AI and The Cardiologist-When Mind, Heart and Machine Unite

  • Conference paper
  • First Online:
Advanced Computing (IACC 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1528))

Included in the following conference series:

  • 661 Accesses

Abstract

Artificial Intelligence (AI) and Deep Learning have made much headway in the consumer and advertising sector, not only affecting how and what people purchase these days, but also affecting behaviour and cultural attitudes. It is poised to influence nearly every aspect of our being, and the field of cardiology is not an exception. This paper aims to brief the clinician on the advances in AI and machine learning in the field of Cardiology, it’s applications, while also recognising the potential for future development in these two mammoth fields. With the advent of big data, new opportunities are emerging to build AI tools, with better accuracy, that will directly aid not only the clinician but also allow nations to provide better healthcare to its citizens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wilkins, E., Wilson, L., Wickramasinghe, K., Bhatnagar, P., Leal, J., Luengo-Fernandez, R., et al.: European Cardiovascular Disease Statistics 2017. European Heart Network, Brussels (2017)

    Google Scholar 

  2. Ritchie, H., Roser, M.: Our world in data. In: Causes of Death (2018). Retrieved from: https://ourworldindata.org/causes-of-death

  3. https://towardsdatascience.com/understanding-the-difference-between-ai-ml-and-dl-cceb63252a6c

  4. Drukker, L., Noble, J.A., Papageorghiou, A.T.: Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology. Ultrasound Obst. Gynecol. 56(4), 498–505 (2020). https://doi.org/10.1002/uog.22122

    Article  Google Scholar 

  5. Oğuz, K., Pekin, M.A.: Predictability of fog visibility with artificial neural network for Esenboga Airport. Avrupa Bilim ve Teknoloji Dergisi 542–551 (2019). https://dergipark.org.tr/en/pub/ejosat/issue/43603/452598

  6. Jensen, P.B., Jensen, L.J., Brunak, S.: Mining electronic health records: towards better research applications and clinical care. Nat. Rev. Genet. 13(6), 395–405 (2012)

    Article  Google Scholar 

  7. Sara, J.D., Toya, T., Taher, R., Lerman, A., Gersh, B., Anavekar, N.S.: Asymptomatic left ventricle systolic dysfunction. Eur. Cardiol. Rev. 15, e13 (2020). https://doi.org/10.15420/ecr.2019.14

    Article  Google Scholar 

  8. Attia, Z.I., Kapa, S., Lopez-Jimenez, F., et al.: Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat. Med. 25(1), 70–74 (2019)

    Article  Google Scholar 

  9. Viskin, S., et al.: Inaccurate electrocardiographic interpretation of long QT: the majority of physicians cannot recognize a long QT when they see one. Heart Rhythm 2(6), 569–574 (2005). https://doi.org/10.1016/j.hrthm.2005.02.011. PMID: 15922261

    Article  Google Scholar 

  10. Ronzhina, M., Potocnak, T., Janousek, O., Kolarova, J., Novakova, M., Provaznik, I.: Spectral and higher-order statistical analysis of the ECG: application to the study of ischemia in rabbit isolated hearts. Comput. Cardiol. 2012, 645–648 (2012)

    Google Scholar 

  11. Artificial Intelligence-Enabled Assessment of the Heart Rate Corrected QT Interval Using a Mobile Electrocardiogram Device

    Google Scholar 

  12. Giudicessi, J.R., et al.: Artificial intelligence-enabled assessment of the heart rate corrected QT interval using a mobile electrocardiogram device. Circulation 143(13), 1274–1286 (2021). https://doi.org/10.1161/CIRCULATIONAHA.120.050231

    Article  Google Scholar 

  13. Lyon, A., Mincholé, A., Martínez, J.P., Laguna, P., Rodriguez, B.: Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances. J. R. Soc. Interface 15, 138 (2018)

    Article  Google Scholar 

  14. Narang, A., Bae, R., Hong, H., et al.: Utility of a deep-learning algorithm to guide novices to acquire echocardiograms for limited diagnostic use. JAMA Cardiol. 6(6), 624–632 (2021). https://doi.org/10.1001/jamacardio.2021.0185

    Article  Google Scholar 

  15. Knackstedt, C., et al.: Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain. J. Am. Coll. Cardiol. 66(13), 1456–1466 (2015). https://doi.org/10.1016/j.jacc.2015.07.052

    Article  Google Scholar 

  16. Madani, A., Arnaout, R., Mofrad, M., Arnaout, R.: Fast and accurate view classification of echocardiograms using deep learning. npj Digit. Med. 1, 6 (2018). https://doi.org/10.1038/s41746-017-0013-1

    Article  Google Scholar 

  17. Raghavendra, U., et al.: Automated technique for coronary artery disease characterization and classification using DD-DTDWT in ultrasound images. Biomed. Signal Process. Control 40, 324–334 (2018). https://doi.org/10.1016/j.bspc.2017.09.030

