{J}^{-2}\right){\mathbf{F}}^{-T} $$
(4.63a)

or

$$ {P}_{ij}=\frac{\mathrm{\partial \Psi }}{\partial {F}_{ij}}=\mu \left({F}_{ij}-\frac{1}{2}{F}_{mn}{F}_{mn}{F}_{ji}^{-1}\right){J}^{-1}+\frac{\kappa }{4}\left({J}^2-{J}^{-2}\right){F}_{ji}^{-1} $$
(4.63b)

Its derivative necessary in the evaluation of the incremental internal force vector ΔQ(k) can be written as

$$ {\displaystyle \begin{array}{l}\frac{\partial {P}_{ij}}{\partial {F}_{kl}}=\mu \left(\frac{\partial {F}_{ij}}{\partial {F}_{kl}}-\frac{1}{2}\left(\frac{\left({F}_{mn}{F}_{mn}\right)}{\partial {F}_{kl}}{F}_{ji}^{-1}+\left({F}_{mn}{F}_{mn}\right)\frac{\partial {F}_{ji}^{-1}}{\partial {F}_{kl}}\right)\right){J}^{-1}\\ {}\kern1.75em -\mu \left({F}_{ij}-\frac{1}{2}\left({F}_{mn}{F}_{mn}\right){F}_{ji}^{-1}\right){J}^{-1}{F}_{lk}^{-1}\\ {}\kern1.75em +\frac{\kappa }{2}\left({J}^2+{J}^{-2}\right){F}_{lk}^{-1}{F}_{ji}^{-1}+\frac{\kappa }{4}\left({J}^2+{J}^{-2}\right)\frac{\partial {F}_{ji}^{-1}}{\partial {F}_{kl}}\end{array}} $$
(4.64a)

or

$$ {\displaystyle \begin{array}{l}\frac{\partial {P}_{ij}}{\partial {F}_{kl}}=\mu \left({\delta}_{ik}{\delta}_{jl}-\frac{1}{2}\left(2{F}_{kl}{F}_{ji}^{-1}-{F}_{mn}{F}_{mn}{F}_{li}^{-1}{F}_{jk}^{-1}\right)\right){J}^{-1}\\ {}\kern1.75em -\mu \left({F}_{ij}-\frac{1}{2}{F}_{mn}{F}_{mn}{F}_{ji}^{-1}\right){J}^{-1}{F}_{lk}^{-1}\\ {}\kern1.75em +\frac{\kappa }{2}\left({J}^2+{J}^{-2}\right){F}_{lk}^{-1}{F}_{ji}^{-1}-\frac{\kappa }{4}\left({J}^2+{J}^{-2}\right){F}_{li}^{-1}{F}_{jk}^{-1}\end{array}} $$
(4.64b)

with \( \frac{\partial J}{\partial {F}_{ij}}={JF}_{ji}^{-1} \).

Under plane stress assumptions of σ13 = σ23 = σ33 = 0, the Cauchy stress tensor σ reduce to σ ∼ σαβ with (α, β = 1, 2). These conditions can be equivalently imposed on the second Piola–Kirchhoff stress tensor S as S13 = S23 = S33 = 0. The second Piola–Kirchhoff stress tensor S is related to the first Piola–Kirchhoff stress tensor as

$$ \mathbf{S}={\mathbf{F}}^{-1}\mathbf{P}=\mu \left(\mathbf{I}-\frac{1}{3}\mathrm{tr}{\mathbf{CF}}^{-1}{\mathbf{F}}^{-T}\right){J}^{-2/3}+\frac{\kappa }{4}\left({J}^2-{J}^{-2}\right){\mathbf{F}}^{-1}{\mathbf{F}}^{-T} $$
(4.65)

By using the relation C−1 = F−1F−T, this expression can be simplified as

$$ \mathbf{S}=\mu \left(I-\frac{1}{3}\mathrm{tr}{\mathbf{C}\mathbf{C}}^{-1}\right){J}^{-2/3}+\frac{\kappa }{4}\left({J}^2-{J}^{-2}\right){\mathbf{C}}^{-1} $$
(4.66)

Enforcing S13 = 0 and S23 = 0 results in

$$ {\left({\mathbf{C}}^{-1}\right)}_{13}=0 $$
(4.67a)
$$ {\left({\mathbf{C}}^{-1}\right)}_{23}=0 $$
(4.67b)

and

$$ {\left({\mathbf{C}}^{-1}\right)}_{33}=\frac{1}{C_{33}} $$
(4.67c)

Similarly, enforcing S33 = 0 leads to an additional expression as

$$ {S}_{33}=\mu \left(1-\frac{1}{3}\mathrm{tr}\mathbf{C}{\left({\mathbf{C}}^{-1}\right)}_{33}\right){J}^{-2/3}+\frac{\kappa }{4}\left({J}^2-{J}^{-2}\right){\left({\mathbf{C}}^{-1}\right)}_{33}=0 $$
(4.68)

Substituting from Eq. (4.67c) into Eq. (4.68) results in the constraint condition for C33 in the form

$$ \mu \left({C}_{33}-\frac{1}{3}\mathrm{tr}\mathbf{C}\right){J}^{-2/3}+\frac{\kappa }{4}\left({J}^2-{J}^{-2}\right)=0 $$
(4.69)

