A Brief Introduction to Restoration Ecology and Ecosystem Restoration

  • Chapter
  • First Online:
Restoration of Multifunctional Cultural Landscapes

Part of the book series: Landscape Series ((LAEC,volume 30))

  • 700 Accesses

Abstract

A brief and comprehensive introduction to restoration ecology is given. After a short sketch of the history of this subdiscipline of ecology, concepts, general objectives, reference systems, and a definition of ecosystem restoration are presented. Since ecosystem restoration is based on ecological key concepts such as e.g., species pool, functional groups, succession, stress, disturbance, and ecosystem functions, it might be an “acid test” for ecology. General objectives could be the restoration of natural ecosystems, traditional and diverse land-use systems, and “novel” ecosystems without a reference in the natural or traditional cultural landscape. By giving an overview on measures, the practice of ecosystem restoration is addressed. An emphasis is put on the transdisciplinary peculiarities of restoration ecology and ecosystem restoration, bridging the natural and the social sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison, S. K. (2012). Ecological restoration and environmental change: Renewing damaged ecosystems. Routledge.

    Google Scholar 

  • Al-Mufti, M. M., Sydes, C. L., Furness, S. B., Grime, J. P., & Band, S. R. (1977). A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. Journal of Ecology, 65, 759–791.

    Google Scholar 

  • Aronson, J., Floret, C., Le Floc'h, E., Ovalle, C., & Pontanier, R. (1993). Restoration and rehabilitation of degraded ecosystems in arid and semi‐arid lands. I. A view from the south. Restoration Ecology, 1, 8–17.

    Google Scholar 

  • Asmelash, F., Bekele, T., & Birhane, E. (2016). The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Frontiers in Microbiology, 7, 1095.

    PubMed  PubMed Central  Google Scholar 

  • Assandria, G., Bogliani, G., Pedrini, P., & Brambilla, M. (2018). Beautiful agricultural landscapes promote cultural ecosystem services and biodiversity conservation. Agriculture, Ecosystems and Environment, 256, 200–210.

    Google Scholar 

  • Barthlott, W., Linsenmair, K. E., & Porembski, S. (Eds.). (2008/2009). Biodiversity: Structure and function. 1 & 2. Encyclopedia of Life Support Systems (EOLSS).

    Google Scholar 

  • Baskin, C. C., & Baskin, J. M. (2014). Seeds: Ecology, biogeography, and evolution of dormancy and germination. Academic Press.

    Google Scholar 

  • Baur, B. (2014). Dispersal-limited species – A challenge for ecological restoration. Basic and Applied Ecology, 15(7), 559–564.

    Google Scholar 

  • Begon, M., & Townsend, C. R. (2020). Ecology: From individuals to ecosystems (5th ed.). Wiley-Blackwell.

    Google Scholar 

  • BenDor, T., Lester, T. W., Livengood, A., Davis, A., & Yonavjak, L. (2015). Estimating the size and impact of the ecological restoration economy. PLoS One, 10(6), e0128339.

    PubMed  PubMed Central  Google Scholar 

  • Bernhardt, H. (1987). Strategies of lake sanitation. Schweizerische Zeitschrift für Hydrologie, 49, 202–219.

    CAS  Google Scholar 

  • Bernhardt, E. S., Palmer, M. A., Allan, J. D., Alexander, G., Barnas, K., Brooks, S., Carr, J., Clayton, S., Dahm, C., Follstad-Shah, J., Galat, D., Gloss, S., Goodwin, P., Hart, D., Hassett, B., Jenkinson, R., Katz, S., Kondolf, G. M., Lake, P. S., … Sudduth, E. (2005). Synthesizing U.S. river restoration efforts. Science, 308, 636–637.

    CAS  PubMed  Google Scholar 

  • Bernstein, J. H. (2015). Transdisciplinarity: A review of its origins, development, and current issues. Journal of Research Practice, 11(1), 1–17.

    Google Scholar 

  • Bi, Y., Zhang, Y., & Zou, H. (2018). Plant growth and their root development after inoculation of arbuscular mycorrhizal fungi in coal mine subsided areas. International Journal of Coal Science & Technology, 5, 47–53.

    CAS  Google Scholar 

  • Birks, H. H., Birks, H. J. B., Kaland, P. E., & Moe, D. (1988). The cultural landscape: Past, present and future (p. 521). Cambridge University Press.

    Google Scholar 

  • Björk, S. (2014). The fine art of restoring aquatic ecosystems. Knowledge and management of aquatic ecosystems. Schweizerbart’sche Verlagsbuchhandlung.

    Google Scholar 

  • Blakesley, D., & Buckley, P. (2016). Grassland restoration and management. Pelagic Publishing.

    Google Scholar 

  • Bobbink, R., & Hettelingh, J. P. (Eds.). (2011). Review and revision of empirical critical loads and dose-response relationships. Coordination Centre for Effects, National Institute for Public Health and the Environment (RIVM). http://www.rivm.nl/cce. Retrieved 21.08.2016.

  • Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J. W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., & de Vries, W. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20, 30–59.

    CAS  PubMed  Google Scholar 

  • Bonn, S., & Poschlod, P. (1998). Ausbreitungsbiologie der Pflanzen Mitteleuropas. Quelle & Meyer.

    Google Scholar 

  • Borggräfe, K., Hammer, W., Panzer, L., & Schilling, E. (2017). Lebendige Alster – ein urbanes Gewässerprojekt. Maßnahmen der Revitalisierung gemeinsam mit einer aktiven Bevölkerung. Natschutz Landschplan, 49(10), 309–316.

    Google Scholar 

  • Borgmann, A. (1984). Technology and the character of contemporary life. A philosophical inquiry (p. 310). University of Chicago Press.

    Google Scholar 

  • Bradshaw, A. D. (1983). The reconstruction of ecosystems: Presidential address to the British Ecological Society December 1982. The Journal of Applied Ecology, 20(1), 1–10.2307/2403372.

    Google Scholar 

  • Bradshaw, A. D. (1992). The biology of land restoration. In S. K. Jain & L. W. Botsford (Eds.), Applied population biology (pp. 25–44). Kluwer Academic Publisher.

    Google Scholar 

  • Brand, F. S., Seidl, R., Le, Q. B., Brändle, J. M., & Scholz, R. W. (2013). Constructing consistent multiscale scenarios by transdisciplinary processes: The case of mountain regions facing global change. Ecology and Society, 18(2), 43.

    Google Scholar 

  • Brown, B., Fadillah, R., Nurdin, Y., Soulsby, I., & Ahmad, R. (2014a). Case study: Community based ecological mangrove rehabilitation (CBEMR) in Indonesia. From small (12-33 ha) to medium scales (400 ha) with pathways for adoption at larger scales (> 5000 ha). Surveys and Perspectives Integrating Environment Society, 7(2), 1–22.

    Google Scholar 

  • Brown, C., Reyers, B., Ingwall-King, L., Mapendembe, A., Nel, J., O'Farrell, P., Dixon, M., & Bowles-Newark, N. J. (2014b). Measuring ecosystem services: Guidance on develo** ecosystem service indicators. UNEP-WCMC.

    Google Scholar 

  • Brugha, R., & Varvasovszky, Z. (2000). Stakeholder analysis: A review. Health Policy and Planning, 15(3), 239–246.

    CAS  PubMed  Google Scholar 

  • Burrichter, E., Hüppe, J., & Pott, R. (1993). Agrarwirtschaftlich bedingte Vegetationsbereicherung und -verarmung in historischer Sicht. Phytocoenologia, 23, 427–447.

    Google Scholar 

  • Byers, J. E., Cuddington, K., Jones, C. G., Talley, T. S., Hastings, A., Lambrinos, J. G., Crooks, J. A., & Wilson, W. G. (2006). Using ecosystem engineers to restoreecological systems. Trends in Ecology and Evolution, 21(9), 493–500.

    PubMed  Google Scholar 

  • Byun, C., de Blois, S., & Brisson, J. (2013). Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. Journal of Ecology, 101, 128–139.

