Multidimensional Inverse Scattering for the Schrödinger Equation

  • Conference paper
  • First Online:
Mathematical Analysis, its Applications and Computation (ISAAC 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 385))

Abstract

We give a short review of old and recent results on the multidimensional inverse scattering problem for the Schrödinger equation. A special attention is paid to efficient reconstructions of the potential from scattering data which can be measured in practice. In this connection our considerations include reconstructions from non-overdetermined monochromatic scattering data and formulas for phase recovering from phaseless scattering data. Potential applications include phaseless inverse X-ray scattering, acoustic tomography and tomographies using elementary particles. This paper is based, in particular, on results going back to M. Born (1926), L. Faddeev (1956, 1974), S. Manakov (1981), R. Beals, R. Coifman (1985), P. Grinevich, R. Novikov (1986), G. Henkin, R. Novikov (1987), and on more recent results of R. Novikov (1998–2019), A. Agaltsov, T. Hohage, R. Novikov (2019).

This paper is an extended version of the talk given at the 12th ISAAC Congress, Aveiro, Portugal, 29 July–2 August, 2019.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A.D. Agaltsov, T. Hohage, R.G. Novikov, An iterative approach to monochromatic phaseless inverse scattering. Inverse Probl. 35(2), 24001 (2019)

    Google Scholar 

  2. A.D. Agaltsov, R.G. Novikov, Error estimates for phaseless inverse scattering in the Born approximation at high energies. J. Geom. Anal. 30(3), 2340–2360 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. A.D. Agaltsov, R.G. Novikov, Examples of solution of the inverse scattering problem and the equations of the Novikov-Veselov hierarchy from the scattering data of point potentials. Uspekhi Mat. Nauk 74(3), 3–16 (2019) (in Russian); English transl.: Russ. Math. Surv. 74(3), 373–386 (2019)

    Google Scholar 

  4. S. Agmon, Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4, 2(2), 151–218 (1975)

    Google Scholar 

  5. T. Aktosun, P.E. Sacks, Inverse problem on the line without phase information. Inverse Probl. 14, 211–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Aktosun, R. Weder, Inverse scattering with partial information on the potential. J. Math. Anal. Appl. 270, 247–266 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. N.V. Alexeenko, V.A. Burov, O.D. Rumyantseva, Solution of the three-dimensional acoustical inverse scattering problem. The modified Novikov algorithm. Acoust. J. 54(3), 469–482 (2008) (in Russian); English transl.: Acoust. Phys. 54(3), 407–419 (2008)

    Google Scholar 

  8. R. Beals, R.R. Coifman, Multidimensional inverse scattering and nonlinear partial differential equations. Proc. Symp. Pure Math. 43, 45–70 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yu.M. Berezanskii, On the uniqueness theorem in the inverse problem of spectral analysis for the Schrödinger equation. Tr. Mosk. Mat. Obshch. 7, 3–62 (1958) (in Russian)

    Google Scholar 

  10. F.A. Berezin, M.A. Shubin, The Schrödinger Equation, vol. 66 of Mathematics and Its Applications (Kluwer Academic, Dordrecht, 1991)

    Google Scholar 

  11. M. Born, Quantenmechanik der Stossvorgange. Z. Phys. 38(11–12), 803–827 (1926)

    Article  Google Scholar 

  12. A.L. Buckhgeim, Recovering a potential from Cauchy data in the two-dimensional case. J. Inverse Ill-Posed Probl. 16(1), 19–33 (2008)

    MathSciNet  Google Scholar 

  13. V.A. Burov, N.V. Alekseenko, O.D. Rumyantseva, Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem. Acoust. J. 55(6), 784–798 (2009) (in Russian); English transl.: Acoust. Phys. 55(6), 843–856 (2009)

    Google Scholar 

  14. K. Chadan, P.C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd edn (Springer, Berlin, 1989)

    Book  MATH  Google Scholar 

  15. P. Deift, E. Trubowitz, Inverse scattering on the line. Commun. Pure Appl. Math. 32, 121–251 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. V. Enss, R. Weder, Inverse Potential Scattering: A Geometrical Approach. Mathematical Quantum Theory. II. Schrödinger Operators (Vancouver, BC, 1993), pp. 151–162. CRM Proc. Lecture Notes, vol. 8 (Amer.Math.Soc., Providence, 1995)

