Malvidin: Advances in the Resources, Biosynthesis Pathway, Bioavailability, Bioactivity, and Pharmacology

  • Living reference work entry
  • First Online:
Handbook of Dietary Flavonoids

Abstract

Malvidin is an O-methylated anthocyanidin, the 3′,5′-methoxy derivative of delphinidin responsible for the blue-red color found in flowers and fruits. Its distribution covers a wide group of sources, such as flowers (edible and nonedible), medicinal plants, and fruits. It is the main substance responsible for the color of red grapes and red wine, being Vitis vinifera one of its main sources. Its consumption is important as it has been associated with important biological effects, such as anti-inflammatory activity, powerful antioxidant activity, and anticancer activity. Against this background, this chapter presents a general overview of malvidin’s main sources, biosynthesis pathway and biotransformation properties, physicochemical properties and stability, and aspects of its absorption, metabolism, and excretion. Additionally, we summarize recent studies using in vitro and in vivo models related to its various biological properties. In conclusion, this chapter aims to provide as detailed a picture as possible of the potential of malvidin in human health, as well as its main sources, chemical characteristics, and biotransformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Balík J, Kumšta M, Rop O (2013) Comparison of anthocyanins present in grapes of Vitis vinifera L. varieties and interspecific hybrids grown in the Czech Republic. Chem Paper 67:1285–1292

    Article  Google Scholar 

  • Bastin AR, Sadeghi A, Abolhassani M, Doustimotlagh AH, Mohammadi A (2020) Malvidin prevents lipopolysaccharide-induced oxidative stress and inflammation in human peripheral blood mononuclear cells. IUBMB Life 72:1504–1514

    Article  CAS  PubMed  Google Scholar 

  • Bastin A, Sadeghi A, Nematollahi MH, Abolhassani M, Mohammadi A, Akbari H (2021) The effects of malvidin on oxidative stress parameters and inflammatory cytokines in LPS-induced human THP-1 cells. J Cell Physiol 236:2790–2799

    Article  CAS  PubMed  Google Scholar 

  • Bognar E, Sarszegi Z, Szabo A, Debreceni B, Kalman N, Tucsek Z, Sumegi B, Gallyas F Jr (2013) Antioxidant and anti-inflammatory effects in RAW264.7 macrophages of malvidin, a major red wine polyphenol. PLoS One 8:e65355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braidot E, Petrussa E, Bertolini A, Peresson C, Ermacora P, Loi N, Terdoslavich M, Passamonti S, Macrì F, Vianello A (2008) Evidence for a putative flavonoid translocator similar to mammalian bilitranslocase in grape berries (Vitis vinifera L.) during ripening. Planta 228:203–213

    Article  CAS  PubMed  Google Scholar 

  • Bridle P, Timberlake CF (1997) Anthocyanins as natural food colours – selected aspects. Food Chem 58:103–109

    Article  CAS  Google Scholar 

  • Brouillard R (1982) Chemical structure of anthocyanins. In: Markakis P (ed) Anthocyanins as food colors. Academic Press, New York, pp 1–40

    Google Scholar 

  • Bub A, Watzl B, Heeb D, Rechkemmer G, Briviba K (2001) Malvidin-3-glucoside bioavailability in humans after ingestion of red wine, dealcoholized red wine and red grape juice. Eur J Nutr 40:113–120

    Article  CAS  PubMed  Google Scholar 

  • Castañeda-Ovando A, Pacheco-Hernández MDL, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA (2009) Chemical studies of anthocyanins: a review. Food Chem 113:859–871

    Article  Google Scholar 

  • Castejón-Vega B, Giampieri F, Alvarez-Suarez JM (2020) Nutraceutical compounds targeting inflammasomes in human diseases. Int J Mol Sci 21:4829

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang Q, Wong Y-S (2004) Identification of flavonoids in Hakmeitau Beans (Vigna sinensis) by high-performance liquid chromatography−Electrospray Mass Spectrometry (LC-ESI/MS). J Agric Food Chem 52:6694–6699