    Google Scholar 

  • CBD. (2020a). Convention on biological diversity. Retrieved from https://www.cbd.int/convention/

  • Chapin, F. S., III, Matson, P. A., & Vitousek, P. (2011). Principles of terrestrial ecosystem ecology (2nd ed.). Springer.

    Google Scholar 

  • Chapman, J. L., & Reiss, M. J. (1999). Ecology: Principles and applications. Cambridge University Press.

    Google Scholar 

  • Chatters, C. (2021). Heathland (p. 432). Bloomsbury.

    Google Scholar 

  • Choi, Y. D., Temperton, V. M., Allen, E. B., Grootjan, A. P., Halassy, M., Hobbs, R. J., Naeth, A., & Török, K. (2008). Ecological restoration for future sustainability in a changing environment. Ecoscience, 15, 53–64.

    CAS  Google Scholar 

  • Chorus, I., & Wesseler, E. (1988). Response of the phytoplankton community to therapy measures in a highly eutrophic urban lake (Schlachtensee, Berlin). Verhandlungen – Internationale Vereinigung fur Theoretische und Angewandte Limnologie, 23(2), 719–728.

    Google Scholar 

  • Christensen, N. L., Jr. (2014). An historical perspective on forest succession and its relevance to ecosystem restoration and conservation practice in North America. Forest Ecology and Management, 330, 312–322.

    Google Scholar 

  • Clement, S. (2021). Cultural landscapes and novel ecosystems. In S. Clement (Ed.), Governing the anthropocene: Novel ecosystems, transformation and environmental policy (pp. 145–185). Springer.

    Google Scholar 

  • Clewell, A., & Aronson, J. (2013). Ecological restoration. Principles, values, and structure of an emerging profession (2nd ed.). Island Press.

    Google Scholar 

  • Clewell, A., Rieger, J., & Munro, J. (2005). Guidelines for develo** and managing ecological restoration projects, 2. Aufl. Society for Ecological Restoration International (SER), Tucson. http://c.ymcdn.com/sites/www.ser.org/resource/resmgr/custompages/publications/ser_publications/Dev_and_Mng_Eco_Rest_Proj.pdf. Retrieved 28.05.2017.

  • Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs. Science, 199, 1302–1310.

    CAS  PubMed  Google Scholar 

  • Connell, J. H., & Slatyer, R. O. (1977). Mechanisms of succession in natural communities and their role in community. The American Naturalist, 111, 1119–1144.

    Google Scholar 

  • Cooke, G. D. (1999). Ecosystem rehabilitation. Lake and Reservoir Management, 15(1), 1–4.

    Google Scholar 

  • Cornish, P. S., & Burgin, S. (2005). Residual effects of glyphosate herbicide in ecological restoration. Restoration Ecology, 13(4), 695–702. https://doi.org/10.1111/j.1526-100X.2005.00088.x

    Article  Google Scholar 

  • Cousens, R., Dytham, C., & Law, R. (2008). Dispersal in plants: A population perspective (p. 232). Oxford University Press.

    Google Scholar 

  • Cunningham, S. (2002). The restoration economy: The greatest new growth frontier. Berrett-Koehler Publishing.

    Google Scholar 

  • Davis, M. A., Chew, M. K., Hobbs, R. J., Lugo, A. E., Ewel, J. J., Vermeij, G. J., Brown, J. H., Rosenzweig, M. L., Gardener, M. R., Carroll, S. P., Thompson, K., Pickett, S. T., Stromberg, J. C., Del Tredici, P., Suding, K. N., Ehrenfeld, J. G., Grime, J. P., Mascaro, J., & Briggs, J. C. (2011). Don’t judge species on their origins. Nature, 474(7350), 153–154.

    CAS  PubMed  Google Scholar 

  • Day, R. T., Keddy, P. A., McNeill, J., & Carleton, T. (1988). Fertility and disturbance gradients: A summary model for riverine marsh vegetation. Ecology, 69, 1044–1054.

    Google Scholar 

  • de Visser, S., Thébault, E., & de Ruiter, P. C. (2013). Ecosystem engineers, keystone species. In R. Leemans (Ed.), Selected entries from the encyclopedia of sustainability science and technology (pp. S 59–S 68). Springer.

    Google Scholar 

  • De Vries, W., Hettelingh, J. P., & Posch, M. (Eds.). (2015a). Critical loads and dynamic risk assessments: Nitrogen, acidity and metals in terrestrial and aquatic ecosystems (Environmental pollution series) (Vol. 25, pp. 1–662).

    Google Scholar 

  • Dilla, L. (1983). Die forstliche Rekultivierung im Rheinischen Braunkohlenrevier. Allgemeine Forstzeitschrift, 48, 1283–1286.

    Google Scholar 

  • Duckworth, J. C., Kent, M., & Ramsay, P. M. (2000). Plant functional types: An alternative to taxonomic plant community description in biogeography? Progress in Physical Geography, 24(4), 515–542.

    Google Scholar 

  • Eisenhauer, N., Milcu, A., Sabais, A. C. W., Bessler, H., Brenner, J., Engels, C., Klarner, B., Maraun, M., Partsch, S., Roscher, C., Schonert, F., Temperton, V. M., Thomisch, K., Weigelt, A., Weisser, W. W., & Scheu, S. (2011). Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PLoS One, 6(1), e16055.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eser, U. (1999). Der Naturschutz und das Fremde: Ökologische und normative Grundlagen der Umweltethik. Campus Forsch, 776, 1–266.

    Google Scholar 

  • Falk, D. A. (2017). Restoration ecology, resilience, and the axes of change. Annals of the Missouri Botanical Garden, 102(2), 201–216.

    Google Scholar 

  • FAO. (2011). Assessing forest degradation. Towards the development of globally applicable guidelines (Forest RESEARCH ASSESS WORK PAPEr 177). Food and Agriculture Organization of the United Nations, pp. 1–109.

    Google Scholar 

  • Fenn, M. E., Allen, E. B., Weiss, S. B., Jovan, S., Geiser, L. H., Tonnesen, G. S., Johnson, R. F., Rao, L. E., Gimeno, B. S., Yuan, F., Meixner, T., & Bytnerowicz, A. (2010). Nitrogen critical loads and management alternatives for N-impacted ecosystems in California. Journal of Environmental Management, 91, 2404–2423.

    CAS  PubMed  Google Scholar 

  • Folgarait, P. J. (1998). Ant biodiversity and its relationship to ecosystem functioning: A review. Biodiversity and Conservation, 7, 1221–1244.

    Google Scholar 

  • Frank, D., & Klotz, S. (1990). Biologisch-ökologische Daten zur Flora der DDR (Wissenschaftliche Beiträge der Martin-Luther- Universität Halle-Wittenberg) (Vol. 32, pp. 1–167).

    Google Scholar 

  • Fraser, L. H., Pither, J., Jentsch, A., Sternberg, M., Zobel, M., Askarizadeh, D., Bartha, S., Beierkuhnlein, C., Bennett, J. A., Bittel, A., Boldgiv, B., Boldrini, I. I., Bork, E., Brown, L., Cabido, M., Cahill, J., Carlyle, C. N., Campetella, G., Chelli, S., … Zupo, T. (2015). Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 349(6245), 302–305.

    CAS  PubMed  Google Scholar 

  • Frey, W., & Lösch, R. (2014). Geobotanik: Pflanze und Vegetation in Raum und Zeit (3rd ed.). Springer.

    Google Scholar 

  • Fry, E. L., Manning, P., Allen, D. G. P., Hurst, A., Everwand, G., Rimmler, M., & Power, S. A. (2013). Plant functional group composition modifies the effects of precipitation change on grassland ecosystem function. PLoS One, 8(2), e57027.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furse, M. T., Hering, D., Brabec, K., Buffagni, A., Sandin, L., & Verdonschot, P. F. M. (2009). The ecological status of European rivers: Evaluation and intercalibration of assessment methods. Springer.

    Google Scholar 

  • Gagnon, K., Rinde, E., Bengil, E. G. T., Carugati, L., Christianen, M. J. A., Danovaro, R., Gambi, C., Govers, L. L., Kipson, S., Meysick, L., Pajusalu, L., Kızılkaya, İ. T., van de Koppel, J., van der Heide, T., van Katwijk, M. M., & Boström, C. (2020). Facilitating foundation species: The potential for plant–bivalve interactions to improve habitat restoration success. Journal of Applied Ecology, 57, 1161–1179.

    Google Scholar 

  • Gaillard, M. J., Birks, H. J. B., Emanuelsson, U., & Berglund, B. E. (1992). Modern pollen/land-use relationships as an aid in the reconstruction of past land-uses and cultural landscapes: An example from South Sweden. Vegetation History and Archaeobotany, 1, 3–17.

    Google Scholar 

  • Gamborg, C., Morsing, J., & Raulund-Rasmussen, K. (2019). Adjustive ecological restoration through stakeholder involvement: A case of riparian landscape restoration on privately owned land with public access. Restoration Ecology, 27, 1073–1083.

    Google Scholar 

  • Gann, G. D., McDonald, T., Walder, B., Aronson, J., Nelson, C. R., Jonson, J., Hallett, J. G., Eisenberg, C., Guariguata, M. R., Liu, J., Hua, F., Echeverría, C., Gonzales, E., Shaw, N., Decleer, K., & Dixon, K. W. (2019). International principles and standards for the practice of ecological restoration, 2nd ed. Restoration Ecology, 27, 1–46.

    Google Scholar 

  • Giam, X. (2017). Global species losses from tropical deforestation. Proceedings of the National Academy of Sciences, 114(23), 5775–5777.

    CAS  Google Scholar 

  • Gilhaus, K., Vogt, V., & Hölzel, N. (2015). Restoration of sand grasslands by topsoil removal and self‐greening. Applied Vegetation Science, 18, 661–673.

    Google Scholar 

  • Giller, K., & Palm, C. (2004). Crop** systems: Slash-and-burn crop** systems of the tropics. In R. M. Goodman (Ed.), Encyclopedia of plant and crop science (pp. 363–366). Dekker.

    Google Scholar 

  • Graham, J. H., & Duda, J. J. (2011). The humpbacked species richness-curve: A contingent rule for community ecology. International Journal of Ecology, 2011, 1–15.

    Google Scholar 

  • Grimble, R., & Wellard, K. (1997). Stakeholder methodologies in natural resource management: A review of concepts, contexts, experiences and opportunities. Agricultural Systems, 55, 173–193.

    Google Scholar 

  • Grime, J. P. (1973). Competitive exclusion in herbaceous vegetation. Nature, 242, 344–347.

    Google Scholar 

  • Grime, J. P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 111(982), 1169–1194.

    Google Scholar 

  • Grime, J. P. (2001). Plant strategies, vegetation processes and ecosystem properties (2nd ed.). Wiley.

    Google Scholar 

  • Groff, C., Angeli, F., Bragalanti, N., Pedrotti, L., Zanghellini, P., & Zeni, M. (Eds.). (2021). 2020 Large carnivores report. Autonomous Province of Trento’s Forestry and Wildlife Department. https://grandicarnivori.provincia.tn.it/content/download/14817/255336/file/2020%20Large%20Carnivores%20Report.pdf. Retrieved 28.05.2021.

  • Häberli, R., Bill, A., Grossenbacher-Mansuy, W., Thompson Klein, J., Scholz, R. W., & Welti, M. (2001). Synthesis. In J. Thompson Klein, W. Grossenbacher-Mansuy, R. Häberli, A. Bill, R. W. Scholz, & M. Welti (Eds.), Transdisciplinarity: Joint problem solving among science, technology, and society. An effective way for managing complexity (pp. 6–22). Birkhäuser.

    Google Scholar 

  • Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D., Cook, W. M., Damschen, E. I., Ewers, R. M., Foster, B. L., Jenkins, C. N., King, A. J., Laurance, W. F., Levey, D. J., Margules, C. R., … Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1(2), e1500052.

    PubMed  PubMed Central  Google Scholar 

  • Hanski, I., & Gaggiotti, O. F. (Eds.). (2004). Ecology, genetics and evolution of metapopulations. Elsevier.

    Google Scholar 

  • Härdtle, W., Assmann, T., van Diggelen, R., & von Oheimb, G. (2009). Renaturierung und Management von Heiden. In S. Zerbe & G. Wiegleb (Eds.), Renaturierung von Ökosystemen in Mitteleuropa (pp. 317–347). Springer Spektrum.

    Google Scholar 

  • Harper, J., Clatworthy, J., McNaughton, I., & Sagar, G. (1961). The evolution and ecology of closely related species living in the same area. Evolution, 15, 209–227.

    Google Scholar 

  • Hazelton, E. L. G., Mozdzer, T. J., Burdick, D. M., Kettenring, K. M., & Whigham, D. F. (2014). Phragmites australis management in the United States: 40 years of methods and outcomes. AoB Plants, 6, plu001.

    PubMed  PubMed Central  Google Scholar 

  • Helena, I., & Gomes. (2012). Phytoremediation for bioenergy: Challenges and opportunities. Environmental Technology Reviews, 1(1), 59–66. https://doi.org/10.1080/09593330.2012.696715

    Article  CAS  Google Scholar 

  • Herben, T. (2000). Correlation between richness per unit area and the species pool cannot be used to demonstrate the species pool effect. Journal of Vegetation Science, 11(1), 123–126.

    Google Scholar 

  • Hermans, L. M. (2004). Dynamic actor network analysis for diffuse pollution in the province of North-Holland. Water Science and Technology, 49(3), 205–212.

    CAS  PubMed  Google Scholar 

  • Hiers, J. K., Mitchell, R. J., Barnett, A., Walters, J. R., Mack, M., Williams, B., & Sutter, R. (2012). The dynamic reference concept: Measuring restoration success in a rapidly changing no-analogue future. Ecological Restoration, 30(1), 27–36.

    Google Scholar 

  • Higgs, E. S. (2003). Nature by design: People, natural process, and ecological restoration. MIT Press.

    Google Scholar 

  • Higgs, E. S. (2010). Focal restoration. In F. A. Comín (Ed.), Ecological restoration: A global challenge (pp. 91–99). Cambridge University Press.

    Google Scholar 

  • Higgs, E. S., Light, A., & Strong, D. (2010). Technology and the good life? University of Chicago Press.

    Google Scholar 

  • Hindar, A., Henriksen, A., Sandøy, S., & Romundstad, A. J. (1998). Critical load concept to set restoration goals for liming acidified Norwegian waters. Restoration Ecology, 6, 353–363.

    Google Scholar 

  • Hobbs, R. J., & Norton, D. A. (1996). Towards a conceptual framework for restoration ecology. Restoration Ecology, 4, 93–110.

    Google Scholar 

  • Hobbs, R. J., Arico, S., Aronson, J., Baron, J. S., Bridgewater, P., Cramer, V. A., Epstein, P. R., Ewel, J. J., Klink, C. A., Lugo, A. E., Norton, D., Ojima, D., Richardson, D. M., Sanderson, E. W., Valladares, F., Vila, M., Zamora, R., & Zobel, M. (2006). Novel ecosystems: Theoretical and management aspects of the new ecological world order. Global Ecology and Biogeography, 15, 1–7.

    Google Scholar 

  • Holl, K. D., & Cairns, J., Jr. (2002). Monitoring and appraisal. In M. R. Perrow & A. J. Davy (Eds.), Handbook of ecological restoration, I: Principles of restoration (pp. 411–432). Cambridge University Press.

    Google Scholar 

  • Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–23.

    Google Scholar 

  • Hughes, F. M. R., & Rood, S. B. (2003). Allocation of river flows for restoration of floodplain Forest ecosystems: A review of approaches and their applicability in Europe. Environmental Management, 32(1), 12–33. https://doi.org/10.1007/s00267-003-2834-8

    Article  PubMed  Google Scholar 

  • Hüppe, J. (1987). Zur Entwicklung der Ackerunkrautvegetation seit dem Neolithikum. Natur- und Landschaftskunde, 23, 25–33.

