Quantal Density Functional Theory: A Local Effective Potential Theory Complement to Schrödinger Theory

  • Chapter
  • First Online:
Schrödinger Theory of Electrons: Complementary Perspectives

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 285))

  • 495 Accesses

Abstract

Quantal density functional theory (Q-DFT) is a local effective potential description of the Schrödinger theory of electrons. In such a description, the Hamiltonian is written such that the electron correlations due to the Pauli principle and Coulomb repulsion are incorporated into a local (multiplicative) potential energy term. This potential also includes the contributions of these correlations to the kinetic energy—the Correlation-Kinetic component. The energy is obtained from the properties of the model system. Stationary-state Q-DFT is a description of the map** from a nondegenerate or degenerate ground or excited state of a system of electrons in a static electromagnetic field to one of noninteracting fermions experiencing the same external field and possessing the same electronic density \(\rho (\mathbf {r})\) and physical current density \(\mathbf {j}(\mathbf {r})\). The state of the model system is arbitrary. The map** is in terms of ‘classical’ fields: an Electron-Interaction field representative of correlations due to the Pauli principle and Coulomb repulsion (which may be decomposed into its Hartree, Pauli and Coulomb components), and one descriptive of Correlation-Kinetic effects. The sources of these fields are quantum-mechanical expectation values of Hermitian operators. The local potential in which all these many-body effects are ensconced has a rigorous physical interpretation: It is the work done in the force of a conservative effective field which is the sum of the Electron-Interaction and Correlation-Kinetic fields. Within Q-DFT, the separate contributions to the energy due to the Pauli principle and Coulomb repulsion, as well as the Correlation-Kinetic energy are expressed in integral virial form in terms of the field representative of each property. The highest occupied eigenvalue of the differential equation of the model system of fermions, irrespective of its state, is the negative of the Ionization Potential. As such, Q-DFT constitutes a complement to Schrödinger theory. Properties of the model fermionic system arrived at via Q-DFT are discussed: (a) The non-uniqueness of the local electron-interaction potential in which the many-body correlations are embedded; (b) The proof that this non-uniqueness is solely due to Correlation-Kinetic effects; (c) The non-uniqueness of the model system wave function; (d) That it is solely the Correlation-Kinetic effects which contribute to the discontinuity in the local electron-interaction potential as the electron number passes an integer value. To elucidate Q-DFT, the map** from two different 2-dimensional 2-electron semiconductor quantum dots one in a ground and the other in its first excited singlet \(2^{1} S\) state, to one of noninteracting fermions in a ground state possessing the same corresponding \(\{ \rho (\mathbf {r}), \mathbf {j}(\mathbf {r}) \}\) is described. A brief description of the Q-DFT of the density amplitude is provided. Time-dependent (TD) Q-DFT of a system of electrons in a TD electromagnetic field, mapped to one of noninteracting fermions experiencing the same external field and possessing the same TD density \(\rho (\mathbf {y})\) and physical current density \(\mathbf {j}(\mathbf {y})\); \(\mathbf {y} = \mathbf {r} t\), is described. In a manner similar to the stationary-state case, the local electron-interaction potential is the work done, at each instant of time, in the force of a conservative effective field which is the sum of the TD Electron-Interaction and Correlation-Kinetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.K. Harbola, V. Sahni, Phys. Rev. Lett. 62, 489 (1989)