    Article  CAS  PubMed  Google Scholar 

  • Cornea-Cipcigan M, Bunea A, Bouari CM, Pamfil D, Páll E, Urcan AC, Mărgăoan R (2022) Anthocyanins and carotenoids characterization in flowers and leaves of cyclamen genotypes linked with bioactivities using multivariate analysis techniques. Antioxidants 11:1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui C, Zhang S, You L, Ren J, Luo W, Chen W, Zhao M (2013) Antioxidant capacity of anthocyanins from Rhodomyrtus tomentosa (Ait.) and identification of the major anthocyanins. Food Chem 139:1–8

    Article  CAS  PubMed  Google Scholar 

  • Cui B, Hu Z, Zhang Y, Hu J, Yin W, Feng Y, **e Q, Chen G (2016) Anthocyanins and flavonols are responsible for purple color of Lablab purpureus (L.) sweet pods. Plant Physiol Biochem 103:183–190

    Article  CAS  PubMed  Google Scholar 

  • Czank C, Cassidy A, Zhang Q, Morrison DJ, Preston T, Kroon PA, Botting NP, Kay CD (2013) Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a 13C-tracer study. Am J Clin Nutr 97:995–1003

    Article  CAS  PubMed  Google Scholar 

  • Dahlawi H (2022) Effect of malvidin on induction of apoptosis and inhibition of cell proliferation on myeloid and lymphoid leukemia. Scholars J Appl Med Sci 10:150–156

    Article  Google Scholar 

  • Dai T, Shi K, Chen G, Shen Y, Pan T (2017) Malvidin attenuates pain and inflammation in rats with osteoarthritis by suppressing NF-κB signaling pathway. Inflamm Res 66:1075–1084

    Article  CAS  PubMed  Google Scholar 

  • de Rosas I, Ponce MT, Malovini E, Deis L, Cavagnaro B, Cavagnaro P (2017) Loss of anthocyanins and modification of the anthocyanin profiles in grape berries of Malbec and Bonarda grown under high temperature conditions. Plant Sci 258:137–145

    Article  PubMed  Google Scholar 

  • Decendit A, Mamani-Matsuda M, Aumont V, Waffo-Teguo P, Moynet D, Boniface K, Richard E, Krisa S, Rambert J, Mérillon JM, Mossalayi MD (2013) Malvidin-3-O-β glucoside, major grape anthocyanin, inhibits human macrophage-derived inflammatory mediators and decreases clinical scores in arthritic rats. Biochem Pharmacol 86:1461–1467

    Article  CAS  PubMed  Google Scholar 

  • Deng G-F, Xu X-R, Zhang Y, Li D, Gan R-Y, Li H-B (2013a) Phenolic compounds and bioactivities of pigmented rice. Crit Rev Food Sci Nutr 53:296–306

    Article  CAS  PubMed  Google Scholar 

  • Deng J, Chen S, Yin X, Wang K, Liu Y, Li S, Yang P (2013b) Systematic qualitative and quantitative assessment of anthocyanins, flavones and flavonols in the petals of 108 lotus (Nelumbo nucifera) cultivars. Food Chem 139:307–312

    Article  CAS  PubMed  Google Scholar 

  • Fagundes FL, Pereira QC, Zarricueta ML, Dos Santos RC (2021) Malvidin protects against and repairs peptic ulcers in mice by alleviating oxidative stress and inflammation. Nutrients 13:3312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang J (2014) Bioavailability of anthocyanins. Drug Metab Rev 46:508–520

    Article  CAS  PubMed  Google Scholar 

  • Fanzone M, González-Manzano S, Pérez-Alonso J, Escribano-Bailón MT, Jofré V, Assof M, Santos-Buelga C (2015) Evaluation of dihydroquercetin-3-O-glucoside from Malbec grapes as copigment of malvidin-3-O-glucoside. Food Chem 175:166–173

    Article  CAS  PubMed  Google Scholar 

  • Faria A, Fernandes I, Norberto S, Mateus N, Calhau C (2014) Interplay between anthocyanins and gut microbiota. J Agric Food Chem 62:6898–6902

    Article  CAS  PubMed  Google Scholar 

  • Ferrandino A, Pagliarani C, Carlomagno A, Novello V, Schubert A, Agati G (2017) Improved fluorescence-based evaluation of flavonoid in red and white winegrape cultivars. Aust J Grape Wine Res 23:207–214

    Article  CAS  Google Scholar 

  • Ford CM, Boss PK, Høj PB (1998) Cloning and characterization of Vitis vinifera UDP-glucose: flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize bronze-1Locus that may primarily serve to glucosylate anthocyanidins in vivo. J Biol Chem 273:9224–9233