    Article  Google Scholar 

  18. Narula, S., Shameer, K., Omar, A.M.S., Dudley, J.T., Sengupta, P.P.: Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J. Am. Coll. Cardiol. 68(21), 2287–2295 (2016). https://doi.org/10.1016/j.jacc.2016.08.062

    Article  Google Scholar 

  19. Moghaddasi, H., Nourian, S.: Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos. Comput. Biol. Med. 73, 47–55 (2016). https://doi.org/10.1016/j.compbiomed.2016.03.026

    Article  Google Scholar 

  20. Gregg Belous, A.B., Rowlands, D.: Segmentation of the left ventricle from ultrasound using random forest with active shape model. In: Artificial Intelligence, Modelling and Simulation (AIMS). IEEE, Kota Kinabalu, Malaysia (2013). https://doi.org/10.1109/AIMS.2013.58

  21. Performance of new automated transthoracic three-dimensional echocardiographic software for left ventricular volumes and function assessment in routine clinical practice: Comparison with 3 Tesla cardiac magnetic resonance

    Google Scholar 

  22. Levy, F., et al.: Arch. Cardiovasc. Dis. 110(11), 580–589 (2017)

    Article  Google Scholar 

  23. Domingos, J.S., Stebbing, R.V., Paul Leeson, J., Noble, A.: Structured random forests for myocardium delineation in 3D echocardiography. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 215–222. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10581-9_27

    Chapter  Google Scholar 

  24. Stebbing, R.V., Namburete, A.I.L., Upton, R., Paul Leeson, J., Noble, A.: Data-driven shape parameterization for segmentation of the right ventricle from 3D+t echocardiography. Med. Image Anal. 21(1), 29–39 (2015). https://doi.org/10.1016/j.media.2014.12.002

    Article  Google Scholar 

  25. Transthoracic 3D Echocardiographic Left Heart Chamber Quantification Using an Automated Adaptive Analytics Algorithm

    Google Scholar 

  26. Tsang, W., et al.: JACC Cardiovasc. Imaging 9(7), 769–782 (2016)

    Article  Google Scholar 

  27. Three-Dimensional Echocardiographic Assessment of Left Heart Chamber Size and Function with Fully Automated Quantification Software in Patients with Atrial Fibrillation

    Google Scholar 

  28. Otani, K., Nakazono, A., Salgo, I.S., Lang, R.M.: J. Am. Soc. Echocardiogr. 29(10), 955–965 (2016)

    Article  Google Scholar 

  29. Factors affecting sensitivity and specificity of diagnostic testing: dobutamine stress echocardiography

    Google Scholar 

  30. Geleijnse, M.L., et al.

    Google Scholar 

  31. Omar, H.A., Domingos, J.S., Patra, A., Upton, R., Leeson, P., Noble, J.A.: Quantification of cardiac bull’s-eye map based on principal strain analysis for myocardial wall motion assessment in stress echocardiography. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (2018)

    Google Scholar 

  32. Mei, X., et al.: Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. Nat. Med. 26(8), 1224–1228 (2020). https://doi.org/10.1038/s41591-020-0931-3

    Article  Google Scholar 

  33. Poplin, R., Varadarajan, A.V., Blumer, K., et al.: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2, 158–164 (2018). https://doi.org/10.1038/s41551-018-0195-0

    Article  Google Scholar 

  34. Al’Aaref, S.J., et al.: Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur. Heart J. 40(24), 1975–1986 (2019)

    Article  Google Scholar 

  35. Cikes, M., Sanchez-Martinez, S., Claggett, B., et al.: Machine learning-based phenogrou** in heart failure to identify responders to cardiac resynchronization therapy. Eur. J. Heart Fail. 21(1), 74–85 (2019)

    Article  Google Scholar 

  36. Horiuchi, Y., Tanimoto, S., Latif, A.H.M.M., et al.: Identifying novel phenotypes of acute heart failure using cluster analysis of clinical variables. Int. J. Cardiol. 262, 57–63 (2018)

    Article  Google Scholar 

  37. https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN180044.pdf

  38. Torres-Soto, J., Ashley, E.A.: Multi-task deep learning for cardiac rhythm detection in wearable devices. npj Digit. Med. 3, 116 (2020). https://doi.org/10.1038/s41746-020-00320-4

    Article  Google Scholar 

  39. Dörr, M., et al.: The WATCH AF trial: SmartWATCHes for detection of atrial fibrillation. JACC Clin. Electrophysiol. 5, 199–208 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

D’Costa, A., Zatale, A. (2022). AI and The Cardiologist-When Mind, Heart and Machine Unite. In: Garg, D., Jagannathan, S., Gupta, A., Garg, L., Gupta, S. (eds) Advanced Computing. IACC 2021. Communications in Computer and Information Science, vol 1528. Springer, Cham. https://doi.org/10.1007/978-3-030-95502-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95502-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95501-4

  • Online ISBN: 978-3-030-95502-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation