Mesozoic Oceanic Anoxic Events and the Associated Black Shale Deposits as a Potential Source of Energy

  • Chapter
  • First Online:
The Phanerozoic Geology and Natural Resources of Egypt

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

  • 2276 Accesses

Abstract

Oceanic anoxic events (OAEs) are considered as periods of oxygen deficiency in many oceans; accompanied by accumulation of organic-rich black shales. Mesozoic anoxic events were recognized based on the presence of black shales that are rich in organic matter. The most significant anoxic events during the Mesozoic are the Early Toarcian, the Early Aptian, and the Cenomanian–Turonian. The less significant events are the Valanginian-Hauterivian, the Hauterivian-Barremian, the Aptian-Albian, the Late Albian, the Albian-Cenomanian, and the Coniacian-Santonian. The recognized OAEs in Egypt are the Early Aptian (OAE 1a), the Aptian-Albian (OAE 1b), the Late Albian (OAE 1c), the Albian-Cenomanian (Breistroffer, OAE 1d), and the Cenomanian–Turonian (Bonarelli Event, OAE 2). However, the most widely recoded event is the OAE 2. The Cretaceous oceans hosted huge amounts of organic-rich black shales that sufficient to source all of the hydrocarbons. Black shales are considered as the most important source of hydrocarbons. The exploitation of black shales to generate hydrocarbons becomes a vital substitutional resource for energy. Such utilization of black shales may compensate the shortage of hydrocarbons in Egypt. Detailed filed work and analytical data are required before final estimation of black shale resources in Egypt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al Far, D. M. (1966). Geology and coal deposits of Gebel Maghara, north Sinai, Egypt. Geological Survey of Egypt, paper 37, 59.

    Google Scholar 

  • Algeo, T. J., & Rowe, H. (2012). Paleoceanographic applications of trace-metal concentration data. Chemical Geology, 324–325, 6–18.

    Article  Google Scholar 

  • Anan, T. (2010). Sedimentology of the Cenomanian-Turonian succession in west central Sinai, Egypt, (p. 171). Unpublished Ph.D Thesis, Mansoura University, Egypt.

    Google Scholar 

  • Anan, T. (2014). Facies analysis and sequence stratigraphy of the Cenomanian-Turonian mixed siliciclastic–carbonate sediments in west Sinai. Egypt. Sedimentary Geology, 307, 34–46.

    Article  Google Scholar 

  • Anan, T., El-Shahat, A., Genedi, A., & Grammer, M. (2013). Depositional environments and sequence architecture of the Raha and Abu Qada formations (Cenomanian-Turonian), west central Sinai. Egypt, Journal of African Earth Sciences, 82, 54–69.

    Article  Google Scholar 

  • Ando, A., Kaiho, K., Kawahata, H., & Kakegawa, T. (2008). Timing and magnitude of early Aptian extreme warming: Unraveling primary δ18O variation in indurated pelagic carbonates at Deep Sea Drilling Project Site 463, central Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 260(3–4), 463–476.

    Article  Google Scholar 

  • Arthur, M. A., Dean, W. E., & Pratt, L. M. (1988). Geochemical and climatic effects of increased marine organic-carbon burial at the Cenomanian-Turonian boundary. Nature, 335, 714–717.

    Article  Google Scholar 

  • Arthur, M. A., & Sageman, B. B. (1994). Marine Black Shales: Depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Sciences, 22, 499–551.

    Article  Google Scholar 

  • Beerling, D. J., Lomas, M. R., & Gröcke, D. R. (2002). On the nature of methane gas-hydrate dissociation during the Toarcian and Aptian oceanic anoxic events. American Journal of Science, 302, 28–49.

    Article  Google Scholar 

  • Berry, W. B., & Wilde, P. (1978). Progressive ventilation of the oceans - an explanation for the distribution of the lower Paleozoic black shales. American Journal of Science, 278, 257–275.

