Turbulent-Viscosity Models

  • Chapter
  • First Online:
Turbulence

Part of the book series: Mechanical Engineering Series ((MES))

  • 632 Accesses

Abstract

This chapter introduces the turbulent-viscosity models. In this modelling paradigm the turbulence mechanisms of fluid transport are modelled as a viscous process with the assumption of a turbulent viscosity. The gradient-diffusion hypothesis is at the centre of such modelling paradigm. A series of turbulent-viscosity models are introduced, involving the algebraic models, the Spalart–Allmaras model, the turbulence kinetic energy models, the k − 𝜖 model, and the k − ω model. Finally, turbulent-viscosity models are introduced for the atmospheric boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sonntag R E, Van Wylen G J (1966) Fundamentals of statistical thermodynamics. Wiley, New York

    Google Scholar 

  2. von Kármán T (1931) Mechanical similitude and turbulence. National Advisory Committee for Aeronautics, Washington DC

    Google Scholar 

  3. Spalart P R, Allmaras S R (1994) A one-equation turbulence model for aerodynamic flows. Recherche Aérospatiale 1:5–21

    Google Scholar 

  4. Pope S B (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Kolmogorov A N (1942) The equations of turbulent motion in an incompressible fluid. Izvestia Acad Sci USSR Phys 6:56–58

    Google Scholar 

  6. Prandtl L (1945) Über ein neues formelsystem für die ausgebildete turbulenz. Nachr Akad Wiss Göttingen Math-Phys K1:6–19

    MathSciNet  MATH  Google Scholar 

  7. Launder B E, Spalding D B (1974) The numerical computation of turbulent flows. Comp Meth Appl Mech Eng 3:269–289

    Article  Google Scholar 

  8. Davidson P A (2005) Turbulence: an introduction for scientists and engineers. Oxford University Press, Oxford

    MATH  Google Scholar 

  9. Menter F (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32:1598–1605

    Article  Google Scholar 

  10. Stull R B (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  11. Aliabadi A A, Staebler R M, de Grandpré J et al (2016) Comparison of estimated atmospheric boundary layer mixing height in the Arctic and southern Great Plains under statically stable conditions: experimental and numerical aspects. Atmos-Ocean 54:60–74

    Article  Google Scholar 

  12. Aliabadi A A, Staebler R M, Liu M et al (2016) Characterization and parametrization of Reynolds stress and turbulent heat flux in the stably-stratified lower Arctic troposphere using aircraft measurements. Bound-Lay Meteorol 161:99–126

    Article  Google Scholar 

  13. Mellor G L, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31:1791–1806

    Article  Google Scholar 

  14. Janjić Z I (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945

    Article  Google Scholar 

  15. Janjic Z I, Gerrity Jr J P, Nickovic S (2001) An alternative approach to nonhydrostatic modeling. Mon Weather Rev 129:1164–1178

    Article  Google Scholar 

  16. Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

    Article  Google Scholar 

  17. Gibbs J A, Fedorovich E, van Eijk A M J (2011) Evaluating Weather Research and Forecasting (WRF) model predictions of turbulent flow parameters in a dry convective boundary layer. J Appl Meteorol Clim 50:2429–2444

    Article  Google Scholar 

  18. Xue L, Chu X, Rasmussen R et al (2014) The dispersion of silver iodide particles from ground-based generators over complex terrain. Part II: WRF large-eddy simulations versus observations. J Appl Meteorol Clim 53:1342–1361

    Google Scholar 

  19. Nambiar M K, Robe F, Seguin A M et al (2020) Diurnal and seasonal variation of area-fugitive methane advective flux from an open-pit mining facility in northern Canada using WRF. Atmosphere-Basel 11:1227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aliabadi, A.A. (2022). Turbulent-Viscosity Models. In: Turbulence. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-95411-6_15

Download citation

Publish with us

Policies and ethics

Navigation