Invoking Eq. (4.69) in Eq. (4.66) and performing algebraic manipulations result in the simplified form of S for plane stress analysis as

$$ \mathbf{S}=\mu \left(I-{C}_{33}{\mathbf{C}}^{-1}\right){J}^{-2/3} $$
(4.70)

Finally, the first Piola–Kirchhoff stress tensor can be obtained as

$$ \mathbf{P}=\mathbf{FS}=\mu \left(\mathbf{F}-{C}_{33}{\mathbf{F}}^{-T}\right){J}^{-2/3} $$
(4.71)

For numerical implementation, trC and J are expressed as

$$ \mathrm{tr}\mathbf{C}=\mathrm{tr}\tilde{\mathbf{C}}+{C}_{33} $$
(4.72)

and

$$ J=\sqrt{C_{33}}\tilde{J} $$
(4.73)

where \( \mathrm{tr}\tilde{\mathbf{C}}={C}_{11}+{C}_{22} \) and \( \tilde{J}=\sqrt{C_{11}{C}_{22}-{C}_{12}^2} \).

With these expressions, Eqs. (4.71) and (4.69) can be rewritten as

$$ \mathbf{P}=\mu \left(\mathbf{F}-{C}_{33}{\mathbf{F}}^{-T}\right){C}_{33}^{-1/3}{\tilde{J}}^{-2/3} $$
(4.74)

and

$$ \mu \left(\frac{2}{3}{C}_{33}^{-2/3}-\frac{1}{3}{C}_{33}^{-1/3}\mathrm{tr}\tilde{\mathbf{C}}\right){\tilde{J}}^{-2/3}+\frac{\kappa }{4}\left({C}_{33}{\tilde{J}}^2-{C}_{33}^{-1}{\tilde{J}}^{-2}\right)=0 $$
(4.75)

Based on the displacement field obtained from the previous iteration within every load step, the value of \( {C}_{33}={C}_{33}^{\ast } \) is numerically determined by using the method of bisection.

Its derivative necessary in the evaluation of the incremental internal force vector ΔQ(k) can be written as

$$ {\displaystyle \begin{array}{l}\frac{\partial {P}_{ij}}{\partial {F}_{kl}}=\mu \left(\frac{\partial {F}_{ij}}{\partial {F}_{kl}}-\left(\frac{\partial {C}_{33}}{\partial {F}_{kl}}{F}_{ij}^{-T}+{C}_{33}\frac{\partial {F}_{ji}^{-1}}{\partial {F}_{kl}}\right)\right){C}_{33}^{-1/3}{\tilde{J}}^{-2/3}\\ {}+\mu {\tilde{J}}^{-2/3}\left({F}_{ij}-{C}_{33}{F}_{ji}^{-1}\right)\left(-\frac{1}{3}{C}_{33}^{-4/3}\frac{\partial {C}_{33}}{\partial {F}_{kl}}-\frac{2}{3}{C}_{33}^{-1/3}{F}_{lk}^{-1}\right)\end{array}} $$
(4.76a)

or

$$ {\displaystyle \begin{array}{l}\frac{\partial {P}_{ij}}{\partial {F}_{kl}}=\mu \left({\delta}_{ik}{\delta}_{jl}-\left(\frac{\partial {C}_{33}}{\partial {F}_{kl}}{F}_{ji}^{-1}-{C}_{33}{F}_{li}^{-1}{F}_{jk}^{-1}\right)\right){C}_{33}^{-1/3}{\tilde{J}}^{-2/3}\\ {}+\mu {\tilde{J}}^{-2/3}\left({F}_{ij}-{C}_{33}{F}_{ji}^{-1}\right)\left(-\frac{1}{3}{C}_{33}^{-4/3}\frac{\partial {C}_{33}}{\partial {F}_{kl}}-\frac{2}{3}{C}_{33}^{-1/3}{F}_{lk}^{-1}\right)\end{array}} $$
(4.76b)

The derivative of C33 can be obtained from Eq. (4.75) as

$$ \frac{\partial {C}_{33}}{\partial {F}_{kl}}=\frac{\left(\begin{array}{l}\frac{1}{3}\mu {C}_{33}^{-1/3}{\tilde{J}}^{-2/3}\frac{\mathrm{\partial tr}\tilde{\mathbf{C}}}{\partial {F}_{kl}}+\frac{2}{3}\mu \left(\frac{2}{3}{C}_{33}^{2/3}-\frac{1}{3}{C}_{33}^{-1/3}\mathrm{tr}\tilde{\mathbf{C}}\right){\tilde{J}}^{-2/3}{F}_{ji}^{-1}\\ {}-\frac{\kappa }{4}\left({C}_{33}2{\tilde{J}}^2{F}_{lk}^{-1}+2{C}_{33}^{-1}{\tilde{J}}^{-2}{F}_{ji}^{-1}\right)\end{array}\right)}{\left(\left(\frac{4}{9}\mu {C}_{33}^{-1/3}+\frac{1}{9}\mu {C}_{33}^{-4/3}\mathrm{tr}\tilde{\mathbf{C}}\right){\tilde{J}}^{-2/3}+\frac{\kappa }{4}{\tilde{J}}^2+\frac{\kappa }{4}{C}_{33}^{-2}{\tilde{J}}^{-2}\right)} $$
(4.77)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madenci, E., Roy, P., Behera, D. (2022). Weak Form of Peridynamic Equilibrium Equations. In: Advances in Peridynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-97858-7_4

Download citation

Publish with us

Policies and ethics

Navigation