A Review on Distribution and Removal Techniques for Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) in Water and Wastewater

  • Chapter
  • First Online:
Legacy and Emerging Contaminants in Water and Wastewater

Abstract

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are refractory anthropogenic contaminants which are of high concern for environmental regulators because they are widespread, persistent, and bioaccumulative. In this chapter, we are presenting an overview of research papers on global distribution of PFASs in water and wastewater, and the associated remediation techniques. A brief discussion of novel remediation technologies developed for the elimination of PFASs from the environment, and regulatory actions on PFASs of global concern is provided. PFASs were widely used as surfactants in many industrial applications such as in paints, firefighting foams, cookware, etc., due to their unique oleophobic and hydrophobic property. A large group of 4700 PFASs are in use on the global market. Some of the studies revealed that effluents of wastewater treatment plants are considered as significant point sources of PFASs. It is difficult to eliminate them from the environment because of their stable C-F bond. Conventional treatment technologies are found ineffective for PFASs. Chitosan with amino groups is recommended as a good adsorbent with adsorption capacity of 5.5 mmol/g for PFOS. USEPA classified PFASs as a potential human carcinogen. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are considered as persistent organic pollutants by the Stockholm Convention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahrens L, Plassmann M, **e Z, Ebinghaus R (2009) Determination of polyfluoroalkyl compounds in water and suspended particulate matter in the river Elbe and North Sea, Germany. Front Environ Sci Eng China 3(2):152–170

    Article  CAS  Google Scholar 

  • Ahrens L, Taniyasu S, Yeung LW, Yamashita N, Lam PK, Ebinghaus R (2010) Distribution of polyfluoroalkyl compounds in water, suspended particulate matter and sediment from Tokyo Bay, Japan. Chemosphere 79(3):266–272

    Article  CAS  Google Scholar 

  • Appleman TD, Dickenson ER, Bellona C, Higgins CP (2013) Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids. J Hazard Mater 260:740–746

    Article  CAS  Google Scholar 

  • Arvaniti OS, Stasinakis AS (2015) Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment. Sci Total Environ 524:81–92

    Article  CAS  Google Scholar 

  • Begley T, White K, Honigfort P, Twaroski M, Neches R, Walker R (2005) Perfluorochemicals: potential sources of and migration from food packaging. Food Addit Contam 22(10):1023–1031

    Article  CAS  Google Scholar 

  • Benotti MJ, Stanford BD, Wert EC, Snyder SA (2009) Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water. Water Res 43(6):1513–1522

    Article  CAS  Google Scholar 

  • Buck RC et al (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 7(4):513–541

    Article  CAS  Google Scholar 

  • Chaparro-Ortega A et al (2018) Endocrine disruptor effect of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on porcine ovarian cell steroidogenesis. Toxicol In Vitro 46:86–93

    Article  CAS  Google Scholar 

  • Chen J, Zhang P (2006) Photodegradation of perfluorooctanoic acid in water under irradiation of 254 nm and 185 nm light by use of persulfate. Water Sci Technol 54(11–12):317–325

    Article  CAS  Google Scholar 

  • Chen X, **a X, Wang X, Qiao J, Chen H (2011) A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes. Chemosphere 83(10):1313–1319

    Article  CAS  Google Scholar 

  • Chen H et al (2016) Occurrence, spatial and temporal distributions of perfluoroalkyl substances in wastewater, seawater and sediment from Bohai Sea, China. Environ Pollut 219:389–398

    Article  CAS  Google Scholar 

  • Chen H et al (2017) Occurrence and seasonal variations of per-and polyfluoroalkyl substances (PFASs) including fluorinated alternatives in rivers, drain outlets and the receiving Bohai Sea of China. Environ Pollut 231:1223–1231

    Article  CAS  Google Scholar 

  • Clara M, Scharf S, Weiss S, Gans O, Scheffknecht C (2008) Emissions of perfluorinated alkylated substances (PFAS) from point sources—identification of relevant branches. Water Sci Technol 58(1):59–66

    Article  CAS  Google Scholar 

  • Cooke M (2017) Technical fact sheet–Perfluorooctane sulfonate (PFOS) and Perfluorooctanoic acid (PFOA). Emergency, O o L a, ed, United States Environmental Protection Agency