    Article  Google Scholar 

  • Clerici, A., & Alimonti, G. (2015). Oil shale, shale oil, shale gas and non-conventional hydrocarbons. The European Physical Journal Conferences, 98, 03001. https://doi.org/10.1051/epjconf/20159803001

    Article  Google Scholar 

  • Danelian, T., Tsikos, H., Gardin, S., Baudin, F., Bellier, J. P., & Emmanuel, L. (2004). Global and regional palaeoceanographic changes as recorded in the mid-Cretaceous (Aptian-Albian) sequence of the Ionian zone (NW Greece). Journal of the Geological Society, 161(4), 703–709.

    Article  Google Scholar 

  • Dyni, J. R. (2003). Geology and resources of some world oil-shale deposits. Oil Shale, 20, 193–252.

    Article  Google Scholar 

  • Dyni, J. R. (2006). Geology and resources of some world oil-shale deposits. Scientific Investigation Report (2005–5294) (p. 42). Published by the US Department of the Interior, US Geological Survey, Reston, Virginia.

    Google Scholar 

  • El-Kammar, M. M. (1993). Organic and inorganic composition of the Upper Cretaceous-Lower Tertiary black shales from Egypt and their hydrocarbon potentialities, Ph.D. Thesis, Faculty of Sciences, (p. 227). Cairo University.

    Google Scholar 

  • El-Kammar, A. (2008). Upper Cretaceous-Lower Tertiary black shales in Egypt: Possible potential source of energy. Invited Talk. Sedimentology of Egypt, 16, 1–5.

    Google Scholar 

  • El-Kammar, A. (2017). Oil shale resources in Egypt: The present status and future vision. Arabian Journal of Geosciences, 10, 439.

    Article  Google Scholar 

  • El-Sabbagh, A., Tantawy, A., Keller, G., Khozyem, H., Spangenberg, J., Adatte, T., & Gertsch, B. (2011). Stratigraphy of the Cenomanian-Turonian oceanic anoxic event OAE2 in shallow shelf sequences of NE Egypt. Cretaceous Research, 32(6), 705–722.

    Article  Google Scholar 

  • El-Shafeiy, M., Birgel, D., El-Kammar, A., El-Barkooky, A., Wagreich, M., Mohamed, M., & Peckmann, J. (2014). Palaeoecological and postdepositional changes recorded in Campanian-Maastrichtian black shales, Abu Tartur Plateau. Egypt. Cretaceous Research, 50, 38–51.

    Article  Google Scholar 

  • El-Shinnawi, M., & Sultan, I. (1973). Lithostratigraphy of some subsurface Upper Cretaceous sections in the Gulf of Suez area. Egypt. Acta Geologica Academiae Scientiarum Hungaricae, 17, 469–494.

    Google Scholar 

  • Erba, E. (1992). Calcareous nannofossil distribution in pelagic rhythmic sediments (Aptian-Albian Piobbico core, central Italy). Rivista Italiana Di Paleontologia e Stratigrafia, 97, 455–484.

    Google Scholar 

  • Farrimond, P., Eglinton, G., Brassell, S. C., & Jenkyns, H. C. (1990). The Cenomanian/Turonian anoxic event in Europe: An organic geochemical study. Marine and Petroleum Geology, 7(1), 75.

    Article  Google Scholar 

  • Gangl, S. K., Moy, C. M., Stirling, C. H., Jenkyns, H. C., Crampton, J. S., Clarkson, M. O., Ohneiser, C., & Porcelli, D. (2019). High-resolution records of Oceanic Anoxic Event 2: Insights into the timing, duration and extent of environmental perturbations from the palaeo-South Pacific Ocean. Earth and Planetary Science Letters, 518, 172–182.

    Article  Google Scholar 

  • Gertsch, B., Keller, G., Adatte, T., Berner, Z., Kassab, A. S., Tantawy, A. A., El-Sabbagh, S., & D. (2010). Cenomanian-Turonian transition in a shallow water sequence of the Sinai. Egypt. International Journal of Earth Sciences, 99(1), 165–182.