    Google Scholar 

  17. G. Eskin, Lectures on Linear Partial Differential Equations, Graduate Studies in Mathematics, vol. 123 (American Mathematical Society, 2011)

    Google Scholar 

  18. L.D. Faddeev, Uniqueness of the solution of the inverse scattering problem. Vest. Leningrad Univ. 7, 126–130 (1956) (in Russian)

    MathSciNet  Google Scholar 

  19. L.D. Faddeev, The inverse problem in the quantum theory of scattering. Uspehi Mat. Nauk 14(4), 57–119 (1959) (in Russian); English transl.: J. Math. Phys. 4, 72–104 (1963)

    Google Scholar 

  20. L.D. Faddeev, Inverse problem of quantum scattering theory. II, Itogy Nauki i Tekh. Ser. Sovrem. Probl. Mat. 3, 93–180 (1974) (in Russian); English transl.: J. Sov. Math. 5, 334–396 (1976)

    Google Scholar 

  21. L.D. Faddeev, S.P. Merkuriev, Quantum Scattering Theory for Multi-Particle Systems. Mathematical Physics and Applied Mathematics, vol. 11 (Kluwer Academic Publishers Group, Dordrecht, 1993)

    Google Scholar 

  22. D. Fanelli, O. Öktem, Electron tomography: a short overview with an emphasis on the absorption potential model for the forward problem. Inverse Probl. 24(1), 013001 (2008)

    Google Scholar 

  23. I.M. Gel’fand, Some problems of functional analysis and algebra, in Proceedings of the International Congress of Mathematicians, vol. I (Amsterdam, 1954), pp. 253–276

    Google Scholar 

  24. P.G. Grinevich, The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy. Uspekhi Mat. Nauk 55(6), 3–70 (2000); English transl.: Russ. Math. Surv. 55(6), 1015–1083 (2000)

    Google Scholar 

  25. P.G. Grinevich, R.G. Novikov, Analogues of multisoliton potentials for the two-dimensional Schrödinger equations and a nonlocal Riemann problem. Sov. Math. Dokl. 33(1), 9–12 (1986)

    MATH  Google Scholar 

  26. P. Hähner, T. Hohage, New stability estimates for the inverse acoustic inhomogeneous medium problem and applications. SIAM J. Math. Anal. 33(3), 670–685 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. W. Heisenberg, Die “beobachtbaren Grossen” in der Theorie der Elementarteilchen. Z. Phys. 120, 513–538, 673–702 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  28. G.M. Henkin, R.G. Novikov, The \(\bar \partial \)-equation in the multidimensional inverse scattering problem. Uspekhi Mat. Nauk 42(3), 93–152 (1987) (in Russian); English transl.: Russ. Math. Surv. 42(3), 109–180 (1987)

    Google Scholar 

  29. T. Hohage. On the numerical solution of a three-dimensional inverse medium scattering problem. Inverse Probl. 17(6), 1743–1763 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. T. Hohage, R.G. Novikov, Inverse wave propagation problems without phase information. Inverse Probl. 35(7), 070301 (2019)

    Google Scholar 

  31. O. Ivanyshyn, R. Kress, Identification of sound-soft 3D obstacles from phaseless data. Inverse Probl. Imaging 4, 131–149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Jonas, A.K. Louis, Phase contrast tomography using holographic measurements. Inverse Probl. 20(1), 75–102 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. M.I. Isaev, Exponential instability in the inverse scattering problem on the energy interval. Funkt. Anal. Prilozhen. 47(3), 28–36 (2013) (in Russian); English transl.: Funct. Anal Appl. 47, 187–194 (2013)