    Google Scholar 

  • Cordner A, Vanessa Y, Schaider LA, Rudel RA, Richter L, Brown P (2019) Guideline levels for PFOA and PFOS in drinking water: the role of scientific uncertainty, risk assessment decisions, and social factors. J Expo Sci Environ Epidemiol 29(2):157–171

    Article  CAS  Google Scholar 

  • Corsolini S et al (2012) Perfluorinated compounds in surficial sediments of the Ganges River and adjacent Sundarban mangrove wetland, India. Mar Pollut Bull 64(12):2829–2833

    Article  CAS  Google Scholar 

  • Dauchy X (2019) Per-and polyfluoroalkyl substances (PFASs) in drinking water: current state of the science. Curr Opin Environ Sci Health 7:8–12

    Article  Google Scholar 

  • de Voogt P, Sáez M (2006) Analytical chemistry of perfluoroalkylated substances. TrAC Trends Anal Chem 25(4):326–342

    Article  CAS  Google Scholar 

  • Du Z et al (2014) Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—a review. J Hazard Mater 274:443–454

    Article  CAS  Google Scholar 

  • Fang X et al (2018) Distribution and dry deposition of alternative and legacy perfluoroalkyl and polyfluoroalkyl substances in the air above the Bohai and Yellow Seas, China. Atmos Environ 192:128–135

    Article  CAS  Google Scholar 

  • Gao Y et al (2014) Occurrence and fate of perfluoroalkyl substances in marine sediments from the Chinese Bohai Sea, Yellow Sea, and East China Sea. Environ Pollut 194:60–68

    Article  CAS  Google Scholar 

  • Glüge J et al (2020) An overview of the uses of per-and polyfluoroalkyl substances (PFAS). Environ Sci: Processes Impacts 22(12):2345–2373

    Google Scholar 

  • Gole VL, Sierra-Alvarez R, Peng H, Giesy JP, Deymier P, Keswani M (2018) Sono-chemical treatment of per-and poly-fluoroalkyl compounds in aqueous film-forming foams by use of a large-scale multi-transducer dual-frequency based acoustic reactor. Ultrason Sonochem 45:213–222

    Article  CAS  Google Scholar 

  • Hawley E, Pancras T, Burdick J (2012) Remediation technologies for perfluorinated compounds (PFCs), including perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). Pollut Eng 44(5):20–23

    Google Scholar 

  • Hepburn E, Madden C, Szabo D, Coggan TL, Clarke B, Currell M (2019) Contamination of groundwater with per-and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct. Environ Pollut 248:101–113

    Article  CAS  Google Scholar 

  • HIRTC (2015-2016) Hairline international research and treatment center (HIRTC), effect of Perfluorooctanoic acid in the blood and its correlation to hair loss and health. PFOA 1 final 15 ver (hairline.in). In. Retrieved from PFOA 1 final 15 ver (hairline.in)

    Google Scholar 

  • Hori H, Nagaoka Y, Murayama M, Kutsuna S (2008) Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water. Environ Sci Technol 42(19):7438–7443

    Article  CAS  Google Scholar 

  • Huang Q (2013) Remediation of Perfluoroalkyl contaminated aquifers using an in-situ two-layer barrier: laboratory batch and column study. GEORGIA UNIV ATHENS

    Google Scholar 

  • IPEN (2019a) IPEN and toxic link. India PFAS Situation Report. . In. Retrieved from https://ipen.org/conferences/cop9 last Accessed February 9, 2021

  • IPEN (2019b) PFAS pollution across the Middle East and Asia,. In. Retrieved from https://ipen.org/sites/default/files/documents/pfas_pollution_across_the_middle_east_and_asia.pd last Accessed 9 Feb 2021

  • ITRC (2020) PFAS technical and regulatory guidance documents and factsheets PFAS-1. Washington D.C.: Interstate Technology & Regulatory Council PFAS Team. In. Retrieved from https://pfas-1.itrcweb.org/

  • Ji B, Kang P, Wei T, Zhao Y (2020) Challenges of aqueous per-and polyfluoroalkyl substances (PFASs) and their foreseeable removal strategies. Chemosphere 250:126316