    Article  Google Scholar 

  • Ghorab, M. A. (1961). Abnormal stratigraphic features in Ras Gharib oilfields, Egypt. In 3rd Arab Petroleum Congress (pp. 1–10) Alexandria.

    Google Scholar 

  • de Graciansky, P. C., Deroo, G., Herbin, J. P., Jacquin, T., Magni, F., Montadert, I., & Müller, C. (1986). Ocean-wide stagnation episodes in the Late Cretaceous. Geological Rundschau, 75, 17–41.

    Article  Google Scholar 

  • Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. M. (2012). The Geologic Time Scale 2012 (1st ed., p. 1176). UK, Elsevier.

    Google Scholar 

  • Greenwood, P. F., Brocks, J. J., Grice, K., Schwark, L., Jaraula, C. M. B., Dick, J. M., & Evans, K. A. (2013). Organic geochemistry and mineralogy I. Characterisation of organic matter associated with metal deposits. Ore Geology Reviews, 50, 1–27.

    Article  Google Scholar 

  • Gröcke, D., Hesselbo, S. P., & Jenkyns, H. C. (1999). Carbon isotope composition of Lower Cretaceous fossil wood: Ocean-atmosphere chemistry and relation to sea-level change. Geology, 27, 155–158.

    Article  Google Scholar 

  • Hancock, J. M., & Kauffman, E. G. (1979). The great transgressions of the Late Cretaceous. Journal of the Geological Society of London, 136, 175–186.

    Article  Google Scholar 

  • Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235, 1157–1167.

    Article  Google Scholar 

  • Heimhofer, U., Hochuli, P. A., Herrle, J. O., Andersen, N., & Weissert, H. (2004). Absence of major vegetation and palaeoatmospheric pCO2 changes associated with oceanic anoxic event 1a (Early Aptian, SE France). Earth and Planetary Science Letters, 223(3–4), 303–318.

    Article  Google Scholar 

  • Hetzel, A., Böttcher, M. E., Wortmann, U. G., & Brumsack, H. J. (2009). Paleoredox conditions during OAE2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeography, Palaeoceanography, Palaeoecology, 273(3–4), 302–328.

    Article  Google Scholar 

  • Huyck, H. L. (1990). Proposed definition of “black shale” and “metalliferous black shale” for IGCP #254. Book of Abstracts, 8th IAGOD Symposium (pp. A183-184). GSC.

    Google Scholar 

  • Ismail, A. (2002). The biostratigraphic and sequence stratigraphic applications on the Upper Cretaceous succession of Wadi Feiran, southwestern Sinai. Egypt. Egyptian Journal of Geology, 46, 515–533.

    Google Scholar 

  • Jenkyns, H. C. (1985). The early Toarcian and Cenomanian-Turonian anoxic events in Europe: Comparisons and contrasts. Geologische Rundschau, 74, 505–518.

    Article  Google Scholar 

  • Jenkyns, H. C. (1988). The Early Toarcian (Jurassic) anoxic event: stratigraphic, sedimentary, and geochemical evidence. American Journal of Science, 288, 101–151.

    Google Scholar 

  • Jenkyns, H. C. (2010). Geochemistry of oceanic anoxic events. Geochemistry, Geophysics, Geosystems, 11, Q03004.

    Article  Google Scholar 

  • Jenkyns, H. C., Gröcke, D. R., & Hesselbo, S. P. (2001). Nitrogen isotope evidence for water mass denitrification during the Early Toarcian (Jurassic) Oceanic Anoxic Event. Paleoceanography, 16, 593–603.

    Article  Google Scholar 

  • Jenkyns, H. C., Jones, C. E., Gröcke, D. R., Hesselbo, S. P., & Parkinson, D. N. (2002). Chemostratigraphy of the Jurassic system; applications, limitations and implications for palaeoceanography. Journal of the Geological Society of London, 159(4), 351–378.

