Introspective Robot Perception Using Smoothed Predictions from Bayesian Neural Networks

  • Conference paper
  • First Online:
Robotics Research (ISRR 2019)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 20))

Included in the following conference series:

Abstract

This work focuses on improving uncertainty estimation in the field of object classification from RGB images and demonstrates its benefits in two robotic applications. We employ a Bayesian Neural Network (BNN), and evaluate two practical inference techniques to obtain better uncertainty estimates, namely Concrete Dropout (CDP) and Kronecker-factored Laplace Approximation (LAP). We show a performance increase using more reliable uncertainty estimates as unary potentials within a Conditional Random Field (CRF), which is able to incorporate contextual information as well. Furthermore, the obtained uncertainties are exploited to achieve domain adaptation in a semi-supervised manner, which requires less manual efforts in annotating data. We evaluate our approach on two public benchmark datasets that are relevant for robot perception tasks.

J. Feng and M. Durner—Equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1183–1192. JMLR. org (2017)

    Google Scholar 

  2. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural network. In: International Conference on Machine Learning, pp. 1613–1622 (2015)

    Google Scholar 

  3. Osband, I., Blundell, C., Pritzel, A., Van Roy, B.: Deep exploration via bootstrapped DQN. In: Advances in Neural Information Processing Systems, pp. 4026–4034 (2016)

    Google Scholar 

  4. Gal, Y., McAllister, R., Rasmussen, C.E.: Improving PILCO with Bayesian neural network dynamics models. In: Data-Efficient Machine Learning workshop, ICML (2016)

    Google Scholar 

  5. Grimmett, H., Triebel, R., Paul, R., Posner, I.: Introspective classification for robot perception. Int. J. Robot. Res. (IJRR) 35(7), 743–762 (2016)

    Article  Google Scholar 

  6. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings (2017). https://openreview.net/forum?id=Hkg4TI9xl

  7. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at scale. ar**v preprint ar**v:1611.01236 (2016)

  8. Balan, A.K., Rathod, V., Murphy, K.P., Welling, M.: Bayesian dark knowledge. In: Advances in Neural Information Processing Systems, pp. 3438–3446 (2015)

    Google Scholar 

  9. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  10. Louizos, C., Welling, M.: Structured and efficient variational deep learning with matrix gaussian posteriors. In: International Conference on Machine Learning, pp. 1708–1716 (2016)

    Google Scholar 

  11. Gal, Y., Hron, J., Kendall, A.: Concrete dropout. In: Advances in Neural Information Processing Systems, pp. 3581–3590 (2017)

    Google Scholar 

  12. Sun, S., Chen, C., Carin, L.: Learning structured weight uncertainty in Bayesian neural networks. In: Artificial Intelligence and Statistics, pp. 1283–1292 (2017)

    Google Scholar 

  13. Louizos, C., Welling, M.: Multiplicative normalizing flows for variational Bayesian neural networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2218–2227. JMLR. org (2017)

    Google Scholar 

  14. Ritter, H., Botev, A., Barber, D.: A scalable Laplace approximation for neural networks. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=Skdvd2xAZ

  15. Wang, K., Vicol, P., Lucas, J., Gu, L., Grosse, R.B., Zemel, R.S.: Adversarial distillation of Bayesian neural network posteriors. In: Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018, pp. 5177–5186 (2018)

    Google Scholar 

  16. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, pp. 6402–6413 (2017)

    Google Scholar 

  17. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIR Press, Cambridge (2009)

    MATH  Google Scholar 

  18. Tompson, J.J., Jain, A., LeCun, Y., Bregler, C.: Joint training of a convolutional network and a graphical model for human pose estimation. In: Advances in Neural Information Processing Systems, pp. 1799–1807 (2014)

    Google Scholar 

  19. Liu, F., Shen, C., Lin, G.: Deep convolutional neural fields for depth estimation from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5162–5170 (2015)

    Google Scholar 

  20. Wang, H., Yeung, D.Y.: Towards Bayesian deep learning: a survey. ar**v preprint ar**v:1604.01662 (2016)

  21. Johnson, M., Duvenaud, D.K., Wiltschko, A., Adams, R.P., Datta, S.R.: Composing graphical models with neural networks for structured representations and fast inference. In: Advances in Neural Information Processing Systems, pp. 2946–2954 (2016)