    Article  CAS  Google Scholar 

  • Kibambe M, Momba M, Daso A, Coetzee M (2020) Evaluation of the efficiency of selected wastewater treatment processes in removing selected perfluoroalkyl substances (PFASs). J Environ Manag 255:109945

    Article  CAS  Google Scholar 

  • Kim H-Y, Seok H-W, Kwon H-O, Choi S-D, Seok K-S, Oh JE (2016) A national discharge load of perfluoroalkyl acids derived from industrial wastewater treatment plants in Korea. Sci Total Environ 563:530–537

    Article  CAS  Google Scholar 

  • Kissa E (2001) Fluorinated surfactants and repellents, vol 97. CRC Press

    Google Scholar 

  • Krafft MP, Riess JG (2015) Per- and polyfluorinated substances (PFASs): environmental challenges. Curr Opin Colloid Interface Sci 20(3):192–212

    Article  CAS  Google Scholar 

  • Kwon H-O, Kim H-Y, Park Y-M, Seok K-S, Oh J-E, Choi S-D (2017) Updated national emission of perfluoroalkyl substances (PFASs) from wastewater treatment plants in South Korea. Environ Pollut 220:298–306

    Article  CAS  Google Scholar 

  • Lam N-H et al (2014) Perfluorinated alkyl substances in water, sediment, plankton and fish from Korean rivers and lakes: a nationwide survey. Sci Total Environ 491:154–162

    Article  CAS  Google Scholar 

  • Lapworth D et al (2018) Deep urban groundwater vulnerability in India revealed through the use of emerging organic contaminants and residence time tracers. Environ Pollut 240:938–949

    Article  CAS  Google Scholar 

  • Lee Y-C, Lo S-L, Kuo J, Lin Y-L (2012) Persulfate oxidation of perfluorooctanoic acid under the temperatures of 20–40 C. Chem Eng J 198:27–32

    Article  CAS  Google Scholar 

  • Lin AY-C, Panchangam SC, Ciou P-S (2010) High levels of perfluorochemicals in Taiwan’s wastewater treatment plants and downstream rivers pose great risk to local aquatic ecosystems. Chemosphere 80(10):1167–1174

    Article  CAS  Google Scholar 

  • Lin AY-C, Panchangam SC, Chang C-Y, Hong PA, Hsueh H-F (2012) Removal of perfluorooctanoic acid and perfluorooctane sulfonate via ozonation under alkaline condition. J Hazard Mater 243:272–277

    Article  CAS  Google Scholar 

  • Loganathan BG, Sajwan KS, Sinclair E, Kumar KS, Kannan K (2007) Perfluoroalkyl sulfonates and perfluorocarboxylates in two wastewater treatment facilities in Kentucky and Georgia. Water Res 41(20):4611–4620

    Article  CAS  Google Scholar 

  • Mak YL et al (2009) Perfluorinated compounds in tap water from China and several other countries. Environ Sci Technol 43(13):4824–4829

    Article  CAS  Google Scholar 

  • METI (2019) Ninth meeting of the conference of the parties to the Stockholm convention (COP9) held. Joint press release with the Ministry of the Environment. Ministry of Economy, Trade & Industry (METI), Japan. In. Retrieved from https://www.meti.go.jp/english/press/2019/0514_001.html last Accessed 9 Feb 2021

  • Miralles-Cuevas S, Darowna D, Wanag A, Mozia S, Malato S, Oller I (2017) Comparison of UV/H2O2, UV/S2O82−, solar/Fe (II)/H2O2 and solar/Fe (II)/S2O82− at pilot plant scale for the elimination of micro-contaminants in natural water: an economic assessment. Chem Eng J 310:514–524

    Article  CAS  Google Scholar 

  • Mitchell SM, Ahmad M, Teel AL, Watts RJ (2014) Degradation of perfluorooctanoic acid by reactive species generated through catalyzed H2O2 propagation reactions. Environ Sci Technol Lett 1(1):117–121

    Article  CAS  Google Scholar 

  • Möller A et al (2010) Distribution and sources of polyfluoroalkyl substances (PFAS) in the River Rhine watershed. Environ Pollut 158(10):3243–3250