    Article  Google Scholar 

  • Jenkyns, H. C., Matthews, A., Tsikos, H., & Erel, Y. (2007). Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during the Cenomanian-Turonian oceanic anoxic event. Paleoceanography, 22, PA3208.

    Google Scholar 

  • Kafousia, N., Karakitsios, V., & Jenkyns, H. C. (2010). Preliminary data from the first record of the Toarcian Oceanic Anoxic Event in the sediments of the Pindos Zone (Greece). Bulletin of the Geological Society of Greece, 43(2), 627–633.

    Article  Google Scholar 

  • Kaiser, D., Konovalov, S., Schultz-Bull, D., & Waniek, J. J. (2017). Organic matter along longitudinal and vertical gradients in the Black Sea. Deep Sea Research Part I: Oceanographic Research Papers, 129, 22–31.

    Article  Google Scholar 

  • Karakitsios, V., Kafousia1, N., & Tsikos, H. (2010). A Review of Oceanic Anoxic Events as recorded in the Mesozoic sedimentary record of mainland Greece. Hellenic Journal of Geosciences, 45, 123–132.

    Google Scholar 

  • Kassem, A., Sharaf, L., Baghdady, A., & El-Naby, A. (2020). Cenomanian/Turonian oceanic anoxic event 2 in October oil field, central Gulf of Suez. Egypt. Journal of African Earth Sciences., 165, 103817.

    Article  Google Scholar 

  • Keller, G., Adatte, T., Burns, S., & Tantawy, A. A. (2002). High-stress paleoenvironment during the late Maastrichtian to early Paleocene in central Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology, 187, 35–60.

    Article  Google Scholar 

  • Kemp, D. B., Coe, A. L., Cohen, A. S., & Schwark, L. (2005). Astronomical pacing of methane release in the Early Jurassic period. Nature, 437(7057), 396–399.

    Article  Google Scholar 

  • Khalil, H. (2007). Macrobiostratigraphical, paleoecological and palaeobiographical studies of the Cenomanian/Turonian transition of Wadi Watir (El Sheikh Attia), Sinai. Egypt. Egyptian Journal of Paleontology, 7, 245–267.

    Google Scholar 

  • Kora, M., Shahin, A., & Semiet, A. (1993). Biostratigraphy and macrofauna of the Cenomanian exposures in west central Sinai. Egypt. Mansoura Science Bulletin, 20, 227–260.

    Google Scholar 

  • Kuroda, J., & Ohkouchi, N. (2006). Implication of spatiotemporal distribution of black shales deposited during the Cretaceous Oceanic Anoxic Event-2. Paleontological Research, 10(4), 345–358.

    Article  Google Scholar 

  • Kuypers, M. M., Pancost, R. D., Nijenhuis, I. A., & Sinninghe Damsté, J. S. (2002). Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event. Paleoceanography, 17(4), 1051. https://doi.org/10.1029/2000PA000569

    Article  Google Scholar 

  • Leckie, R. M., Bralower, T. J., & Cashman, R. (2002). Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the Mid-Cretaceous. Paleoceanography, 17, PA1041.

    Google Scholar 

  • Lille, U. (2003). Current knowledge on the origin and structure of Estonian kukersite kerogen. Oil Shale, 20, 253–263.

    Article  Google Scholar 

  • Lipinski, M., Warning, B., & Brumsack, H. J. (2003). Trace metal signatures of Jurassic/Cretaceous black shales from the Norwegian shelf and the Barents Sea. Palaeogeography Palaeoclimatology Palaeoecology, 190, 459–475.

    Article  Google Scholar 

  • Lüning, S., Kolonic, S., Belhadj, E. M., Belhadj, Z., Cota, L., Baric, G., & Wagner, T. (2004). Integrated depositional model for the Cenomanian-Turonian organic-rich strata in North Africa. Earth Science Reviews, 64, 51–117.