    Article  CAS  PubMed  Google Scholar 

  • Fossen T, Rayyan S, Holmberg MH, Nateland HS, Andersen ØM (2005) Acylated anthocyanins from leaves of Oxalis triangularis. Phytochemistry 66:1133–1140

    Article  CAS  PubMed  Google Scholar 

  • Francis FJ, Markakis PC (1989) Food colorants: anthocyanins. Crit Rev Food Sci Nutr 28:273–314

    Article  CAS  PubMed  Google Scholar 

  • Frank T, Netzel M, Strass G, Bitsch R, Bitsch I (2003) Bioavailability of anthocyanidin-3-glucosides following consumption of red wine and red grape juice. Canadian J Physiol Pharmacol 81:423–435

    Article  CAS  Google Scholar 

  • Freyre R, Griesbach RJ (2004) Inheritance of flower color in Anagallis monelli L. HortScience 39:1220–1223

    Article  CAS  Google Scholar 

  • Furtado P, Figueiredo P, Chaves das Neves H, Pina F (1993) Photochemical and thermal degradation of anthocyanidins. J Photochem Photobiol A Chem 75:113–118

    Article  CAS  Google Scholar 

  • Garcia-Alonso M, Minihane A-M, Rimbach G, Rivas-Gonzalo JC, de Pascual-Teresa S (2009) Red wine anthocyanins are rapidly absorbed in humans and affect monocyte chemoattractant protein 1 levels and antioxidant capacity of plasma. J Nutr Biochem 20:521–529

    Article  CAS  PubMed  Google Scholar 

  • Giampieri F, Alvarez-Suarez JM, Battino M (2014) Strawberry and human health: effects beyond antioxidant activity. J Agric Food Chem 62:3867–3876

    Article  CAS  PubMed  Google Scholar 

  • Gonzali S, Perata P (2020) Anthocyanins from purple tomatoes as novel antioxidants to promote human health. Antioxidants 9:1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopu V, Kothandapani S, Shetty PH (2015) Quorum quenching activity of Syzygium cumini (L.) skeels and its anthocyanin malvidin against Klebsiella pneumoniae. Microb Pathog 79:61–69

    Article  CAS  PubMed  Google Scholar 

  • Goupy P, Vian MA, Chemat F, Caris-Veyrat C (2013) Identification and quantification of flavonols, anthocyanins and lutein diesters in tepals of Crocus sativus by ultra performance liquid chromatography coupled to diode array and ion trap mass spectrometry detections. Ind Crop Prod 44:496–510

    Article  CAS  Google Scholar 

  • Han F, Ju Y, Ruan X, Zhao X, Yue X, Zhuang X, Qin M, Fang Y (2017) Color, anthocyanin, and antioxidant characteristics of young wines produced from spine grapes (Vitis davidii Foex) in China. Food Nutr Res 61:1339552

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashimoto N, Ohsawa R, Kitajima J, Iwashina T (2015) New flavonol glycosides from the leaves and flowers of Primula sieboidii. Nat Prod Commun 10:421–423

    PubMed  Google Scholar 

  • He F, Mu L, Yan G-L, Liang N-N, Pan Q-H, Wang J, Reeves MJ, Duan C-Q (2010) Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 15:9057–9091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He F, Liang N-N, Mu L, Pan Q-H, Wang J, Reeves MJ, Duan C-Q (2012) Anthocyanins and their variation in red wines I. Monomeric anthocyanins and their color expression. Molecules 17:1571–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hribar U, Ulrih N (2014) The metabolism of anthocyanins. Curr Drug Metab 15:3–13

    Article  CAS  PubMed  Google Scholar 

  • Huang WY, Wang J, Liu YM, Zheng QS, Li CY (2014) Inhibitory effect of malvidin on TNF-α-induced inflammatory response in endothelial cells. Eur J Pharmacol 15(723):67–72

    Article  Google Scholar 

  • Huang W, Zhu Y, Li C, Sui Z, Min W (2016) Effect of blueberry anthocyanins malvidin and glycosides on the antioxidant properties in endothelial cells. Oxidative Med Cell Longev 2016:1591803