    Article  CAS  Google Scholar 

  • Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH (2006) Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol 40(1):32–44

    Article  CAS  Google Scholar 

  • Rahman MF, Peldszus S, Anderson WB (2014) Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review. Water Res 50:318–340

    Article  CAS  Google Scholar 

  • Rosenblum L, Wendelken S (2019) Method 533: determination of per-and polyfluoroalkyl substances in drinking water by isotope dilution anion exchange solid phase extraction and liquid chromatography/tandem mass spectrometry. US Environmental Protection Agency Washington DC

    Google Scholar 

  • Saito N, Sasaki K, Nakatome K, Harada K, Yoshinaga T, Koizumi A (2003) Perfluorooctane sulfonate concentrations in surface water in Japan. Arch Environ Contam Toxicol 45(2):149–158

    Article  CAS  Google Scholar 

  • Schröder HF, Meesters RJ (2005) Stability of fluorinated surfactants in advanced oxidation processes—a follow up of degradation products using flow injection–mass spectrometry, liquid chromatography–mass spectrometry and liquid chromatography–multiple stage mass spectrometry. J Chromatogr A 1082(1):110–119

    Article  CAS  Google Scholar 

  • Sharma BM et al (2016) Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River basin: emissions and implications for human exposure. Environ Pollut 208:704–713

    Article  CAS  Google Scholar 

  • Shi Y, Pan Y, Wang J, Cai Y (2012) Distribution of perfluorinated compounds in water, sediment, biota and floating plants in Baiyangdian Lake, China. J Environ Monit 14(2):636–642

    Article  CAS  Google Scholar 

  • Shi Y et al (2015) Characterizing direct emissions of perfluoroalkyl substances from ongoing fluoropolymer production sources: a spatial trend study of **aoqing River, China. Environ Pollut 206:104–112

    Article  CAS  Google Scholar 

  • Shoemaker J, Grimmett P, Boutin B (2008) Determination of selected perfluorinated alkyl acids in drinking water by solid phase extraction and liquid chromatography/tandem mass spectrometry (LC/MS/MS). US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • So M et al (2007) Perfluorinated compounds in the Pearl river and Yangtze river of China. Chemosphere 68(11):2085–2095

    Article  CAS  Google Scholar 

  • Sörengård M, Östblom E, Köhler S, Ahrens L (2020) Adsorption behavior of per- and polyfluoralkyl substances (PFASs) to 44 inorganic and organic sorbents and use of dyes as proxies for PFAS sorption. J Environ Chem Eng 8(3):103744

    Article  CAS  Google Scholar 

  • Sunantha G, Vasudevan N (2016) Assessment of perfluorooctanoic acid and perfluorooctane sulfonate in surface water-Tamil Nadu, India. Mar Pollut Bull 109(1):612–618

    Article  CAS  Google Scholar 

  • Tabtong W, Boontanon SK, Boontanon N (2015) Fate and risk assessment of perfluoroalkyl substances (PFASs) in water treatment plants and tap water in Bangkok, Thailand. Procedia Environ Sci 28:750–757

    Article  CAS  Google Scholar 

  • Tang CY, Fu QS, Robertson A, Criddle CS, Leckie JO (2006) Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. Environ Sci Technol 40(23):7343–7349

    Article  CAS  Google Scholar 

  • Tang CY, Fu QS, Criddle CS, Leckie JO (2007) Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environ Sci Technol 41(6):2008–2014

    Article  CAS  Google Scholar 

  • Tao L, Ma J, Kunisue T, Libelo EL, Tanabe S, Kannan K (2008) Perfluorinated compounds in human breast milk from several Asian countries, and in infant formula and dairy milk from the United States. Environ Sci Technol 42(22):8597–8602

    Article  CAS  Google Scholar 

  • Trier X, Granby K, Christensen JH (2011) Tools to discover anionic and nonionic polyfluorinated alkyl surfactants by liquid chromatography electrospray ionisation mass spectrometry. J Chromatogr A 1218(40):7094–7104

    Article  CAS  Google Scholar 

  • Tsai Y-T, Yu-Chen Lin A, Weng Y-H, Li K-C (2010) Treatment of perfluorinated chemicals by electro-microfiltration. Environ Sci Technol 44(20):7914–7920