    Google Scholar 

  • Huston, M. A. (1985). Patterns of species diversity on coral reefs. Annual Review of Ecology and Systematics, 16, 149–177.

    Google Scholar 

  • Hüttl, R. F., & Weber, E. (2001). Forest ecosystem development in post-mining landscapes: A case study of the Lusatian lignite district. Naturwissenschaften, 88, 322–329.

    PubMed  Google Scholar 

  • Huxel, G. R., & Hastings, A. (1999). Habitat loss, fragmentation, and restoration. Restoration Ecology, 7, 309–315.

    Google Scholar 

  • Jackson, L. L., Lopoukhine, N., & Hillyard, D. (1995). Ecological restoration: A definition and comments. Restoration Ecology, 3, 71–75.

    Google Scholar 

  • Janssens, F., Peeters, A., Tallowin, J. R. B., Bakker, J. P., Bekker, R. M., Fillat, F., & Oomes, M. J. M. (1998). Relationship between soil chemical factors and grassland diversity. Plant and Soil, 202(1), 69–78.

    CAS  Google Scholar 

  • Jantsch, E. (1970). Inter- and transdisciplinary university: A systems approach to education and innovation. Political Science, 1, 203–428.

    Google Scholar 

  • Jantsch, E. (1972). Towards interdisciplinarity and transdisciplinarity in education and innovation. In Centre for Educational Research and Innovation (CERI) interdisciplinarity: Problems of teaching and research in universities (pp. 97–121). CERI.

    Google Scholar 

  • Jentsch, A. (2009). Disturbance management – Application of ecological knowledge to habitat restoration. In W. Barthlott, K. E. Linsenmair, & S. Porembski (Eds.), Biodiversity: Structure and function II (pp. 144–160). Encyclopedia of Life Support Systems (EOLSS).

    Google Scholar 

  • Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69(3), 373–386.

    Google Scholar 

  • Jouquet, P., Dauber, J., Lagerlöf, J., Lavelle, P., & Lepage, M. (2006). Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops. Applied Soil Ecology, 32(2), 153–164.

    Google Scholar 

  • Joyce, C. B., & Wade, P. M. (Eds.). (1998). European wet grasslands: Biodiversity, management and restoration (p. 358). Wiley.

    Google Scholar 

  • Jungk, R., & Müllert, N. R. (1996). Future workshops: How to create desirable futures (2nd ed.). Institute for Social Inventions.

    Google Scholar 

  • Kapalanga, T. S., & Arnalds, Ó. (2008). A review of land degradation methods. Land Restoration Training Programme, Final Project. https://www.grocentre.is/static/gro/publication/374/document/taimi.pdf. Retrieved 13.01.2021.

  • Kettle, C., & Koh, L. P. (Eds.). (2014). Global forest fragmentation (p. 192). CABI.

    Google Scholar 

  • Kiehl, K., Kirmer, A., Shaw, N., & Tischew, S. (Eds.). (2014). Guidelines for native seed production and grassland restoration (p. 315). Cambridge Scholars Publishing.

    Google Scholar 

  • Klapper, H. (2003). Technologies for lake restoration. Journal of Limnology, 62(Suppl. 1), 73–90.

    Google Scholar 

  • Kolbert, E. (2015). The sixth extinction: An unnatural history (p. 336). Picador.

    Google Scholar 

  • Kovář, P., Vojtíšek, P., & Zentsová, I. (2013). Ants as ecosystem engineers in natural restoration of human made habitats. Journal of Landscape Ecology, 6(1), 18–31.

    Google Scholar 

  • Kowarik, I. (2010). Biologische Invasionen. Neophyten und Neozoen in Mitteleuropa (2nd ed.). Ulmer.

    Google Scholar 

  • Kratochwil, A., & Schwabe, A. (2001). Ökologie der Lebensgemeinschaften: Biozönologie. Ulmer.

    Google Scholar 

  • Krauss, J., Bommarco, R., Guardiola, M., Heikkinen, R. K., Helm, A., Kuussaari, M., Lindborg, R., Öckinger, E., Pärtel, M., Pino, J., Pöyry, J., Raatikainen, K. M., Sang, A., Stefanescu, C., Teder, T., Zobel, M., & Steffan-Dewenter, I. (2010). Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecology Letters, 13(5), 597–605.

    PubMed  PubMed Central  Google Scholar 

  • Kricher, J. (2011). Tropical ecology (p. 704). Princeton University Press.

    Google Scholar 

  • Krueger, T., Maynard, C., Carr, G., Bruns, A., Mueller, E. N., & Lane, S. (2016). A transdisciplinary account of water research. WIREs Water, 3, 369–389.

    PubMed  PubMed Central  Google Scholar 

  • Kruess, A., & Tscharntke, T. (1994). Habitat fragmentation, species loss, and biological control. Science, 264(5165), 1581–1584.

    CAS  PubMed  Google Scholar 

  • Kumeh, E. M. (2017). Options for community participation in landscape restoration through plantation development. Tropenbos. https://www.tropenbos.org. Retrieved 03.06.2021.

  • Law, A., Gaywood, M. J., Jones, K. C., Ramsay, P., & Willby, N. J. (2017). Using ecosystem engineers as tools in habitat restoration and rewilding: Beaver and wetlands. Science of the Total Environment, 605–606, 1021–1030.

    PubMed  Google Scholar 

  • Lee, H. C., Ting, K. H., Chang, Y., Lee, M. T., & Liu, W. H. (2016). Trans-disciplinary education for sustainable marine and coastal management: A case study in Taiwan. Sustainability, 8(11), 1096.

    Google Scholar 

  • Lepš, J. (2001). Species-pool hypothesis: Limits to its testing. Folia Geobotanica, 36, 45–52.

    Google Scholar 

  • Leuschner, C., & Ellenberg, H. (2017a). Ecology of Central European forests. Vegetation ecology of Central Europe (Vol. 1). Springer.

    Google Scholar 

  • Leuschner, C., & Ellenberg, H. (2017b). Ecology of Central European non-forest vegetation: Coastal to alpine, natural to man-made habitats. Vegetation ecology of Central Europe (Vol. 2). Springer.

    Google Scholar 

  • Li, J., Xu, Q., Gaillard-Lemdahl, M. J., Seppä, H., Li, Y., Hun, L., & Li, M. (2013). Modern pollen and land-use relationships in the Taihang Mountains, Hebei province, northern China: A first step towards quantitative reconstruction of human-induced land cover changes. Vegetation History and Archaeobotany, 22, 463–477.

    CAS  Google Scholar 

  • Lin, P.-S. S. (2019). Building resilience through ecosystem restoration and community participation: Post-disaster recovery in coastal island communities. International Journal of Disaster Risk Reduction, 39, 101249.

    Google Scholar 

  • Lindenmayer, D. B., & Fischer, J. (2006). Habitat fragmentation and landscape change: An ecological and conservation synthesis (p. 352). Island Press.

    Google Scholar 

  • Linnemann, B. (2010). Rekonstruktion eines neolithischen Getreideackers mit Untersuchungen zur typischen Unkrautflora. Abhandlungen aus dem Westfälischen Museum für Naturkunde, 72(1), 1–152.

    Google Scholar 

  • Loreau, M. (2010). From populations to ecosystems: Theoretical foundations for a new ecological synthesis. Princeton University Press.

    Google Scholar 

  • Lüderitz, V., Jüpner, R., Müller, S., & Feld, C. K. (2004). Renaturalization of streams and rivers – The special importance of integrated ecological methods in measurement of success. An example from Saxony-Anhalt (Germany). Limnologica, 34(3), 249–263.

    Google Scholar 

  • Lund, H. G. (2009). What is a degraded forest? Forest Information Services.

    Google Scholar 

  • Luscombe, G., & Scott, R. (2010). Creative conservation. In I. Douglas, D. Goode, M. Houck, & D. Maddox (Eds.), The Routledge handbook of urban ecology (pp. 221–232). Routledge.