    Article  Google Scholar 

  • Hyun JW, Chung HS (2004) Cyanidin and malvidin from Oryza sativa cv. Heug**jubyeo mediate cytotoxicity against human monocytic leukemia cells by arrest of G 2/M phase and induction of apoptosis. J Agric Food Chem 52:2213–2217

    Article  CAS  PubMed  Google Scholar 

  • Iacobucci GA, Sweeny JG (1983) The chemistry of anthocyanins, anthocyanidins and related flavylium salts. Tetrahedron 39:3005–3038

    Article  CAS  Google Scholar 

  • Jackson RS (2020) Chemical constituents of grapes and wine. In: Wine science. Elsevier, pp 375–459

    Chapter  Google Scholar 

  • Jokioja J, Yang B, Linderborg KM (2021) Acylated anthocyanins: a review on their bioavailability and effects on postprandial carbohydrate metabolism and inflammation. Compr Rev Food Sci Food Saf 20:5570–5615

    Article  CAS  PubMed  Google Scholar 

  • Kamrani YY, Esmaeelian B, Jabbari M, Tabaraei B, Yazdanyar A, Ebrahimi SN (2008) Anti-cancer effects of malvidin-3,5-diglucoside from Alcea longipedicellata, on gastric cancer cell line (AGS). Planta Med 74:PA174

    Article  Google Scholar 

  • Kaur S, Sharma N, Kapoor P, Chunduri V, Pandey AK, Garg M (2021) Spotlight on the overlap** routes and partners for anthocyanin transport in plants. Physiol Plant 171:868–881

    Article  CAS  PubMed  Google Scholar 

  • Kitahara K, Murai Y, Bang SW, Kitajima J, Iwashina T, Kaneko Y (2014) Anthocyanins from the flowers of Nagai Line of Japanese Garden Iris (Iris ensata). Nat Product Commun 9:201–204

    CAS  Google Scholar 

  • Kitdamrongsont K, Pothavorn P, Swangpol S, Wongniam S, Atawongsa K, Svasti J, Somana J (2008) Anthocyanin composition of wild bananas in Thailand. J Agric Food Chem 56:10853–10857

    Article  CAS  PubMed  Google Scholar 

  • Kuskoski EM, Vega JM, Rios JJ, Fett R, Troncoso AM, Asuero AG (2003) Characterization of anthocyanins from the fruits of Baguaçu (Eugenia umbelliflora Berg). J Agric Food Chem 51:5450–5454

    Article  CAS  PubMed  Google Scholar 

  • Lapi D, Chiurazzi M, Di Maro M, Mastantuono T, Battiloro L, Sabatino L, Ricci S, Di Carlo A, Starita N, Guida B, Santillo M, Colantuoni A (2016) Malvidin’s effects on rat pial microvascular permeability changes due to hypoperfusion and reperfusion injury. Front Cell Neurosci 10:153

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Xu Y, **e J, Chen W (2020) Malvidin-3-O-arabinoside ameliorates ethyl carbamate-induced oxidative damage by stimulating AMPK-mediated autophagy. Food Funct 11:10317–10328

    Article  CAS  PubMed  Google Scholar 

  • Liang N-N, Pan Q-H, He F, Wang J, Reeves MJ, Duan Ch-Q (2013) Phenolic profiles of Vitis davidii and Vitis quinquangularis species native to China. J Agric Food Chem 61:6016–6027

    Google Scholar 

  • Lila MA, Burton-Freeman B, Grace M, Kalt W (2016) Unraveling anthocyanin bioavailability for human health. Annu Rev Food Sci Technol 7:375–393

    Article  CAS  PubMed  Google Scholar 

  • Lin J-Y, Li C-Y, Hwang I-F (2008) Characterisation of the pigment components in red cabbage (Brassica oleracea L. var.) juice and their anti-inflammatory effects on LPS-stimulated murine splenocytes. Food Chem 109:771–781

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Tian JL, Shu C, Cheng Z, Liu YN, Wang WS, Liu RH, Li B, Wang YH (2020) Malvidin-3-galactoside from blueberry suppresses the growth and metastasis potential of hepatocellular carcinoma cell Huh-7 by regulating apoptosis and metastases pathways. Food Sci Human Wellness 9:136–145