    Article  Google Scholar 

  • Malinverno, A., Erba, E., & Herbert, T. D. (2010). Orbital tuning as an inverse problem: Chronology of the early Aptian oceanic anoxic event 1a (Selli Level) in the Cismon APTICORE, Paleoceanography, 25, PA2203. https://doi.org/10.1029/2009PA001769.

  • Mazzini, A., Svensen, H., Leanza, H. A., Corfu, F., & Planke, S. (2010). Early Jurassic shale chemostratigraphy and U-Pb ages from the Neuquén Basin (Argentina(: Implications for the Toarcian oceanic anoxic event. Earth and Planetary Science Letters, 297, 633–645.

    Article  Google Scholar 

  • Meyers, S. R., Siewert, S. E., Singer, B. S., Sageman, B. B., Condon, D. J., Obradovich, J. D., Jicha, B. R., & Sawyer, D. A. (2012). Intercalibration of radio isotopic and astrochronologic time scales for the Cenomanian-Turonian boundary interval, Western Interior Basin, USA. Geology, 40, 7–10.

    Article  Google Scholar 

  • Miller, K. G., Miller, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., & Pekar, S. (2005). The Phanerozoic Record of Global Sea-Level Change. Science, 310, 1293–1298.

    Article  Google Scholar 

  • Mort, H. P., Adatte, T., Keller, G., Bartels, D., Föllmi, K. B., Steinmann, P., Berner, Z., & Chellai, E. H. (2008). Organic carbon deposition and phosphorus accumulation during oceanic anoxic event 2 in Tarfaya. Morocco, Cretaceous Research, 29, 1008–1023.

    Article  Google Scholar 

  • Mustafa, A., & Ghaly, E. L. (1964). Survey of Quseir shales and other carbonaceous shales in Egypt. Journal of Chemical and Engineering Data, 9(4), 557–567.

    Article  Google Scholar 

  • Nagm, E., El-Qot, G., & Wilmsen, M. (2014). Stable-isotope stratigraphy of the Cenomanian-Turonian (Upper Cretaceous) boundary event (CTBE) in Wadi Qena, Eastern Desert. Egypt Journal of African Earth Sciences, 100, 524–531.

    Article  Google Scholar 

  • North, F. K. (1979). Episodes of source-sediment deposition (1). Journal of Petroleum Geology, 2, 199–218.

    Article  Google Scholar 

  • Parviainen, A., & Loukola-Ruskeeniemi, K. (2019). Environmental impact of mineralised black shales. Earth-Science Reviews, 192, 65–90.

    Article  Google Scholar 

  • Percival, L. M. E., Tedeschi, L. R., Creaser, R. A., Bottini, C., Erba, E., Giraud, F., Svensen, H., Savian, J., Trindade, R., Coccioni, R., Frontalini, F., Jovane, L., Mather, T. A., & Jenkyns, H. C. (2021). Determining the style and provenance of magmatic activity during the Early Aptian Oceanic Anoxic Event (OAE 1a). Global and Planetary Change, 103461.

    Google Scholar 

  • Remírez, M. N., & Algeo, T. J. (2020). Carbon-cycle changes during the Toarcian (Early Jurassic) and implications for regional versus global drivers of the Toarcian oceanic anoxic event. Earth-Science Reviews, 209, 103283.

    Article  Google Scholar 

  • Rimstidt, J. D., Chermak, J. A., & Schreiber, M. E. (2017). Processes that control mineral and element abundances in shales. Earth-Science Reviews, 171, 383–399.

    Article  Google Scholar 

  • Röhl, J., Schmid-Röhl, A., Oschmann, W., Frimmel, A., & Schwark, L. (2001). The Posidonia Shale (Lower Toarcian) of SW-Germany: An oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeography Palaeoclimatology Palaeoecology, 165, 27–52.

    Article  Google Scholar 

  • Sageman, B. B., & Lyons, T. W. (2003). Geochemistry of fine-grained sediments and sedimentary rocks. In MacKenzie, F. (Ed.), Treatise on Geochemistry (Vol. 7, pp. 115–158). Elsvier.