    Google Scholar 

  • MacMahon, J. A., & Holl, K. D. (2001). Ecological restoration: A key to conservation biology’s future. In M. E. Soulé & G. H. Orians (Eds.), Conservation biology: Research priorities for the next decade (pp. 245–269). Island Press.

    Google Scholar 

  • Maldonado, A. D., Ramos-López, D., & Aguilera, P. A. (2019). The role of cultural landscapes in the delivery of provisioning ecosystem services in protected areas. Sustainability, 11, 2471.

    Google Scholar 

  • Mariani, M., Connor, S. E., Fletcher, M.-S., Theuerkauf, M., Kuneš, P., Jacobsen, G., Saunders, K. M., & Zawadzki, A. (2017). How old is the Tasmanian cultural landscape? A test of landscape openness using quantitative land-cover reconstructions. Journal of Biogeography, 44, 2410–2420.

    Google Scholar 

  • Marignani, M., Rocchini, D., Torri, D., Chiarucci, A., & Maccherini, S. (2008). Planning restoration in a cultural landscape in Italy using an object-based approach and historical analysis. Landscape and Urban Planning, 84, 28–37.

    Google Scholar 

  • Marris, E. (2011). Rambunctious garden: Saving nature in a post wild world. Bloomsbury Publ.

    Google Scholar 

  • Maschinski, J. (2006). Implications of population dynamic and metapopulation theory for restoration. In D. A. Falk, M. A. Palmer, & J. B. Zedler (Eds.), Foundations of restoration ecology (pp. 59–87). Island Press.

    Google Scholar 

  • McDonald, T., Gann, G. D., Jonson, J., & Dixon, K. W. (2016). International standards for the practice of ecological restoration – Including principles and key concepts. Society for Ecological Restoration (SER). http://c.ymcdn.com/sites/www.ser.org/resource/resmgr/docs/SER_International_Standards.pdf. Retrieved 02.07.2017.

  • Mendes-Oliveira, A. C., Peres, C. A., Maués, P. C. R. A., Oliveira, G. L., Mineiro, I. G. B., de Maria, S. L. S., & Lima, R. C. S. (2017). Oil palm monoculture induces drastic erosion of an Amazonian forest mammal fauna. PLoS One, 12(11), e0187650.

    PubMed  PubMed Central  Google Scholar 

  • Mercuri, A. M., Florenzano, A., Massamba N’siala, I., Olmi, L., Roubis, D., & Sogliani, F. (2010). Pollen from archaeological layers and cultural landscape reconstruction: Case studies from the Bradano valley (Basilicata, southern Italy). Plant Biosystems, 144(4), 888–901.

    Google Scholar 

  • Messager, E., Belmecheri, S., von Grafenstein, U., Nomade, S., Ollivier, V., Voinchet, P., Puaud, S., Courtin-Nomade, A., Guillou, H., Mgeladze, A., Dumoulin, J. P., Mazuy, A., & Lordkipanidze, D. (2013). Late quaternary record of the vegetation and catchment-related changes from Lake Paravani (Javakheti, South Caucasus). Quaternary Science Reviews, 77, 125–140.

    Google Scholar 

  • Messager, E., Nomade, S., Wilhelm, B., Joannin, S., Scao, V., von Grafenstein, U., Martkoplishvili, I., Ollivier, V., Mgeladze, A., Dumoulin, J.-P., Mazuy, A., Belmecheri, S., & Lordkipanidze, D. (2017). New pollen evidence from Nariani (Georgia) for delayed postglacial forest expansion in the South Caucasus. Quaternary Research, 87(1), 121–132.

    CAS  Google Scholar 

  • Metzger, J. (2003). Effects of slash-and-burn fallow periods on landscape structure. Environmental Conservation, 30, 325–333.

    Google Scholar 

  • Miler, O., Ostendorp, W., Brauns, M., Porst, G., & Pusch, M. T. (2015). Ecological assessment of morphological shore degradation at whole lake level aided by aerial photo analysis. Fundamental and Applied Limnology, 186(4), 353–369.

    Google Scholar 

  • Modica, G., Merlino, A., Solano, F., & Mercurio, R. (2015). An index for the assessment of degraded Mediterranean forest ecosystems. Forest Systems, 24(3), e037.

    Google Scholar 

  • Mohamed, A., Härdtle, W., Jirjahn, B., Niemeyer, T., & von Oheimb, G. (2007). Effects of prescribed burning on plant available nutrients in dry heathland ecosystems. Plant Ecology, 189, 279–289.

    Google Scholar 

  • Moreira, F., Queiroz, A. I., & Aronson, J. (2006). Restoration principles applied to cultural landscapes. Journal for Nature Conservation, 14, 217–224.

    Google Scholar 

  • Morin, P. J. (2011). Community ecology (2nd ed., p. 424). Wiley.

    Google Scholar 

  • Müller, I. B., Buhk, C., Alt, M., Entling, M. H., & Schirmel, J. (2016). Plant functional shifts in Central European grassland under traditional flood irrigation. Applied Vegetation Science, 19, 122–131.

    Google Scholar 

  • Müller-Schneider, P. (1986). Verbreitungsbiologie der Blütenpflanzen Graubündens (Veröff Geobot Inst Eidgenöss Tech Hochsch, Stift Rübel Zür 85) (pp. 1–263). Stift Rübel.

    Google Scholar 

  • Mullu, D. (2016). A review on the effect of habitat fragmentation on ecosystem. Journal of Natural Sciences Research, 6(15), 1–15.

    Google Scholar 

  • Murphy, B. P., Andersen, A. N., & Parr, C. L. (2016). The underestimated biodiversity of tropical grassy biomes. Philosophical transactions of the Royal Society, B371, 20150319.

    Google Scholar 

  • Nandamudi, S. K., & Sen, A. (2020). Landscape restoration and community involvement in biodiversity conservation. In R. Sharma, A. Watve, & A. Pandey (Eds.), Corporate biodiversity management for sustainable growth (Environment & policy 59) (pp. 127–150). Springer.

    Google Scholar 

  • Nared, J., & Bole, D. (Eds.). (2020). Participatory research and planning in practice. Springer.

    Google Scholar 

  • Neuenkamp, L., Prober, S. M., Price, J. N., Zobel, M., & Standish, R. J. (2019). Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time. Fungal Ecology, 40, 140–149.

    Google Scholar 

  • Nichols, P. W. B., Morris, E. C., & Keith, D. A. (2010). Testing a facilitation model for ecosystem restoration: Does tree planting restore ground layer species in a grassy woodland? Austral Ecology, 35, 888–897.

    Google Scholar 

  • Niederberger, M., & Wassermann, S. (Eds.). (2015). Methoden der Experten- und Stakeholdereinbindung in der sozialwissenschaftlichen Forschung. Springer.

    Google Scholar 

  • Noreika, N., Pärtel, M., & Öckinger, E. (2020). Community completeness as a measure of restoration success: Multiple-study comparisons across ecosystems and ecological groups. Biodiversity and Conservation, 29, 3807–3827.

    Google Scholar 

  • Odum, E. P., & Barrett, G. W. (2004). Fundamentals of ecology (5th ed.). Brooks Cole Publishing.

    Google Scholar 

  • OECD. (2020). Innovative citizen participation and new democratic institutions. Catching the deliberative wave. Organisation for Economic Co-operation and Development. https://www.oecd.org/gov/open-government/innovative-citizen-participation-new-democratic-institutions-catching-the-deliberative-wave-highlights.pdf. Retrieved 15.01.2021.

  • ÖGUT. (2017). Partizipation & nachhaltige Entwicklung in Europa (Österreichische Gesellschaft für Umwelt und Technik und Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Ed.). http://www.partizipation.at/aktuell.html. Retrieved 18.12.2017.

  • Ohgushi, T., Wurst, S., & Johnson, S. N. (2018). Aboveground-belowground community ecology. Ecological Studies, 234, 1–370.

    Google Scholar 

  • Pål Axel, Olsson Anja Madelen, Ödman (2014) Natural establishment of specialist plant species after topsoil removal and soil perturbation in degraded calcareous sandy grassland. Restoration Ecology 22(1) 49–56 https://doi.org/10.1111/rec.12024.