    Article  Google Scholar 

  • Liobikas J, Skemiene K, Trumbeckaite S, Borutaite V (2016) Anthocyanins in cardioprotection: a path through mitochondria. Pharmacol Res 113:808–815

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Tikunov Y, Schouten RE, Marcelis LFM, Visser RGF, Bovy A (2018) Anthocyanin Biosynthesis and Degradation Mechanisms in Solanaceous Vegetables: A Review. Front Chem 6:52

    Google Scholar 

  • Liu X, Zheng F, Li S, Wang Z, Wang X, Wen L, He Y (2021) Malvidin and its derivatives exhibit antioxidant properties by inhibiting MAPK signaling pathways to reduce endoplasmic reticulum stress in ARPE-19 cells. Food Funct 12:7198–7213

    Article  CAS  PubMed  Google Scholar 

  • Lopes P, Richard T, Saucier C, Teissedre P-L, Monti J-P, Glories Y (2007) Anthocyanone A: a quinone methide derivative resulting from malvidin 3-O-glucoside degradation. J Agric Food Chem 55:2698–2704

    Article  CAS  PubMed  Google Scholar 

  • Maccarone E, Maccarone A, Rapisarda P (1985) Stabilization of anthocyanins of blood orange fruit juice. J Food Sci 50:901–904

    Article  CAS  Google Scholar 

  • Mackert JD, McIntosh MK (2016) Combination of the anthocyanidins malvidin and peonidin attenuates lipopolysaccharide-mediated inflammatory gene expression in primary human adipocytes. Nutr Res 36:1353–1360

    Article  CAS  PubMed  Google Scholar 

  • Mallery SR, Budendorf DE, Larsen MP, Pei P, Tong M, Holpuch AS, Larsen PE, Stoner GD, Fields HW, Chan KK, Ling Y, Liu Z (2011) Effects of human oral mucosal tissue, saliva, and oral microflora on intraoral metabolism and bioactivation of Black Raspberry anthocyanins. Cancer Prev Res 4:1209–1221

    Article  CAS  Google Scholar 

  • Markham KR, Mitchell KA, Boase MR (1997) Malvidin-3-O-glucoside-5-O-(6-acetylglucoside) and its colour manifestation in ‘Johnson’s Blue’ and other ‘Blue’ geraniums. Phytochemistry 45:417–423

    Article  CAS  Google Scholar 

  • Marrs KA, Alfenito MR, Lloyd AM, Walbot V (1995) A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375:397–400

    Article  CAS  PubMed  Google Scholar 

  • Martinoia E (2018) Vacuolar transporters – companions on a longtime journey. Plant Physiol 176:1384–1407

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga N, Tsuruma K, Shimazawa M, Yokota S, Hara H (2010) Inhibitory actions of bilberry anthocyanidins on angiogenesis. Phytother Res 24(Suppl 1):S42–S47

    Article  PubMed  Google Scholar 

  • McGhie TK, Walton MC (2007) The bioavailability and absorption of anthocyanins: Towards a better understanding. Mol Nutr Food Res 51:702–713

    Google Scholar 

  • Mojica L, Berhow M, Gonzalez de Mejia E (2017) Black bean anthocyanin-rich extracts as food colorants: physicochemical stability and antidiabetes potential. Food Chem 229:628–639

    Article  CAS  PubMed  Google Scholar 

  • Morata A, López C, Tesfaye W, González C, Escott C (2019) Anthocyanins as natural pigments in beverages. In: Value-added ingredients and enrichments of beverages. Elsevier, pp 383–428

    Chapter  Google Scholar 

  • Nakayama M, Roh MS, Uchida K, Yamaguchi Y, Takano K, Kosioka M (2000) Malvidin 3-rutinoside as the pigment responsible for bract color in Curcuma alismatifolia. Biosci Biotechnol Biochem 64:1093–1095

    Article  CAS  PubMed  Google Scholar 

  • Oliveira H, Fernandes I, Brás NF, Faria A, De Freitas V, Calhau C, Mateus N (2015) Experimental and theoretical data on the mechanism by which red wine anthocyanins are transported through a human MKN-28 gastric cell model. J Agric Food Chem 63:7685–7692