    Google Scholar 

  34. M.I. Isaev, R.G. Novikov, New global stability estimates for monochromatic inverse acoustic scattering. SIAM J. Math. Anal. 45(3), 1495–1504 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. M.V. Klibanov, P.E. Sacks, Phaseless inverse scattering and the phase problem in optics. J. Math. Phys. 33, 3813–3821 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. M.V. Klibanov, Phaseless inverse scattering problems in three dimensions. SIAM J. Appl. Math. 74(2), 392–410 ( 2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. M.V. Klibanov, N.A. Koshev, D.-L. Nguyen, L.H. Nguyen, A. Brettin, V.N. Astratov, A numerical method to solve a phaseless coefficient inverse problem from a single measurement of experimental data. SIAM J. Imaging Sci. 11(4), 2339–2367 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. M.V. Klibanov, V.G. Romanov, Reconstruction procedures for two inverse scattering problems without the phase information. SIAM J. Appl. Math. 76(1), 178–196 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. E. Lakshtanov, R.G. Novikov, B.R. Vainberg, A global Riemann-Hilbert problem for two-dimensional inverse scattering at fixed energy. Rend. Istit. Mat. Univ. Trieste 48, 21–47 (2016)

    MathSciNet  MATH  Google Scholar 

  40. E. Lakshtanov, B.R. Vainberg, Recovery of Lp-potential in the plane. J. Inverse Ill-Posed Probl. 25(5), 633–651 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. B. Leshem, R. Xu, Y. Dallal, J. Miao, B. Nadler, D. Oron, N. Dudovich, O. Raz, Direct single-shot phase retrieval from the diffraction pattern of separated objects. Nature Commun. 7(1), 1–6 (2016)

    Article  Google Scholar 

  42. B.M. Levitan, Inverse Sturm-Liuville Problems, VSP, Zeist, 1987

    Book  Google Scholar 

  43. B.A. Lippmann, J. Schwinger, Variational principles for scattering processes. I. Phys. Rev. Lett. 79(3), 469–480 (1950)

    MathSciNet  MATH  Google Scholar 

  44. S.V. Manakov, The inverse scattering transform for the time dependent Schrödinger equation and Kadomtsev-Petviashvili equation. Phys. D, 3(1–2), 420–427 (1981)

    Article  MATH  Google Scholar 

  45. V.A. Marchenko, Sturm-Liuville Operators and Applications (Birkhäuser, Basel, 1986)

    Google Scholar 

  46. R.B. Melrose, Geometric scattering theory. Stanford Lectures (Cambridge University Press, Cambridge, 1995)

    MATH  Google Scholar 

  47. C.J. Merono, Recovery of the singularities of a potential from backscattering data in general dimension. J. Differ. Equ. 266(10), 6307–6345 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  48. H.E. Moses, Calculation of the scattering potential from reflection coefficients. Phys. Rev. 102, 559–567 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  49. R.G. Newton, Inverse Schrödinger Scattering in Three Dimensions (Springer, Berlin, 1989)

    Book  MATH  Google Scholar 

  50. R.G. Novikov, Multidimensional inverse spectral problem for the equation − Δψ + (v(x) − Eu(x))ψ = 0. Funkt. Anal. Prilozhen. 22(4), 11–22 (1988) (in Russian); English transl.: Funct. Anal. Appl. 22, 263–272 (1988)

    Google Scholar 

  51. R.G. Novikov, The inverse scattering problem at fixed energy level for the two-dimensional Schrödinger operator. J. Funct. Anal. 103, 409–463 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  52. R.G. Novikov, The inverse scattering problem at fixed energy for Schrödinger equation with an exponentially decreasing potential. Commun. Math. Phys. 161, 569–595 (1994)

    Article  MATH  Google Scholar 

  53. R.G. Novikov, Inverse scattering up to smooth functions for the Schrödinger equation in dimension 1. Bull. Sci. Math. 120, 473–491 (1996)

    MathSciNet  MATH  Google Scholar 

  54. R.G. Novikov, Rapidly converging approximation in inverse quantum scattering in dimension 2. Phys. Lett. A 238, 73–78 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  55. R.G. Novikov, Approximate inverse quantum scattering at fixed energy in dimension 2. Proc. Steklov Inst. Math. 225, 285–302 (1999)

    MATH  Google Scholar 

  56. R.G. Novikov, The \(\bar \partial \)-approach to approximate inverse scattering at fixed energy in three dimensions. Int. Math. Res. Pap. 2005(6), 287–349 (2005)

    Google Scholar 

  57. R.G. Novikov, The \(\bar \partial \)-approach to monochromatic inverse scattering in three dimensions. J. Geom. Anal. 18, 612–631 (2008)