    Article  ADS  Google Scholar 

  2. V. Sahni, M.K. Harbola, Int. J. Quantum Chem. 24, 569 (1990)

    Article  Google Scholar 

  3. V. Sahni, M. Slamet, Phys. Rev. B 48, 1910 (1993)

    Article  ADS  Google Scholar 

  4. M.K. Harbola, M. Slamet, V. Sahni, Phys. Lett. A 157, 60 (1991)

    Article  ADS  Google Scholar 

  5. M. Slamet, V. Sahni, M.K. Harbola, Phys. Rev. A 49, 809 (1994)

    Article  ADS  Google Scholar 

  6. V. Sahni, Phys. Rev. A 55, 1846 (1997)

    Article  ADS  Google Scholar 

  7. V. Sahni, Top. Curr. Chem. 182, 1 (1996)

    Article  Google Scholar 

  8. Z. Qian, V. Sahni, Phys. Rev. A 57, 2527 (1998)

    Article  ADS  Google Scholar 

  9. Z. Qian, V. Sahni, Phys. Lett. A 247, 303 (1998)

    Article  ADS  Google Scholar 

  10. Z. Qian, V. Sahni, Phys. Lett. A 248, 393 (1998)

    Article  ADS  Google Scholar 

  11. Z. Qian, V. Sahni, Phys. Rev. B 62, 16364 (2000)

    Article  ADS  Google Scholar 

  12. Z. Qian, V. Sahni, Int. J. Quantum Chem. 78, 341 (2000)

    Article  Google Scholar 

  13. Z. Qian, V. Sahni, Int. J. Quantum Chem. 80, 555 (2000)

    Article  Google Scholar 

  14. Z. Qian, V. Sahni, Phys. Rev. A 63, 042508 (2001)

    Article  ADS  Google Scholar 

  15. V. Sahni, L. Massa, R. Singh, M. Slamet, Phys. Rev. Lett. 87, 113002 (2001)

    Google Scholar 

  16. M. Slamet, V. Sahni, Int. J. Quantum Chem. 85, 436 (2001)

    Article  Google Scholar 

  17. V. Sahni, in Electron Correlations and Materials Properties 2. ed. by A. Gonis, N. Kioussis, M. Ciftan (Kluwer Academic/Plenum Publishers, New York, 2002)

    Google Scholar 

  18. X.-Y. Pan, V. Sahni, Phys. Rev. A 67, 012501 (2003)

    Google Scholar 

  19. V. Sahni, X.-Y. Pan, Phys. Rev. Lett. 90, 123001 (2003)

    Google Scholar 

  20. M. Slamet, R. Singh, L. Massa, V. Sahni, Phys. Rev. A 68, 042504 (2003)

    Google Scholar 

  21. X.-Y. Pan, V. Sahni, J. Chem. Phys. 120, 5642 (2004)

    Google Scholar 

  22. V. Sahni, M. Slamet, Int. J. Quantum Chem. 100, 858 (2004)

    Article  Google Scholar 

  23. V. Sahni, M. Slamet, Int. J. Quantum Chem. 106, 3087 (2006)

    Article  ADS  Google Scholar 

  24. V. Sahni, M. Slamet, X.-Y. Pan, J. Chem. Phys. 126, 204106 (2007)

    Google Scholar 

  25. X.-Y. Pan, V. Sahni, Phys. Rev. A 80, 022506 (2009)

    Google Scholar 

  26. V. Sahni, in Proceedings of the 26th International Colloquium on Group Theoretical Methods in Physics. ed. by J.L. Birman, S. Catto, B. Nicolescu (Canopus Publishers, 2009)

    Google Scholar 

  27. X.-Y. Pan, V. Sahni, in Theoretical and Computational Developments in Modern Density Functional Theory, ed. by A.K. Roy (Nova Science Publishers, New York, 2012)

    Google Scholar 

  28. T. Yang, X.-Y. Pan, V. Sahni, Phys. Rev. A 83, 042518 (2011)

    Google Scholar 

  29. V. Sahni, X.-Y. Pan, T. Yang, Computation 4, 30 (2016). https://doi.org/10.3390/computation4030030

    Article  Google Scholar 

  30. M. Slamet, V. Sahni, Comput. Theor. Chem. 1114, 125 (2017)

    Article  Google Scholar 

  31. X.-Y. Pan, V. Sahni, Computation 6, 25 (2018). https://doi.org/10.3390/computation6010025

  32. V. Sahni, Quantal Density Functional Theory, 2nd edn. (Springer, Berlin, Heidelberg, 2016) (Referred to as QDFT)

    Google Scholar 

  33. V. Sahni, Quantal Density Functional Theory II: Approximation Methods and Applications (Springer, Berlin, Heidelberg, 2010) (Referred to as QDFT2)