    Article  CAS  PubMed  Google Scholar 

  • Park S, Kang S, Jeong D-Y, Jeong S-Y, Park JJ, Yun HS (2015) Cyanidin and malvidin in aqueous extracts of black carrots fermented with Aspergillus oryzae prevent the impairment of energy, lipid and glucose metabolism in estrogen-deficient rats by AMPK activation. Genes Nutr 10:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Passamonti S, Vrhovsek U, Mattivi F (2002) The interaction of anthocyanins with bilitranslocase. Biochem Biophys Res Commun 296:631–636

    Article  CAS  PubMed  Google Scholar 

  • Patterson SJ, Fischer JG, Dulebohn RV (2008) DNA damage in HT-29 colon cancer cells is enhanced by high concentrations of the anthocyanin malvidin. FASEB J 22:890

    Article  Google Scholar 

  • Pérez-Jiménez J, Neveu V, Vos F, Scalbert A (2010) Systematic analysis of the content of 502 polyphenols in 452 foods and beverages: an application of the phenol-explorer database. J Agric Food Chem 58:4959–4969

    Article  PubMed  Google Scholar 

  • Piffaut B, Kader F, Girardin M, Metche M (1994) Comparative degradation pathways of malvidin 3,5-diglucoside after enzymatic and thermal treatments. Food Chem 50:115–120

    Article  CAS  Google Scholar 

  • Pires TCSP, Barros L, Santos-Buelga C, Ferreira ICFR (2019) Edible flowers: emerging components in the diet. Trends Food Sci Technol 93:244–258

    Article  CAS  Google Scholar 

  • Pires TCSP, Dias MI, Carocho M, Barreira JCM, Santos-Buelga C, Barros L, Ferreira ICFR (2020) Extracts from Vaccinium myrtillus L. fruits as a source of natural colorants: chemical characterization and incorporation in yogurts. Food Funct 11:3227–3234

    Article  CAS  PubMed  Google Scholar 

  • Puértolas E, Álvarez I, Raso J (2011) Changes in phenolic compounds of Aragón red wines during alcoholic fermentation. Food Sci Technol Int 17:77–86

    Article  PubMed  Google Scholar 

  • Rivas JC, Santos-Buelga C, Lock O (2007) Química y Estabilidad. In: Muñoz O, Maldonado Cid S (eds) Antocianos y betalainas Colorantes Naturales de aplicación industrial, 1ra edn. Salesianos S.A., pp 26–73

    Google Scholar 

  • Sakthivel KM, Kokilavani K, Kathirvelan C, Brindha D (2020) Malvidin abrogates oxidative stress and inflammatory mediators to inhibit solid and ascitic tumor development in mice. J Environ Pathol Toxicol Oncol 39:247–260

    Google Scholar 

  • Santos-Buelga C, González-Paramás AM (2019) Anthocyanins. In: Encyclopedia of food chemistry. Elsevier, pp 10–21

    Chapter  Google Scholar 

  • Sasaki N, Nakayama T (2015) Achievements and perspectives in biochemistry concerning anthocyanin modification for blue flower coloration. Plant Cell Physiol 56:28–40

    Article  CAS  PubMed  Google Scholar 

  • Saulite L, Jekabsons K, Klavins M, Muceniece R, Riekstina U (2019) Effects of malvidin, cyanidin and delphinidin on human adipose mesenchymal stem cell differentiation into adipocytes, chondrocytes and osteocytes. Phytomedicine 53:86–95

    Article  CAS  PubMed  Google Scholar 

  • Seo HR, Choi MJ, Choi JM, Ko JC, Ko JY, Cho EJ (2016) Malvidin protects WI-38 human fibroblast cells against stress-induced premature senescence. J Cancer Prevent 21:32–40

    Article  Google Scholar 

  • Skowyra M, Calvo MI, Gallego MG, Azman NAM, Almajano MP (2014) Characterization of phytochemicals in petals of different colours from Viola × wittrockiana Gams. and their correlation with antioxidant activity. J Agric Sci 6:93–105

    Google Scholar 

  • Skrovankova S, Sumczynski D, Mlcek J, Jurikova T, Sochor J (2015) Bioactive compounds and antioxidant activity in different types of berries. Int J Mol Sci 16:24673–24706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son JE, Lee E, Jung SK, Kim JE, Oak MH, Lee KW, Lee HJ (2014) Anthocyanidins, novel FAK inhibitors, attenuate PDGF-BB-induced aortic smooth muscle cell migration and neointima formation. Cardiovasc Res 101:503–512