    Google Scholar 

  • Sageman, B. B., Meyers, S. R., & Arthur, M. A. (2006). Orbital time scale and new C-isotope record for Cenomanian-Turonian boundary stratotype. Geology, 34, 125–128.

    Article  Google Scholar 

  • Said, R. (1962). The Geology of Egypt (p. 377). Elsevier.

    Google Scholar 

  • Said, R. (1990). The Geology of Egypt (p. 729). Elsevier.

    Google Scholar 

  • Salama, Y., & Abdel-Gawad, G. (2018). Early Cretaceous Oceanic Anoxic Events in Rudist-Bearing Succession, North Egypt. In Boughdiri, M., Bádenas, B., Selden, P., Jaillard, E., Bengtson, P., & Granier, B. (Eds.), Paleobiodiversity and Tectono-Sedimentary Records in the Mediterranean Tethys and Related Eastern Areas. Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1) (pp. 183–185).

    Google Scholar 

  • Schlanger, S. O., & Cita, M. B. (1982). Nature and Origin of Cretaceous Carbon-rich Facies (p. 229). Academic Press.

    Google Scholar 

  • Schlanger, S. O., & Jenkyns, H. C. (1976). Cretaceous oceanic anoxic events: Causes and consequence. Geologie En Mijnbouw, 55(3–4), 179–184.

    Google Scholar 

  • Schouten, S., Van Kaam-Peters, H. M. E., Rijpstra, W. I. C., Schoell, M., & Sinninghe Damsté, J. S. (2000). Effects of an oceanic anoxic event on the stable carbon isotopic composition of Early Toarcian carbon. American Journal of Science, 300, 1–22.

    Article  Google Scholar 

  • Shahin, A. (2007). Oxygen and carbon isotopes and foraminiferal biostratigraphy of the Cenomanian-Turonian succession in Gabal Nezzazat, southwestern Sinai. Egypt. Revue De Paléobiologie, Genève, 26, 359–379.

    Google Scholar 

  • Slack, J. F., Selby, D., & Dumoulin, J. A. (2015). Hydrothermal, biogenic, and seawater components in metalliferous Black Shales of the Brooks Range, Alaska: Synsedimentary metal enrichment in a carbonate ramp setting. Economic Geology, 110, 653–675.

    Article  Google Scholar 

  • Takashima, R., Nishi, H., Yamanaka, T., Hayashi, K., Waseda, A., Obuse, A., Tomosugi, T., Deguchi, N., & Mochizuki, S. (2010). High-resolution terrestrial carbon isotope and planktic foraminiferal records of the upper Cenomanian to the lower Campanian in the Northwest Pacific. Earth and Planetary Science Letters, 289(3–4), 570–582.

    Article  Google Scholar 

  • Thiede, J., & van Andel, T. H. (1977). The palaeo- environment of anaerobic sediments in the late Mesozoic South Atlantic Ocean. Earth and Planetary Science Letters, 33, 301–309.

    Article  Google Scholar 

  • Troger, U. (1984). The oil shale potential of Egypt. Berliner Geowissenschaftliche Abhandlungenen (a), 50, 375–380.

    Google Scholar 

  • Tsikos, H., Jenkyns, H. C., Walsworth-Bell, B., Petrizzo, M. R., Forster, A., Kolonic, S., Erba, E., Premoli Silva, I., Baas, M., Wagner, T., & Sinninghe Damsté, J. S. (2004). Carbon-isotope stratigraphy recorded by the Cenomanian-Turonian Oceanic Anoxic Event: Correlation and implications based on three key localities. Journal of the Geological Society of London, 161, 711–719.

    Article  Google Scholar 

  • Voigt, S., Erbacher, J., Mutterlose, J., Weiss, W., Westerhold, T., Wiese, F., Wilmsen, M., & Wonik, T. (2008). The Cenomanian—Turonian of the Wunstorf section (north Germany): Global stratigraphic reference section and new orbital time scale for oceanic anoxic event 2. Newsletters on Stratigraphy, 43, 65–89.