    Google Scholar 

  34. J.C. Slater, Phys. Rev. 34, 1293 (1929)

    Article  ADS  Google Scholar 

  35. V. Fock, Z. Phys. 61, 126 (1930)

    Article  ADS  Google Scholar 

  36. J.C. Slater, Phys. Rev. 35, 210 (1930)

    Article  ADS  Google Scholar 

  37. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  38. R.T. Sharp, G.K. Horton, Phys. Rev. 30, 317 (1953)

    Article  ADS  Google Scholar 

  39. J.D. Talman, W.F. Shadwick, Phys. Rev. A 14, 36 (1976)

    Article  ADS  Google Scholar 

  40. E. Engel, S.H. Vosko, Phys. Rev. A 47, 2800 (1993)

    Article  ADS  Google Scholar 

  41. B.L. Moiseiwitsch, Variational Principles (Wiley, London, 1966)

    MATH  Google Scholar 

  42. J.C. Slater, Phys. Rev. 81, 385 (1951)

    Article  ADS  Google Scholar 

  43. J.C. Slater, T.M. Wilson, J.H. Wood, Phys. Rev. 179, 28 (1969)

    Article  ADS  Google Scholar 

  44. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  45. X.-Y. Pan, V. Sahni, J. Chem. Phys. 143, 174105 (2015)

    Google Scholar 

  46. J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982)

    Article  ADS  Google Scholar 

  47. J.P. Perdew, in Density Functional Methods in Physics, ed. by R.M. Dreizler, J. da Providencia. NATO ASI series, Series B: Physics, Vol. 123 (Plenum, New York, 1985)

    Google Scholar 

  48. J.P. Perdew, M. Levy, Phys. Rev. Lett. 51, 1884 (1983)

    Article  ADS  Google Scholar 

  49. L.J. Sham, M. Schlüter, Phys. Rev. Lett. 51, 1888 (1983)

    Google Scholar 

  50. L.J. Sham, M. Schlüter, Phys. Rev. B 32, 3883 (1985)

    Article  ADS  Google Scholar 

  51. D. Achan, L. Massa, V. Sahni, Comp. Theor. Chem. 1035, 14 (2014)

    Article  Google Scholar 

  52. D. Achan, L. Massa, V. Sahni, Phys. Rev. A 90, 022502 (2014)

    Google Scholar 

  53. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    Article  ADS  Google Scholar 

  54. V. Sahni, Bull. Am. Phys. Soc. 44, 1902 (1999)

    Google Scholar 

  55. M. Taut, J. Phys. A 27, 1045 (1994); Corrigenda J. Phys. A 27, 4723 (1994)

    Google Scholar 

  56. M. Taut, H. Eschrig, Z. Phys. Chem. 224, 631 (2010)

    Google Scholar 

  57. X.-Y. Pan, V. Sahni, J. Chem. Phys. 119, 7083 (2003)

    Article  ADS  Google Scholar 

  58. N.H. March, Electron Density Theory of Atoms and Molecules (Academic Press, London, 1992)

    Google Scholar 

  59. M. Levy, J.P. Perdew, V. Sahni, Phys. Rev. A 30, 2745 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viraht Sahni .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahni, V. (2022). Quantal Density Functional Theory: A Local Effective Potential Theory Complement to Schrödinger Theory. In: Schrödinger Theory of Electrons: Complementary Perspectives. Springer Tracts in Modern Physics, vol 285. Springer, Cham. https://doi.org/10.1007/978-3-030-97409-1_6

Download citation

Publish with us

Policies and ethics

Navigation