  • Oomes, M. J. M. (1990). Changes in dry matter and nutrient yields during the restoration of species-rich grasslands. Journal of Vegetation Science, 1, 333–338.

    Google Scholar 

  • Osborne, P. L. (2012). Tropical ecosystems and ecological concepts (2nd ed., p. 536). Cambridge University Press.

    Google Scholar 

  • Ott, K. (2009). Zur ethischen Dimension von Renaturierungsökologie und Ökosystemrenaturierung. In S. Zerbe & G. Wiegleb (Eds.), Renaturierung von Ökosystemen in Mitteleuropa (pp. 423–439). Springer Spektrum.

    Google Scholar 

  • Page, H., & Goldammer, J. G. (2004). Prescribed burning in landscape management and nature conservation: The first long-term pilot project in Germany in the Kaiserstuhl viticulture area, Baden-Württemberg Germany. International Forest Fire News, 30, 49–58.

    Google Scholar 

  • Pahl-Wostl, C. (2006). The importance of social learning in restoring the multifunctionality of rivers and floodplains. Ecology and Society, 11(1), 10.

    Google Scholar 

  • Palmer, C., Gothe, J., Mitchell, C., Riedy, C., Sweetapple, K., McLaughlin, S., Hose, G., Lowe, M., Goodall, H., Green, T., Sharma, D., Fane, S., Brew, K., & Jones, P. (2007). Finding integration pathways: Develo** a transdisciplinary (TD) approach for the Upper Nepean catchment. In A. L. Wilson, R. L. Dehaan, R. J. Watts, K. J. Page, K. H. Bowmer, & A. Curtis (Eds.), Proceedings of the 5th Australian stream management conference. Australian rivers: Making a difference. Charles Sturt University.

    Google Scholar 

  • Patten, B. C., & Odum, E. P. (1981). The cybernetic nature of ecosystems. The American Naturalist, 118, 886–895.

    Google Scholar 

  • Peh, K. S. H., Balmford, A., Field, R. H., Lamb, A., Birch, J. C., Bradbury, R. B., Brown, C., Butchart, S. H. M., Lester, M., Morrison, R., Sedgwick, I., Soans, C., Stattersfield, A. J., Stroh, P. A., Swetnam, R. D., Thomas, D. H. L., Walpole, M., Warrington, S., & Hughes, F. M. R. (2014). Benefits and costs of ecological restoration: Rapid assessment of changing ecosystem service values at a U.K. wetland. Ecology and Evolution, 4(20), 3875–3886.

    PubMed  PubMed Central  Google Scholar 

  • Piaget, I. (1972). The epistemology of interdisciplinary relationships. In L. Apostel, G. Berger, A. Briggs, & G. Michaud (Eds.), Interdisciplinarity: Problems of teaching and research in universities (pp. S127–S139). Organization for Economic Cooperation and Development (OECD).

    Google Scholar 

  • Piekarska-Stachowiak, A., Szary, M., Ziemer, B., Besenyei, L., & Woźniak, G. (2014). An application of the plant functional group concept to restoration practice on coal mine spoil heaps. Ecological Research, 29, 843–853.

    Google Scholar 

  • Poschlod, P., Kleyer, M., Jackel, A.-K., Dannemann, A., & Tackenberg, O. (2003). BIOPOP – A database of plant traits and internet application for nature conservation. Folia Geobotanica, 38, 263–271.

    Google Scholar 

  • Postma-Blaauw, M. B., de Goede, R. G. M., Bloem, J., Faber, J. H., & Brussaard, L. (2012). Agricultural intensification and de-intensification differentially affect taxonomic diversity of predatory mites, earthworms, enchytraeids, nematodes and bacteria. Applied Soil Ecology, 57, 39–49.

    Google Scholar 

  • Prach, K., & Walker, L. R. (2020). Comparative plant succession among terrestrial biomes of the world (p. 413). Cambridge University Press.

    Google Scholar 

  • Prede, M., & Oja, T. (2001). Sanitation of lakes in Otepää for landscape restoration. WIT Transactions on Ecology and the Environment, 46(8), 605–612.

    Google Scholar 

  • Pyšek, P., Prach, K., Joyce, C. B., Mucina, L., Rapson, G. L., & Müllerová, J. (Eds.). (2001). The role of vegetation succession in ecosystem restoration. Applied Vegetation Science, 4, 1–114.

    Google Scholar 

  • Rapport, D. J., Fyfe, W. S., Costanza, R., Spiegel, J., Yassi, A., Böhm, G. M., Patil, G. P., Lannigan, R., Anjema, C. M., Whitford, W. G., & Horwitz, P. (2001). Ecosystem health: Definitions, assessment, and case studies. Ecology. Bd II. (pp. 1–40). EOLSS.

    Google Scholar 

  • Rasran, L., Vogt, K., & Jensen, K. (2007). Effects of topsoil removal, seed transfer with plant material and moderate grazing on restoration of riparian fen grasslands. Applied Vegetation Science, 10, 451–460.

    Google Scholar 

  • Ravera, O. (Ed.). (1989). Ecological assessment of environmental degradation, pollution and recovery. Elsevier.

    Google Scholar 

  • Reed, M. S., Graves, A., Dandy, N., Posthumus, H., Hubacek, K., Morris, J., Prell, C., Quinn, C. H., & Stringer, L. C. (2009). Who’s in and why? A typology of stakeholder analysis methods for natural resource management. Journal of Environmental Management, 90, 1933–1949.

    PubMed  Google Scholar 

  • Ren, H., Yang, L., & Liu, N. (2008). Nurse plant theory and its application in ecological restoration in lower subtropics of China. Progress in Natural Science, 18(2), 137–142.

    Google Scholar 

  • Ribeiro Filho, A. A., Adams, C., & Murrieta, R. S. S. (2013). The impacts of shifting cultivation on tropical forest soil: A review. Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas, 8(3), 693–727.

    Google Scholar 

  • Ribeiro da Silva, F., Montoya, D., Furtado, R., Memmott, J., Pizo, M. A., & Rodrigues, R. R. (2015). The restoration of tropical seed dispersal networks. Restoration Ecology, 23(6), 852–860.

    Google Scholar 

  • Robertson, M., Nichols, P., Horwitz, P., Bradly, K., & Mackintosh, D. (2000). Environmental narratives and the need for multiple perspectives to restore degraded landscape in Australia. Ecosystem Health, 6, 119–133.

    CAS  Google Scholar 

  • Roscher, C., Schumacher, J., Gubsch, M., Lipowsky, A., Weigelt, A., Buchmann, N., Schmid, B., & Schulze, E. D. (2012). Using plant functional traits to explain diversity-productivity relationships. PLoS One, 7(5), e36760.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rubarenzya, M., Staes, J., Willems, P., Berlamont, J., & Meire, P. (2008). Modelling in support of an interdisciplinary approach to ecosystem restitution. Annals of Warsaw University of Life Sciences – SGGW. Land Reclam, 38, 139–150.

    Google Scholar 

  • Rubin, M., Brande, A., & Zerbe, S. (2008). Ursprüngliche, anthropogene und potentielle Vegetation bei Ferch (Gde. Schwielowsee, Lkr. Potsdam-Mittelmark). Naturschutz und Landschaftspflege in Brandenburg, 17(1), 14–22.

    Google Scholar 

  • Sara G., Baer John W., Groninger (2004) Herbicide and tillage effects on volunteer vegetation composition and diversity during reforestation. Restoration Ecology 12(2) 258–267 https://doi.org/10.1111/j.1061-2971.2004.00346.x.

  • Sauer, A., Luz, F., Suda, M., & Weiland, U. (2005). Steigerung der Akzeptanz von FFH-Gebieten. BfN Skripten, 144, 1–161.

    Google Scholar 

  • Schmid, B., & Stöcklin, J. (1991). Populationsbiologie der Pflanzen. Springer.

    Google Scholar 

  • Schmitzberger, I., Wrbka, T., Steurer, B., Aschenbrenner, G., Peterseil, J., & Zechmeister, H. G. (2005). How farming styles influence biodiversity maintenance in Austrian agricultural landscapes. Agriculture, Ecosystems and Environment, 108, 274–290.