    Article  Google Scholar 

  • Voigt, S., Gale, A. S., & Voigt, T. (2006). Sea-level change, carbon cycling and palaeoclimate during the Late Cenomanian of northwest Europe; an integrated palaeoenvironmental analysis. Cretaceous Research, 27, 836–858.

    Article  Google Scholar 

  • Wang, C. S., Hu, X. M., Jansa, L., Wan, X. Q., & Tao, R. (2001). The Cenomanian-Turonian anoxic event in southern Tibet. Cretaceous Research, 22(4), 481–490.

    Article  Google Scholar 

  • Westermann, S., Stein, M., Matera, V., Fiet, N., Fleitmann, D., Adatte, T., & Föllmi, K. B. (2013). Rapid changes in the redox conditions of the western Tethys Ocean during the early Aptian oceanic anoxic event. Geochimica Et Cosmochimica Acta, 121, 467–486.

    Article  Google Scholar 

  • Wignall, P. (1994). Black Shales (p. 127). Clarendon Press.

    Google Scholar 

  • Wignall, P. B., Hallam, A., Newton, R. J., Sha, J. G., Reeves, E., Mattioli, E., & Crowley, S. (2006). An eastern Tethyan (Tibetan) record of the Early Jurassic (Toarcian) mass extinction event. Geobiology, 4(3), 179–190.

    Article  Google Scholar 

  • Wignall, P B. & Twitchett, R. J. (2002). Extent, duration, and nature of the Permian-Triassic superanoxic event. In Koeberl, C. & Leod, K. G. (Eds.), Catastrophic Events and Mass Extinctions: Impacts and beyond (Vol. 356, pp. 395–413). Geological Society of America Special Paper.

    Google Scholar 

  • **e, X., Li, M., Xu, J., Snowdon, L. R., & Volkman, J. K. (2020). Geochemical characterization and artificial thermal maturation of kerogen density fractions from the Eocene Huadian oil shale. NE China. Organic Geochemistry, 144, 103947.

    Article  Google Scholar 

  • Young, S., Loukola-Ruskeeniemi, K., & Pratt, L. (2013). Reactions of hydrothermal solutions with organic matter in Palaeoproterozoic black shales at Talvivaara, Finland: Evidence from multiple sulfur isotopes. Earth Planetary Science Letters, 367, 1–14.

    Article  Google Scholar 

  • Zhang, L., Zhang, X., Li, S., & Wang, Q. (2012). Comprehensive utilization of oil shale and prospect Analysis. Energy Procedia, 17, 39–43.

    Article  Google Scholar 

  • Zhou, X., Jenkyns, H. C., Owens, J. D., Junium, C. K., Zheng, X. Y., Sageman, B. B., Hardisty, D. S., Lyons, T. W., Ridgwell, A., & Lu, Z. (2015). Upper ocean oxygenation dynamics from I/Ca ratios during the Cenomanian-Turonian OAE 2. Paleoceanography, 30, 510–526.

    Article  Google Scholar 

  • Zhuravlev, A. Y., & Wood, R. A. (1996). Anoxia as the cause of the mid-Early Cambrian (Botomian) extinction event. Geology, 24, 311–314.

    Article  Google Scholar 

  • Zobaa, M., Oboh-Ikuenobe, F., & Ibrahim, M. (2011). The Cenomanian/Turonian oceanic anoxic event in the Razzak Field, north Western Desert, Egypt: Source rock potential and paleoenvironmental association. Marine and Petroleum Geology, 28, 1475–1482.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Anan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anan, T., El-Shahat, A. (2023). Mesozoic Oceanic Anoxic Events and the Associated Black Shale Deposits as a Potential Source of Energy. In: Hamimi, Z., et al. The Phanerozoic Geology and Natural Resources of Egypt. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-95637-0_7

Download citation

Publish with us

Policies and ethics

Navigation