    Google Scholar 

  22. Kolesnikov, A., Zhai, X., Beyer, L.: Revisiting self-supervised visual representation learning. ar**v preprint ar**v:1901.09005 (2019)

  23. Tang, K., Ramanathan, V., Fei-Fei, L., Koller, D.: Shifting weights: adapting object detectors from image to video. In: Advances in Neural Information Processing Systems, pp. 638–646 (2012)

    Google Scholar 

  24. Zou, Y., Yu, Z., Vijaya Kumar, B., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 289–305 (2018)

    Google Scholar 

  25. Xu, J., **ao, L., Lopez, A.M.: Self-supervised domain adaptation for computer vision tasks. ar**v preprint ar**v:1907.10915 (2019)

  26. Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for deep image classification. IEEE Trans. Circuits Syst. Video Technol. 27(12), 2591–2600 (2016)

    Article  Google Scholar 

  27. Lin, L., Wang, K., Meng, D., Zuo, W., Zhang, L.: Active self-paced learning for cost-effective and progressive face identification. IEEE Trans. Pattern Anal. Mach. Intell. 40(1), 7–19 (2017)

    Article  Google Scholar 

  28. MacKay, D.J.: A practical Bayesian framework for backpropagation networks. Neural Comput. 4(3), 448–472 (1992)

    Article  Google Scholar 

  29. Neal, R.M.: Bayesian Learning For Neural Networks. LNS, vol. 118. Springer Science & Business Media, New York (2012). https://doi.org/10.1007/978-1-4612-0745-0

  30. Graves, A.: Practical variational inference for neural networks. In: Advances in Neural Information Processing Systems, pp. 2348–2356 (2011)

    Google Scholar 

  31. Liu, F., Lin, G., Shen, C.: CRF learning with CNN features for image segmentation. Pattern Recogn. 48(10), 2983–2992 (2015)

    Article  Google Scholar 

  32. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Gal, Y.: Uncertainty in deep learning. Ph.D. thesis, University of Cambridge (2016)

    Google Scholar 

  34. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous relaxation of discrete random variables. ar**v preprint ar**v:1611.00712 (2016)

  35. Martens, J., Grosse, R.: Optimizing neural networks with Kronecker-factored approximate curvature. In: International Conference on Machine Learning, pp. 2408–2417 (2015)

    Google Scholar 

  36. Gupta, A., Nagar, D.: Matrix Variate Distributions, vol. 104. CRC Press, Boca Raton (1999)

    MATH  Google Scholar 

  37. Ruiz-Sarmiento, J.R., Galindo, C., González-Jiménez, J.: UPGMpp: a software library for contextual object recognition. In: 3rd Workshop on Recognition and Action for Scene Understanding (REACTS) (2015)

    Google Scholar 

  38. Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view RGB-D object dataset. In: 2011 IEEE International Conference on Robotics and Automation, pp. 1817–1824. IEEE (2011)

    Google Scholar 

  39. Hodaň, T., Haluza, P., Obdržálek, Š., Matas, J., Lourakis, M., Zabulis, X.: T-LESS: an RGB-D dataset for 6D pose estimation of texture-less objects. In: IEEE Winter Conference on Applications of Computer Vision (WACV) (2017)

    Google Scholar 

  40. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1321–1330. JMLR. org (2017)

    Google Scholar 

  41. Gneiting, T., Balabdaoui, F., Raftery, A.E.: Probabilistic forecasts, calibration and sharpness. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 69(2), 243–268 (2007)

    Article  MathSciNet  Google Scholar 

  42. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Big Data Interdisciplinary Project of DLR e.V. under the project number 2464047. Jianxiang Feng is supported by the Munich School for Data Science (MUDS) and Rudolph Triebel is a member of MUDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxiang Feng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ppt 824 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, J., Durner, M., Márton, ZC., Bálint-Benczédi, F., Triebel, R. (2022). Introspective Robot Perception Using Smoothed Predictions from Bayesian Neural Networks. In: Asfour, T., Yoshida, E., Park, J., Christensen, H., Khatib, O. (eds) Robotics Research. ISRR 2019. Springer Proceedings in Advanced Robotics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-95459-8_40

Download citation

Publish with us

Policies and ethics

Navigation