    Google Scholar 

  • Schölmerich, U. (1998). Jahre forstliche Rekultivierung. Erfahrungen und Folgerungen. In W. Pflug (Ed.), Braunkohlentagebau und Rekultivierung: Landschaftsökologie – Folgenutzung – Naturschutz (Vol. 70, pp. 142–156). Springer.

    Google Scholar 

  • Scholz, R. W. (2000). Mutual learning as a basic principle of transdisciplinarity’. In R. W. Scholz, R. Häberli, A. Bill, & M. Welti (Eds.), Transdisciplinarity: Joint problem – Solving among science, technology and society. Workbook II: Mutual Learning Sessions (pp. 13–17). Haffmans.

    Google Scholar 

  • Scholz, R. W. (2011). Environmental literacy in science and society: From knowledge to decisions. Cambridge University Press.

    Google Scholar 

  • Scholz, R. W., & Stauffacher, M. (2009). From a science for society to science with society. Psychologische Rundschau, 60(4), 242–280.

    Google Scholar 

  • Scholz, R. W., & Steiner, G. (2015a). The real type and ideal type of transdisciplinary processes: Part I – theoretical foundations. Sustainability Science, 10(4), 527–544.

    Google Scholar 

  • Scholz, R. W., & Steiner, G. (2015b). The real type and ideal type of transdisciplinary processes: Part II – what constraints and obstacles do we meet in practice? Sustainability Science, 10(4), 653–671.

    Google Scholar 

  • Scholz, R. W., & Steiner, G. (2015c). Transdisciplinarity at the crossroads. Sustainability Science, 10(4), 521–526.

    Google Scholar 

  • Schulze, E. D., Beck, E., & Müller-Hohenstein, K. (2005). Plant ecology. Springer.

    Google Scholar 

  • Seibold, S., Brandl, R., Buse, J., Hothorn, T., Schmidl, J., Thorn, S., & Müller, J. (2015). Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conservation Biology, 29(2), 382–390.

    PubMed  Google Scholar 

  • Seidl, R., Brand, F. S., Stauffacher, M., Krütli, P., Bao Le, Q., Spörri, A., Meylan, G., Moser, C., Berger González, M., & Scholz, R. W. (2013). Science with society in the anthropocene. Ambio, 42(1), 5–12.

    PubMed  PubMed Central  Google Scholar 

  • Selman, P. (2004). Community participation in the planning and management of cultural landscapes. Journal of Environmental Planning and Management, 47(3), 365–392.

    Google Scholar 

  • SER. (2004). The SER international primer on ecological restoration. Society for Ecological Restoration International (SER). . http//:www.ser.org. Retrieved 28.05.2017.

    Google Scholar 

  • Shen, J., & Chou, R.-J. (2021). Cultural landscape development integrated with rural revitalization: A case study of Songkou Ancient Town. Land, 10, 406.

    Google Scholar 

  • Simberloff, D. (2015). Non-native invasive species and novel ecosystems. F1000Prime Rep, 7, 47.

    PubMed  PubMed Central  Google Scholar 

  • Simberloff, D., & Vitule, J. R. S. (2014). A call for an end to calls for the end of invasion biology. Oikos, 123, 408–413.

    Google Scholar 

  • Simula, M. (2009). Towards defining forest degradation: Comparative analysis of existing definitions. Discussion paper. Food and Agriculture Organization. http://www.ardot.fi/Documents_2/Degradationdefintions.pdf. Retrieved 26.12.2017.

  • Stefanes, M., Ochoa Quintero, J. M., de Oliveira Roque, F., Moreira Sugai, L. S., Reverberi Tambosi, L., Lourival, R., & Laurance, S. (2016). Incorporating resilience and cost in ecological restoration strategies at landscape scale. Ecology and Society, 21(4), 54.

    Google Scholar 

  • Sterling, E. J., Betley, E., Sigouin, A., Gomez, A., Toomey, A., Cullman, G., Malone, C., Pekor, A., Arengo, F., Blair, M., Filardi, C., Landrigan, K., & Porzecanski, A. L. (2017). Assessing the evidence for stakeholder engagement in biodiversity conservation. Biological Conservation, 209, 159–171.

    Google Scholar 

  • Stock, P., & Burton, R. J. F. (2011). Defining terms for integrated (multi-inter-trans-disciplinary) sustainability research. Sustainability, 3, 1090–1113.

    Google Scholar 

  • Succow, M., & Joosten, H. (2001). Landschaftsökologische Moorkunde (2nd ed.). Schweizerbart.

    Google Scholar 

  • Sundermann, A., Stoll, S., & Haase, P. (2011). River restoration success depends on the species pool of the immediate surroundings. Ecological Applications, 21(6), 1962–1971.

    PubMed  Google Scholar 

  • Svensson, J. R., Lindegarth, M., Jonsson, P. R., & Pavia, H. (2012). Disturbance – diversity models: What do they really predict and how are they tested? Proceedings of the Royal Society B, 279(1736), 2163–2170.

    PubMed  PubMed Central  Google Scholar 

  • Swart, J. A. A., Windt, H. J., & van der, Keulartz J. (2001). Valuation of nature in conservation and restoration. Restoration Ecology, 9(2), 230–238.

    Google Scholar 

  • Symes, N., & Day, J. C. (2003). A practical guide to the restoration and management of lowland heathland (p. 307). Royal Society for the Protection of Birds.

    Google Scholar 

  • Tan, S., & Brown, J. (2005). The World Café in Singapore: Creating a learning culture through dialogue. The Journal of Applied Behavioral Science, 41(1), 83–90.

    Google Scholar 

  • Thompson, K., Bakker, J., & Bekker, R. (1997). The soil seed banks of North West Europe: Methodology, density and longevity. Cambridge University Press.

    Google Scholar 

  • Thulin, C.-G., & Röcklinsberg, H. (2020). Ethical considerations for wildlife reintroductions and rewilding. Frontiers in Veterinary Science, 7, 163.

    PubMed  PubMed Central  Google Scholar 

  • Turnau, K., & Haselwandter, K. (2002). Arbuscular mycorrhizal fungi, an essential component of soil microflora in ecosystem restoration. In S. Gianinazzi, H. Schüepp, J. M. Barea, & K. Haselwandter (Eds.), Mycorrhizal technology in agriculture (pp. 137–149). Birkhäuser.

    Google Scholar 

  • Urbanska, K. M., Webb, N. R., & Edwards, P. J. (2000). Restoration ecology and sustainable development. Cambridge University Press.

    Google Scholar 

  • Valkó, O., Török, P., Deák, B., & Tóthmérész, B. (2014). Prospects and limitations of prescribed burning as a management tool in European grasslands. Basic and Applied Ecology, 15(1), 26–33.

    Google Scholar 

  • Valliere, J. M., Wong, W. S., Nevill, P. G., Zhong, H., & Dixon, K. W. (2020). Preparing for the worst: Utilizing stress-tolerant soil microbial communities to aid ecological restoration in the Anthropocene. Ecological Solutions and Evidence, 1, e12027.

    Google Scholar 

  • van der Pijl L 1982 Principles of dispersal in higher plants.

    Google Scholar 

  • van Diggelen, R., Grootjans, A. B. P., & Harris, J. A. (2001). Ecological restoration: State of the art or state of the science? Restoration Ecology, 9, 115–118.

    Google Scholar 

  • Van Wieren, G. (2008). Ecological restoration as public spiritual practice. Worldviews, 12, 237–254.

    Google Scholar 

  • Van Wieren, G. (2013). Restored to earth: Christianity, environmental ethics, and ecological restoration. Georgetown University Press.

    Google Scholar 

  • Varma, A., Prasad, R., & Tuteja, N. (Eds.). (2017). Mycorrhiza – nutrient uptake, biocontrol, ecorestoration (p. 533). Springer International Publication.

    Google Scholar 

  • Veen, P., Jefferson, R., de Smidt, J., & van der Straaten, J. (Eds.). (2009). Grasslands in Europe of high nature value (p. 320). KNNV Publication.