    Google Scholar 

  58. R.G. Novikov, Absence of exponentially localized solitons for the Novikov-Veselov equation at positive energy. Phys. Lett. A 375, 1233–1235 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  59. R.G. Novikov, Approximate Lipschitz stability for non-overdetermined inverse scattering at fixed energy. J. Inverse Ill-Posed Probl. 21 (6), 813–823 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. R.G. Novikov, An iterative approach to non-overdetermined inverse scattering at fixed energy. Sbornik Math. 206(1), 120–134 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  61. R.G. Novikov, Inverse scattering without phase information. Séminaire Laurent Schwartz - EDP et Applications (2014–2015), Exp. No16, 13p.

    Google Scholar 

  62. R.G. Novikov, Phaseless inverse scattering in the one-dimensional case. Eur. J. Math. Comput. Appl. 3(1), 63–69 (2015)

    MathSciNet  Google Scholar 

  63. R.G. Novikov, Formulas for phase recovering from phaseless scattering data at fixed frequency. Bull. Sci. Math. 139(8), 923–936 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  64. R.G. Novikov, Explicit formulas and global uniqueness for phaseless inverse scattering in multidimensions. J. Geom. Anal. 26(1), 346–359 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  65. R.G. Novikov, Inverse scattering for the Bethe-Peierls model. Eur. J. Math. Comput. Appl. 6(1), 52–55 (2018)

    MathSciNet  Google Scholar 

  66. R.G. Novikov, Multipoint formulas for phase recovering from phaseless scattering data. J. Geom. Anal. 31(2), 1965–1991 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  67. R.G. Novikov, Multipoint formulas for scattered far field in multidimensions. Inverse Probl. 36(9), 095001 (2020)

    Google Scholar 

  68. R.G. Novikov, Multipoint formulas for inverse scattering at high energies. Uspekhi Mat. Nauk 76(4), 177–178 (2021) (in Russian); English transl.: Russ. Math. Surv. 76(4), 723–725 (2021)

    Google Scholar 

  69. R.G. Novikov, V.N. Sivkin, Error estimates for phase recovering from phaseless scattering data. Eur. J. Math. Comput. Appl. 8(1), 44–61 (2020)

    Google Scholar 

  70. R.G. Novikov, V.N. Sivkin, Phaseless inverse scattering with background information. Inverse Probl. 37(5), 055011 (2021)

    Google Scholar 

  71. N.N. Novikova, V.M. Markushevich, On the uniqueness of the solution of the inverse scattering problem on the real axis for the potentials placed on the positive half-axis. Comput. Seismol. 18, 176–184 (1985) (in Russian)

    Google Scholar 

  72. V. Palamodov, A fast method of reconstruction for X-ray phase contrast imaging with arbitrary Fresnel number (2018). ar**v:1803.08938v1

    Google Scholar 

  73. Rakesh, M. Salo, Fixed angle inverse scattering for almost symmetric or controlled perturbations. SIAM J. Math. Anal. 52(6), 5467–5499 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  74. T. Regge, Introduction to complex orbital moments. Nuovo Cimento 14, 951–976 (1959)

    Article  MATH  Google Scholar 

  75. V.G. Romanov, Inverse problems without phase information that use wave interference. Sib. Math. J. 59(3), 494–504 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  76. P. Stefanov, Stability of the inverse problem in potential scattering at fixed energy. Ann. Inst. Fourier 40 (4), 867–884 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  77. G. Vainikko, Fast solvers of the Lippmann–Schwinger equation, in Direct and inverse problems of mathematical physics (Newark, DE, 1997). Int. Soc. Anal. Appl. Comput. vol. 5, (Kluwer, Dordrecht, 2000), pp. 423–440

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman G. Novikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Novikov, R.G. (2022). Multidimensional Inverse Scattering for the Schrödinger Equation. In: Cerejeiras, P., Reissig, M. (eds) Mathematical Analysis, its Applications and Computation. ISAAC 2019. Springer Proceedings in Mathematics & Statistics, vol 385. Springer, Cham. https://doi.org/10.1007/978-3-030-97127-4_3

Download citation

Publish with us

Policies and ethics

Navigation