    Article  CAS  Google Scholar 

  • USEPA (2019) EPA’s Per- and Polyfluoroalkyl substances (PFAS) action plan. In. Retrieved from https://www.epa.gov/sites/production/files/2019-02/documents/pfas_action_plan_021319_508compliant_1.pdf last Accessed 9 Feb 2021

  • Vecitis C, Park H, Cheng J, Mader B, Hoffmann M (2008) Enhancement of perfluorooctanoate and perfluorooctanesulfonate activity at acoustic cavitation bubble interfaces. J Phys Chem C 112(43):16850–16857

    Article  CAS  Google Scholar 

  • Wang B et al (2017) Perfluoroalkyl substances and endometriosis-related infertility in Chinese women. Environ Int 102:207–212

    Article  CAS  Google Scholar 

  • Wang X, Chen M, Gong P, Wang C (2019) Perfluorinated alkyl substances in snow as an atmospheric tracer for tracking the interactions between westerly winds and the Indian monsoon over western China. Environ Int 124:294–301

    Article  CAS  Google Scholar 

  • Wang Q, Ruan Y, Lin H, Lam PK (2020a) Review on perfluoroalkyl and polyfluoroalkyl substances (PFASs) in the Chinese atmospheric environment. Science of the Total Environment:139804

    Google Scholar 

  • Wang S et al (2020b) Occurrence and partitioning behavior of per-and polyfluoroalkyl substances (PFASs) in water and sediment from the Jiulong Estuary-**amen Bay, China. Chemosphere 238:124578

    Article  CAS  Google Scholar 

  • Watanabe MX et al (2010) Dioxin-like and perfluorinated compounds in pigs in an Indian open waste dum** site: toxicokinetics and effects on hepatic cytochrome P450 and blood plasma hormones. Environ Toxicol Chem 29(7):1551–1560

    Article  CAS  Google Scholar 

  • Winchell LJ, et al. (2021) Analyses of per-and Polyfluoroalkyl substances (PFAS) through the urban water cycle: toward achieving an integrated analytical workflow across aqueous, solid, and gaseous matrices in water and wastewater treatment. Science of The Total Environment:145257

    Google Scholar 

  • Yates BJ, Darlington R, Zboril R, Sharma VK (2014) High-valent iron-based oxidants to treat perfluorooctanesulfonate and perfluorooctanoic acid in water. Environ Chem Lett 12(3):413–417

    Article  CAS  Google Scholar 

  • Yeung LW et al (2009) A survey of perfluorinated compounds in surface water and biota including dolphins from the Ganges River and in other waterbodies in India. Chemosphere 76(1):55–62

    Article  CAS  Google Scholar 

  • Yong ZY, Kim KY, Oh J-E (2021) The occurrence and distributions of per-and polyfluoroalkyl substances (PFAS) in groundwater after a PFAS leakage incident in 2018. Environ Pollut 268:115395

    Article  CAS  Google Scholar 

  • Zhang Q, Deng S, Yu G, Huang J (2011) Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: sorption kinetics and uptake mechanism. Bioresour Technol 102(3):2265–2271

    Article  CAS  Google Scholar 

  • Zhang Y et al (2012) Determination and partitioning behavior of perfluoroalkyl carboxylic acids and perfluorooctanesulfonate in water and sediment from Dianchi Lake, China. Chemosphere 88(11):1292–1299

    Article  CAS  Google Scholar 

  • Ziaee F, Ziaee M, Taseidifar M (2021) Synthesis and application of a green surfactant for the treatment of water containing PFAS/hazardous metal ions. J Hazard Mater 407:124800

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the India-Norway cooperation project on capacity building for reducing plastic and chemical pollution in India (INOPOL) Project No. 180355, Reference No. IND-19/0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paromita Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

K, P., Roy-Basu, A., Bharat, G.K., Chakraborty, P. (2022). A Review on Distribution and Removal Techniques for Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) in Water and Wastewater. In: Chakraborty, P., Snow, D. (eds) Legacy and Emerging Contaminants in Water and Wastewater. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-95443-7_17

Download citation

Publish with us

Policies and ethics

Navigation