    Google Scholar 

  • Vidal, C. Y., Naves, R. P., Viani, R. A. G., & Rodrigues, R. R. (2020). Assessment of the nursery species pool for restoring landscapes in southeastern Brazil. Restoration Ecology, 28, 427–434.

    Google Scholar 

  • Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116, 882–892.

    Google Scholar 

  • Virto, I., Imaz, M. J., Fernández-Ugalde, O., Gartzia-Bengoetxea, N., Enrique, A., & Bescansa, P. (2015). Soil degradation and soil quality in Western Europe: Current situation and future perspectives. Sustainability, 7, 313–365.

    Google Scholar 

  • von Gillhaussen, P., Rascher, U., Jablonowski, N. D., Plückers, C., Beierkuhnlein, C., & Temperton, V. M. (2014). Priority effects of time of arrival of plant functional groups override sowing interval or density effects: A grassland experiment. PLoS One, 9(1), e86906.

    Google Scholar 

  • Walker, L. R., Walker, J., & Hobbs, R. J. (Eds.). (2007). Linking restoration and ecological succession (p. 188). Springer.

    Google Scholar 

  • Walter, A. I., Helgenberger, S., Wiek, A., & Scholz, R. W. (2007). Measuring societal effects of transdisciplinary research projects: Design and application of an evaluation method. Evaluation and Program Planning, 30, 325–338.

    PubMed  Google Scholar 

  • Weidlich, E. W. A., Flórido, F. G., Sorrini, T. B., & Brancalion, P. H. S. (2020). Controlling invasive plant species in ecological restoration: A global review. Journal of Applied Ecology, 57, 1806–1817.

    Google Scholar 

  • Wheeler, B. D., & Shaw, S. C. (1991). Above-ground crop mass and species richness of the principal types of herbaceous rich-fen vegetation of lowland England and Wales. Journal of Ecology, 79, 285–301.

    Google Scholar 

  • White, P. S., & Jentsch, A. (2004). Disturbance, succession and community assembly in terrestrial plant communities. In V. M. Temperton, R. J. Hobbs, T. Nuttle, & S. Halle (Eds.), Assembly rules and restoration ecology: Bridging the gap between theory and practice (pp. 342–366). Island Press.

    Google Scholar 

  • White, P. S., & Pickett, S. T. (1985). The ecology of natural disturbance and patch dynamics. Academic Press.

    Google Scholar 

  • Whitford, W. G., & Duval, B. D. (2019). Ecology of desert systems (2nd ed., p. 473). Academic Press.

    Google Scholar 

  • Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon, 12, 213–251.

    Google Scholar 

  • WHO (2017). Climate change and human health: Land degradation and desertification. World Health Organization (WHO). http://www.who.int/globalchange/ecosystems/desert/en/. Retrieved 01.09.2017.

  • Wichtmann, W., Schröder, C., & Joosten, H. (Eds.). (2016). Paludiculture – productive use of wet peatlands. Climate protection – biodiversity – regional economic benefits. Schweizerbart Science Publishers.

    Google Scholar 

  • Wiegleb, G., Schulz, F., & Bröring, U. (2013). Naturschutzfachliche Bewertung im Rahmen der Leitbildmethode. Physica.

    Google Scholar 

  • Wilkinson, A. G. (1999a). Poplars and willows for soil erosion control in New Zealand. Biomass and Bioenergy, 16, 263–274.

    Google Scholar 

  • Wilkinson, D. M. (1999). The disturbing history of intermediate disturbance. Oikos, 84(1), 145–147.

    Google Scholar 

  • Willems, J. H. (1980). Observations on north-west European limestone grassland communities: An experimental approach to the study of species diversity and above-ground biomass in chalk grassland. P K Ned Akad C Biol, 83, 279–306.

    Google Scholar 

  • Wilson, E. O. (Ed.). (1988). Biodiversity. National Academies Press.

    Google Scholar 

  • Wlodarczyk, A. M., & Dias Mascarenhas, J. M. R. (2016). Nature in cities. Renaturalization of riverbanks in urban areas. Open Engish, 6, 681–690.

    Google Scholar 

  • Wohlgemuth, T., Bürgi, M., Scheidegger, C., & Schütz, M. (2002). Dominance reduction of species through disturbance – a proposed management principle for Central European forests. Forest Ecology and Management, 166, 1–15.

    Google Scholar 

  • Wood, C. M., Whitmore, S. A., Gutiérrez, R. J., Sawyer, S. C., Keane, J. J., & Peery, M. Z. (2018). Using metapopulation models to assess species conservation-ecosystem restoration trade-offs. Biological Conservation, 224, 248–257.

    Google Scholar 

  • Wortley, L., Hero, J.-M., & Howes, M. (2013). Evaluating ecological restoration success: A review of the literature. Restoration Ecology, 21, 537–543.

    Google Scholar 

  • Yang, C., & Han, F. (2020). A digital information system for cultural landscapes: The case of Slender West Lake scenic area in Yangzhou, China. Built Heritage, 4, 3.

    Google Scholar 

  • Zahradník, M., Dlouhá, J., & Burandt, S. (2014). Actor analysis as a tool for exploring the decision-making processes in environmental governance. In A. Barton & J. Dlouhá (Eds.), Exploring regional sustainable development issues (Using the case study approach in higher education) (pp. 34–78). Grosvenor House Publ..

    Google Scholar 

  • Zerbe, S. (2019a). Renaturierung von Ökosystemen im Spannungsfeld von Mensch und Umwelt. Ein interdisziplinäres Fachbuch.

    Google Scholar 

  • Zerbe, S. (2019b). Agroforstsysteme in Mitteleuropa als ein Beitrag zur nachhaltigen Landnutzung. Mit dem Beispiel der Lärchenwiesen und Lärchenweiden in Südtirol. Naturschutz und Landschaftsplanung, 51(9), 428–433.

    Google Scholar 

  • Zerbe, S., Maurer, U., Schmitz, S., & Sukopp, H. (2003). Biodiversity in Berlin and its potential for nature conservation. Landscape and Urban Planning, 62, 139–148.

    Google Scholar 

  • Zerbe, S., Bergmann, A., Schermer, M., & Wellstein, C. (2019a). Wiedereinführung der Waldweide in den Alpen? Perspektiven aus der Sicht von Akteuren. Naturschutz und Landschaftsplanung, 51(06), 276–282.

    Google Scholar 

  • Zerbe, S., Pieretti, L., Elsen, S., Asanidze, Z., Asanidze, I., & Mumladze, L. (2019b). Forest restoration potential in a deforested mountain area – an ecosociological approach towards sustainability. Forest Science. https://doi.org/10.1093/forsci/fxz081

  • Zerbe, S., & Ott, K. (2021). Pesticides, soil removal, and fire for the restoration of ecosystems? A call for ethical standards inecosystem restoration. Forest Ecology, Landscape Research and Nature Conservation, 20, 59–73.

    Google Scholar 

  • Zerbe, S., Wiegleb, G., & Rosenthal, G. (2009). Einführung in die Renaturierungsökologie. In S. Zerbe & G. Wiegleb (Eds.), Renaturierung von Ökosystemen in Mitteleuropa (pp. 1–21). Springer Spektrum.

    Google Scholar 

  • Zobel, M. (1997). The relative role of species pools in determining plant species richness: An alternative explanation of species coexistence? Trends in Ecology & Evolution, 12, 266–269.

    CAS  Google Scholar 

  • Zobel, M., van der Maarel, E., & Dupré, C. (1998). Species pool: The concept, its determinants and its significance for community restoration. Applied Vegetation Science, 1(1), 55–66.

    Google Scholar 

  • Zwick, P. (1992). Stream habitat fragmentation – a threat to biodiversity. Biodiversity and Conservation, 1(2), 80–97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zerbe, S. (2022). A Brief Introduction to Restoration Ecology and Ecosystem Restoration. In: Restoration of Multifunctional Cultural Landscapes. Landscape Series, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-95572-4_8

Download citation

Publish with us

Policies and ethics

Navigation