    Article  CAS  PubMed  Google Scholar 

  • Soural I, Šnurkovič P, Tománková E, Forneck A (2020) The effect of the storage on the content of the malvidin-3-glucoside in red wine. Acta Horticulturae et Regiotecturae 23:40–43

    Article  Google Scholar 

  • Srivastava J, Vankar PS (2010) Methylated anthocyanidin glycosides from flowers of Canna indica. Carbohydr Res 345:2023–2029

    Article  CAS  PubMed  Google Scholar 

  • Su X, Xu J, Rhodes D, Shen Y, Song W, Katz B, Tomich J, Wang W (2016) Identification and quantification of anthocyanins in transgenic purple tomato. Food Chem 202:184–188

    Article  CAS  PubMed  Google Scholar 

  • Tatsuzawa F (1999) Acylated malvidin 3-rutinosides in dusky violet flowers of Petunia integrifolia subsp. inflata. Phytochemistry 52:351–355

    Article  CAS  Google Scholar 

  • Tatsuzawa F, Saito N, Mikanagi Y, Shinoda K, Toki K, Shigihara A, Honda T (2009) An unusual acylated malvidin 3-glucoside from flowers of Impatiens textori Miq. (Balsaminaceae). Phytochemistry 70:672–674

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Mazza G (2002) Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFN-gamma-activated RAW 264.7 macrophages. J Agric Food Chem 13:850–857

    Article  Google Scholar 

  • Wang Y, Lin J, Tian J, Si X, Jiao X, Zhang W, Gong E, Li B (2019) Blueberry malvidin-3-galactoside suppresses hepatocellular carcinoma by regulating apoptosis, proliferation, and metastasis pathways in vivo and in vitro. J Agric Food Chem 267:625–636

    Article  Google Scholar 

  • Wei H, Li H, Wan SP, Zeng QT, Cheng LX, Jiang LL, Peng YD (2017) Cardioprotective effects of malvidin against isoproterenol-induced myocardial infarction in rats: a mechanistic study. Med Sci Monit 23:2007–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu HT, Zhang J, Huang HX, Liu LX, Sun YL (2018) Malvidin induced anticancer activity in human colorectal HCT-116 cancer cells involves apoptosis, G2/M cell cycle arrest and upregulation of p21WAFI. Int J Clin Exp Med 11:1734–1741

    Google Scholar 

  • Xu Y, Ke H, Li Y, **e L, Su H, **e J, Mo J, Chen W (2021) Malvidin-3-O-glucoside from blueberry ameliorates nonalcoholic fatty liver disease by regulating transcription factor EB-mediated lysosomal function and activating the Nrf2/ARE signaling pathway. J Agric Food Chem 69:4663–4673

    Article  CAS  PubMed  Google Scholar 

  • Yabuya T, Yamaguchi M, Fukui Y, Katoh K, Imayama T, Ino I (2001) Characterization of anthocyanin p-coumaroyltransferase in flowers of Iris ensata. Plant Sci 160:499–503

    Google Scholar 

  • Zhang Q, Wang L, Liu Z, Zhao Z, Zhao J, Wang Z, Zhou G, Liu P, Liu M (2020) Transcriptome and metabolome profiling unveil the mechanisms of Ziziphus jujuba Mill. peel coloration. Food Chem 312:125903

    Article  CAS  PubMed  Google Scholar 

  • Zou W, Zhang C, Gu X, Li X, Zhu H (2021) Metformin in combination with malvidin prevents progression of non-alcoholic fatty liver disease via improving lipid and glucose metabolisms, and inhibiting inflammation in Type 2 Diabetes rats. Drug Des Devel Ther 15:2565–2576

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José M. Alvarez-Suarez or Maurizio Battino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Alvarez-Suarez, J.M., Giampieri, F., Tejera, E., Battino, M. (2023). Malvidin: Advances in the Resources, Biosynthesis Pathway, Bioavailability, Bioactivity, and Pharmacology. In: **ao, J. (eds) Handbook of Dietary Flavonoids. Springer, Cham. https://doi.org/10.1007/978-3-030-94753-8_57-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94753-8_57-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94753-8

  • Online ISBN: 978-3-030-94753-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation