Digital Management of Large Building Stocks: BIM and GIS Integration-Based Systems

  • Conference paper
  • First Online:
Product Lifecycle Management. Green and Blue Technologies to Support Smart and Sustainable Organizations (PLM 2021)

Abstract

Organizations involved in the management of large building stocks require high quality data in order to properly manage their assets. Due to more restricted environmental requirements, funding and intervention times, these organizations need to solve inefficiencies and uplift tasks adopting improved digital systems for the management of their assets and related data. Currently, each stakeholder involved adopts its software for specific tasks, with limited data interoperability and standards for data exchange. A comprehensive system which can handle large scale and heterogeneous data is required, but it must be designed to precisely fit the needs of the organization and to overcome current technical limitations. Since BIM and GIS are two IT-based methodologies which can provide data about built assets and related environment, the BIM/GIS integration is investigated through the analysis of over 100 journal and conference papers published in the 2015–2020 period. This analysis reveals categories and sub-categories explored in the current state of art, features that have been satisfied by future BIM-GIS integrated systems and a roadmap for its implementation. The results of the study can support scientists and practitioners in addressing their research interests and implementation activities for leading a digitization of data and information in large building stocks management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 179.34
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 179.34
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kitchenham, B.: Procedures for performing systematic reviews. Keele, UK, Keele Univ. 33, 1–6 (2004)

    Google Scholar 

  2. Beck, F., Borrmann, A., Kolbe, T.H.: The need for a differentiation between heterogeneous information integration approaches in the field of ‘BIM-GIS integration’: a literature review. In: 3rd BIM/GIS Integration Workshop and 15th 3D GeoInfo Conference, vol. 6, no. 4/W1, pp. 21–28 (2020). https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-21-2020

  3. Andrianesi, D.E., Dimopoulou, E.: An integrated BIM-GIS platform for representing and visualizing 3D cadastral data. ISPRS Ann. Photogram. Remote Sens. Spat. Inf. Sci. VI-4/W1-2020, 3–11 (2020). https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-3-2020

    Article  Google Scholar 

  4. Arcuri, N., De Ruggiero, M., Salvo, F., Zinno, R.: Automated valuation methods through the cost approach in a BIM and GIS integration framework for smart city appraisals. Sustainability 12(18), 7546 (2020). https://doi.org/10.3390/su12187546

    Article  Google Scholar 

  5. Deng, Y., Cheng, J.C.P., Anumba, C.: A framework for 3D traffic noise map** using data from BIM and GIS integration. Struct. Infrastruct. Eng. 12(10), 1267–1280 (2016). https://doi.org/10.1080/15732479.2015.1110603

    Article  Google Scholar 

  6. Diakite, A.A., Zlatanova, S.: Automatic geo-referencing of BIM in GIS environments using building footprints. Comput. Environ. Urban Syst. 80, 101453 (2020). https://doi.org/10.1016/j.compenvurbsys.2019.101453

    Article  Google Scholar 

  7. Fan, L., Yamamura, S., Sun, Y.: Conceptual framework for optimal urban energy planning tool with an intelligent system through integration of BIM and GIS technology. In: 33rd International on Passive and Low Energy Architecture Conference: Design to Thrive, PLEA 2017, vol. 1, pp. 1400–1407 (2017). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053120008&partnerID=40&md5=b55e92d599a6e0b45a26c568b7036199

  8. Hor, A.E.H., Sohn, G., Claudio, P., Jadidi, M., Afnan, A.: A semantic graph database for BIM-GIS integrated information model for an intelligent urban mobility web application. ISPRS Ann. Photogram. Remote Sens. Spat. Inf. Sc. 4(4), 89–96 (2018). https://doi.org/10.5194/isprs-annals-IV-4-89-2018

    Article  Google Scholar 

  9. Lu, W., Peng, Y., Xue, F., Chen, K., Niu, Y., Chen, X.: The fusion of GIS and building information modeling for big data analytics in managing development sites. In: Comprehensive Geographic Information Systems, vol. 3, The University of Hong Kong, Pokfulam, Hong Kong: Elsevier Inc., pp. 345–359 (2017)

    Google Scholar 

  10. McGlinn, K., et al.: Publishing authoritative geospatial data to support interlinking of building information models. Autom. Constr. 124, 103534 (2021). https://doi.org/10.1016/j.autcon.2020.103534

    Article  Google Scholar 

  11. McGlinn, K., Debruyne, C., McNerney, L., O’Sullivan, D.: Integrating building information models with authoritative Irish geospatial information. In: 2017 ISWC Posters and Demonstrations and Industry Tracks, ISWC-P and D-Industry 2017, vol. 1963 (2017). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85033468242&partnerID=40&md5=73c8af167d9ea4d47f8fbedfa4e9a394

  12. McGlinn, M.K., Debruyne, C., McNerney, L., O’Sullivan, D.: Integrating Ireland’s geospatial information to provide authoritative building information. In: ACM International Conference Proceeding Series, vol. 2017, pp. 57–64 (2017). https://doi.org/10.1145/3132218.3132223

  13. Mercer, A.: Smart cities need smart ways of working. GEO Connex. 15 (9), 44–45, 2016. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994475224&partnerID=40&md5=23707e259b2f1d76f9d8c984573e24b8

  14. Nawari, N., Ravindran, S.: Blockchain and Building Information Modeling (BIM): review and applications in post-disaster recovery. Buildings 9(6), 149 (2019). https://doi.org/10.3390/buildings9060149

    Article  Google Scholar 

  15. Badea, A.-C., Badea, G., Vasilca, D., Iliescu-Cremeneanu, A., Badea, D.: BIM, GIS and CAD(Astre) under the current challenges. In: 18th International Multidisciplinary Scientific Geoconference, SGEM 2018, vol. 18, no. 2.3, pp. 329–336 (2018). https://doi.org/10.5593/sgem2018/2.3/S11.042

  16. Noardo, F., Wu, T., Arroyo Ohori, K., Krijnen, T., Tezerdi, H., Stoter, J.: Geobim for digital building permit process: Learning from a case study in Rotterdam. ISPRS Ann. Photogram. Remote Sens. Spat. Inf. Sci. VI-4/W1-2020, 151–158 (2020). https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-151-2020

    Article  Google Scholar 

  17. Park, S., Hong, C.: Roles and scope of system interface in integrated control system for multi disaster countermeasure. Int. J. Saf. Secur. Eng. 7(3), 361–366 (2017). https://doi.org/10.2495/SAFE-V7-N3-361-366

    Article  Google Scholar 

  18. Eudave, R.R., Ferreira, T.M.: On the suitability of a unified GIS-BIM-HBIM framework for cataloguing and assessing vulnerability in Historic Urban Landscapes: a critical review. Int. J. Geograph. Inf. Sci. 35(10), 2047–2077 (2020). https://doi.org/10.1080/13658816.2020.1844208

    Article  Google Scholar 

  19. Redmond, A., Fies, B., Zarli, A.: Develo** an integrated cloud platform for enabling ‘holistic energy management’ in urban areas. In: Mahdavi, A., Martens, B., Scherer, R. (eds.) eWork and eBusiness in Architecture, Engineering and Construction: ECPPM 2014, pp. 409–416. CRC Press (2014). https://doi.org/10.1201/b17396-69

    Chapter  Google Scholar 

  20. Saran, S., et al.: Utilities of virtual 3D city models based on CityGML: various use cases. J. Indian Soc. Remote Sens. 46(6), 957–972 (2018). https://doi.org/10.1007/s12524-018-0755-5

    Article  Google Scholar 

  21. Shahi, K., McCabe, B.Y., Shahi, A.: Framework for automated model-based e-permitting system for municipal jurisdictions. J. Manag. Eng. 35(6), 04019025 (2019). https://doi.org/10.1061/(ASCE)ME.1943-5479.0000712

    Article  Google Scholar 

  22. Shahrour, I., Alileche, L., Alfurjani, A.: Smart cities: system and tools used for the digital modelling of physical urban systems. In: 1st International Conference on Sensors Networks Smart and Emerging Technologies, SENSET 2017, vol. 2017, pp. 1–4 (2017). https://doi.org/10.1109/SENSET.2017.8125056

  23. Sun, J., Olsson, P., Eriksson, H., Harrie, L.: Evaluating the geometric aspects of integrating BIM data into city models. J. Spat. Sci. 65(2), 235–255 (2020). https://doi.org/10.1080/14498596.2019.1636722

    Article  Google Scholar 

  24. Wang, H., Pan, Y., Luo, X.: Integration of BIM and GIS in sustainable built environment: a review and bibliometric analysis. Autom. Constr. 103, 41–52 (2019). https://doi.org/10.1016/j.autcon.2019.03.005

    Article  Google Scholar 

  25. Yamamura, S., Fan, L., Suzuki, Y.: A Proposal of comprehensive urban infrastructure planning model for smart city planning with GIS and 3D modelling - Case study in urban area of Tokyo. In: 33rd International on Passive and Low Energy Architecture Conference: Design to Thrive, PLEA 2017, vol. 1, pp. 1462–1469 (2017). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085955900&partnerID=40&md5=82c25f3d0912ceed918fd839c2f9e20b

  26. Bai, Y., Zadeh, P.A., Staub-French, S., Pottinger, R.: Integrating GIS and BIM for community-scale energy modeling. In: International Conference on Sustainable Infrastructure 2017: Methodology - Proceedings of the International Conference on Sustainable Infrastructure 2017, pp. 185–196 (2017). https://doi.org/10.1061/9780784481196.017

  27. Yamamura, S., Fan, L., Suzuki, Y.: Assessment of urban energy performance through integration of BIM and GIS for smart city planning. Procedia Eng. 180, 1462–1472 (2017). https://doi.org/10.1016/j.proeng.2017.04.309

    Article  Google Scholar 

  28. Yosino, C.M.O., Ferreira, S.L.: Using BIM and GIS interoperability to create CIM model for USW collection analysis. In: Toledo Santos, E., Scheer, S. (eds.) ICCCBE 2020. LNCE, vol. 98, pp. 248–271. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-51295-8_19

    Chapter  Google Scholar 

  29. Zadeh, P.A., Wei, L., Dee, A., Pottinger, R., Staub-French, S.: BIM-CityGML data integration for modern urban challenges. J. Inf. Technol. Constr. 24, 318–340 (2019). https://doi.org/10.36680/j.itcon.2019.017

    Article  Google Scholar 

  30. Barazzetti, L.: Integrated BIM-GIS model generation at the city scale using geospatial data. In: 6th International Conference on Remote Sensing and Geoinformation of the Environment, RSCy 2018, vol. 10773 (2018). https://doi.org/10.1117/12.2324646

  31. Breunig, M., Borrmann, A., Rank, E., Hinz, S., Kolbe, T., Schilcher, M., et al.: Collaborative multi-scale 3D city and infrastructure modeling and simulation. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XLII-4/W4, 341–352 (2017). https://doi.org/10.5194/isprs-archives-XLII-4-W4-341-2017

    Article  Google Scholar 

  32. Chenaux, A., et al.: A Review of 3D GIS for USE in creating virtual historic Dublin. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XLII-2/W9, 249–254 (2019). https://doi.org/10.5194/isprs-archives-XLII-2-W9-249-2019

    Article  Google Scholar 

  33. Costa, G., Sicilia, Á., Lilis, G.N., Rovas, D.V., Izkara, J.: A comprehensive ontologies-based framework to support the retrofitting design of energy-efficient districts. In: eWork and eBusiness in Architecture, Engineering and Construction - Proceedings of the 11th European Conference on Product and Process Modelling, ECPPM 2016, pp. 673–681 (2016). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016631400&partnerID=40&md5=d82deb9d85daaf8b8c039585dc797ad0

  34. Dawood, N., Dawood, H., Rodriguez-Trejo, S., Crilly, M.: Visualising urban energy use: the use of LiDAR and remote sensing data in urban energy planning. Visual. Eng. 5(1), 1–13 (2017). https://doi.org/10.1186/s40327-017-0060-3

    Article  Google Scholar 

  35. Delval, T., et al.: BIM to develop integrated, incremental and multiscale methods to assess comfort and quality of public spaces. In: Toledo Santos, E., Scheer, S. (eds.) ICCCBE 2020. LNCE, vol. 98, pp. 160–179. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-51295-8_14

    Chapter  Google Scholar 

  36. Abramyan, S.G., Oganesyan, O.V.: Impact of earthworks on the atmosphere during the reconstruction and overhaul of trunk pipelines. IOP Conf. Ser. Mater. Sci. Eng. 962(4), 042057 (2020). https://doi.org/10.1088/1757-899X/962/4/042057

    Article  Google Scholar 

  37. Carneiro, J., Rossetti, R.J.F., Silva, D.C., Oliveira, E.C.: BIM, GIS, IoT, and AR/VR integration for smart maintenance and management of road networks: a review. In: 2018 IEEE International Smart Cities Conference, ISC2 2018 (2019). https://doi.org/10.1109/ISC2.2018.8656978

  38. Floros, G.S., Ruff, P., Ellul, C.: Impact of information management during design & construction on downstream BIM-GIS interoperability for rail infrastructure. ISPRS Ann. Photogram. Remote Sens. Spat. Inf. Sci. VI-4/W1-2020, 61–68 (2020). https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-61-2020

    Article  Google Scholar 

  39. Garramone, M., Moretti, N., Scaioni, M., Ellul, C., Re Cecconi, F., Dejaco, M.C.: BIM and GIS integration for infrastructure asset management: a bibliometric analysis. ISPRS Ann. Photogram. Remote Sens. Spat. Inf.Sci. VI-4/W1-2020, 77–84 (2020). https://doi.org/10.5194/isprs-annals-VI-4-W1-2020-77-2020

    Article  Google Scholar 

  40. Gilbert, T., Barr, S., James, P., Morley, J., Ji, Q.: Software systems approach to multi-scale GIS-BIM utility infrastructure network integration and resource flow simulation. ISPRS Int. J. Geo-Inf. 7(8), 310 (2018). https://doi.org/10.3390/ijgi7080310

    Article  Google Scholar 

  41. Huang, M.Q., Ninić, J., Zhang, Q.B.: BIM, machine learning and computer vision techniques in underground construction: current status and future perspectives. Tunn. Undergr. Sp. Technol., 108, 103677 (2021). https://doi.org/10.1016/j.tust.2020.103677

  42. Kang, X.: Preliminary exploration on the intelligent construction and operation of china’s high-speed railway. J. Railw. Eng. Soc., 36 (4), pp. 84–89 (2019). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073657933&partnerID=40&md5=b2f2a4a7dc21f814effdbda0ed747f4e

  43. Kim, H., Chen, Z., Cho, C.-S., Moon, H., Ju, K.,, Choi, W.: Integration of BIM and GIS: Highway cut and fill earthwork balancing. In 2015 ASCE International Workshop on Computing in Civil Engineering, IWCCE 2015, vol. 2015, pp. 468–474 (2015). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84936882236&partnerID=40&md5=2982b1ac1136423414c36081592e48fc

  44. Kurwi, S., Demian, P., Hassan, T.M.: Integrating BIM and GIS in railway projects: a critical review. In: Assoc. Res. Constr. Manag. ARCOM - 33rd Annu. Conf. 2017, Proceeding, pp. 45–53 (2017)

    Google Scholar 

  45. Lyu, H.-M., Shen, S.-L., Zhou, A., Yang, J.: Perspectives for flood risk assessment and management for mega-city metro system. Tunn. Undergr. Sp. Technol. 84, 31–44 (2019). https://doi.org/10.1016/j.tust.2018.10.019

    Article  Google Scholar 

  46. Mao, S., Lebrun, J.-L., Doukari, O., Aguejdad, R., Yuan, Y.: 3D BIM multi-scale modeling for a tunnel construction project. In: 11th Annual International Conference on Spatial Analysis and Geomatics, SAGEO 2015, vol. 1535, pp. 135–149 (2015). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84962227773&partnerID=40&md5=9c3d4995a47b231c5b3638ceed4b629a

  47. Marzouk, M., Othman, A.: Planning utility infrastructure requirements for smart cities using the integration between BIM and GIS. Sustain. Cities Soci. 57, 102120 (2020). https://doi.org/10.1016/j.scs.2020.102120

    Article  Google Scholar 

  48. Carstens, A.: BIM & GIS – New dimensions of improved collaboration for infrastructure and environment. J. Digit. Landsc. Archit. 2019(4), 114–121 (2019). https://doi.org/10.14627/537663012

    Article  Google Scholar 

  49. Sofia, H., Anas, E., Faiz, O.: Mobile map**, machine learning and digital twin for road infrastructure monitoring and maintenance: Case study of mohammed VI bridge in Morocco. In: 2nd IEEE International Conference of Moroccan Geomatics, MORGEO 2020 (2020). https://doi.org/10.1109/Morgeo49228.2020.9121882

  50. Wang, M., Deng, Y., Won, J., Cheng, J.C.P.: An integrated underground utility management and decision support based on BIM and GIS. Autom. Constr. 107, 102931 (2019). https://doi.org/10.1016/j.autcon.2019.102931

    Article  Google Scholar 

  51. Yuan, W., **ong, Z., Chu, J., Lu, H.: Asset management information system of Nan**g subway operation based on BIM. Mod. Tunn. Technol. 56(2), 30–39 (2019). https://doi.org/10.13807/j.cnki.mtt.2019.02.005

    Article  Google Scholar 

  52. Zhang, G.-Z.: Research and application of bim construction management platform for hutong Changjiang river bridge. Bridg. Constr. 48(5), 6–10 (2018). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062943505&partnerID=40&md5=ebbe4c7c3da41c967da744e9b9acf168

  53. Zhang, S., Hou, D., Wang, C., Pan, F., Yan, L.: Integrating and managing BIM in 3D web-based GIS for hydraulic and hydropower engineering projects. Autom. Constr. 112, 103114 (2020). https://doi.org/10.1016/j.autcon.2020.103114

    Article  Google Scholar 

  54. Zhang, Y., Huang, C., Zhu, C.: Research on the application of railway engineering project management system based on BIM. J. Railw. Eng. Soc. 36 (9), 98–103 (2019). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075183679&partnerID=40&md5=f2a82bea3ad6cb4d68abe21998cbe5d8

  55. Zhao, L., Liu, Z., Mbachu, J.: Highway alignment optimization: an integrated BIM and GIS approach. ISPRS Int. J. Geo-Inf. 8(4), 172 (2019). https://doi.org/10.3390/ijgi8040172

    Article  Google Scholar 

  56. Zhao, Q., He, C., Yang, S., Fang, T., Zhu, S.: Transformation of underground space models based on IFC and CityGML-a case study of utility. TunnelWuhan Daxue Xuebao (**nxi Kexue Ban)/Geomatics Inf Sci. Wuhan Univ. 45(7), 1058–1064 (2020). https://doi.org/10.13203/j.whugis20180409

    Article  Google Scholar 

  57. Zheng, W., Zhou, X., Wu, H., Li, H., Zhu, X., Wen, L.: Digital twin system for highway traffic based on 3D GIS technology. Jisuanji Jicheng Zhizao **tong/Computer Integr Manuf. Syst. CIMS 26(1), 28–39 (2020). https://doi.org/10.13196/j.cims.2020.01.003

    Article  Google Scholar 

  58. Zhu, H., Li, X., Lin, X.: Infrastructure Smart Service System (iS3) and its application. Tumu Gongcheng Xuebao/China Civ. Eng. J. 51 (1), 1–12 (2018). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048930218&partnerID=40&md5=9a3c6da1e202edd4130795f246f24ea7

  59. Cheng, J.C.P., Deng, Y.: An integrated BIM-GIS framework for utility information management and analyses. In: 2015 ASCE International Workshop on Computing in Civil Engineering, IWCCE 2015, vol. 2015, pp. 667–674 (2015). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84936852218&partnerID=40&md5=baac2f47577e05002cc57633c705b7f1

  60. Zhu, J., Tan, Y., Wang, X., Wu, P.: BIM/GIS integration for web GIS-based bridge management. Ann. GIS (2020). https://doi.org/10.1080/19475683.2020.1743355

    Article  Google Scholar 

  61. Corongiu, M., Tucci, G., Santoro, E., Kourounioti, O.: Data integration of different domains in geo-information management: a railway infrastructure case study. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XLII–4, 121–127 (2018). https://doi.org/10.5194/isprs-archives-XLII-4-121-2018

    Article  Google Scholar 

  62. D’Amico, F., Calvi, A., Schiattarella, E., Di Prete, M., Veraldi, V.: BIM and GIS data integration: a novel approach of technical/environmental decision-making process in transport infrastructure design. Trans. Rese. Proc. 45, 803–810 (2020). https://doi.org/10.1016/j.trpro.2020.02.090

    Article  Google Scholar 

  63. Dong, L.L., Wu, J., Wang, W., **e, Y.B.: Full lifecycle digital control of urban rail transit property based on the integration between CAD, GIS and BIM. Adv. Transp. Stud., 2 (Special Issue), 15–26 (2019). https://doi.org/10.4399/97888255305512

  64. Dong, L., Wu, J., Wang, W., Zhou, Y.: Visualization of foundation evaluation for urban rail transit based on CGB technology integration. Int. J. Sustain. Dev. Plan. 15(4), 477–486 (2020). https://doi.org/10.18280/ijsdp.150408

    Article  Google Scholar 

  65. Fan, D.-K.: Research on the fusion technology of BIM and GIS applied in railway information deployment. J. Railw. Eng. Soc. 33 (10), 106–110 and 128 (2016). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84996772869&partnerID=40&md5=322824e3d145f1808df2a0057551cb74

  66. Farooq, J., Sharma, P., Sreerama Kumar, R.: Applications of building information modeling in electrical systems design. J. Eng. Sci. Technol. Rev. 10(6), 119–128 (2017). https://doi.org/10.25103/jestr.106.16

    Article  Google Scholar 

  67. Amirebrahimi, S., Rajabifard, A., Mendis, P., Ngo, T.: A BIM-GIS integration method in support of the assessment and 3D visualisation of flood damage to a building. J. Spat. Sci. 61(2), 317–350 (2016). https://doi.org/10.1080/14498596.2016.1189365

    Article  Google Scholar 

  68. Amirebrahimi, S., Rajabifard, A., Mendis, P., Ngo, T.: A framework for a microscale flood damage assessment and visualization for a building using BIM–GIS integration. Int. J. Digit. Earth 9(4), 363–386 (2016). https://doi.org/10.1080/17538947.2015.1034201

    Article  Google Scholar 

  69. Deng, Y., Gan, V.J.L., Das, M., Cheng, J.C.P., Anumba, C.: Integrating 4D BIM and GIS for Construction Supply Chain Management. J. Constr. Eng. Manag. 145(4), 04019016 (2019). https://doi.org/10.1061/(ASCE)CO.1943-7862.0001633

    Article  Google Scholar 

  70. Dutt, F., Quan, S.J., Woodworth, E., Castro-Lacouture, D., Stuart, B.J., Yang, P.-J.: Modeling algae powered neighborhood through GIS and BIM integration. Energy Procedia 105, 3830–3836 (2017). https://doi.org/10.1016/j.egypro.2017.03.896

    Article  Google Scholar 

  71. Ellul, C., Boyes, G., Thomson, C., Backes, D.: Towards integrating BIM and GIS—an end-to-end example from point cloud to analysis. In: Abdul-Rahman, A. (ed.) Advances in 3D Geoinformation. LNGC, pp. 495–512. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-25691-7_28

    Chapter  Google Scholar 

  72. Farghaly, K., Abanda, H., Vidalakis, C., Wood, G.: BIM for asset management: a taxonomy of non-geometric BIM data for asset management. In: 24th EG-ICE International Workshop on Intelligent Computing in Engineering 2017, pp. 96–105 (2017). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85026801747&partnerID=40&md5=c221361152828a8892fac974fb9c119d

  73. Gunduz, M., Isikdag, U., Basaraner, M.: Integration of BIM, web maps and IoT for supporting comfort analysis. ISPRS Ann. Photogram. Remote Sens. Spat. Inf. Sci. IV-4/W4, 221–227 (2017). https://doi.org/10.5194/isprs-annals-IV-4-W4-221-2017

    Article  Google Scholar 

  74. Li, W., Zlatanova, S., Diakite, A.A., Aleksandrov, M., Yan, J.: Towards integrating heterogeneous data: A spatial DBMS solution from a CRC-LCL project in Australia. ISPRS Int. J. Geo-Inf. 9(2), 63 (2020). https://doi.org/10.3390/ijgi9020063

    Article  Google Scholar 

  75. Lin, T.-Y., Shih, H.-Y., Huang, J.-C., Hou, Y.-L., Chiu, Y.Y., Lin, Y.-X.: Study on the dormitory public facilities management using BIM. In: 2018 IEEE International Conference on Advanced Manufacturing, ICAM 2018, pp. 191–193 (2019). https://doi.org/10.1109/AMCON.2018.8614813

  76. Mascort-Albea, E.J., Jaramillo-Morilla, A., Romero-Hernández, R., Hidalgo-Sánchez, F.M.: BIM-GIS interoperability applied to architectonic heritage: 2D and 3D digital models for the study of the ancient church of santa lucía in seville (Spain). In: 4th International Congress Science and Technology for the Conservation of Cultural Heritage, TECHNOHERITAGE 2019, pp. 31–35 (2020). https://doi.org/10.1201/9780429345470-5.

  77. Matrone, F., Colucci, E., De Ruvo, V., Lingua, A., Spanò, A.: HBIM in a semantic 3D GIS database. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XLII-2/W11, 857–865 (2019). https://doi.org/10.5194/isprs-archives-XLII-2-W11-857-2019

    Article  Google Scholar 

  78. Mirarchi, C., Pavan, A., De Marco, F., Wang, X., Song, Y.: Supporting facility management processes through end-users’ Integration and coordinated BIM-GIS technologies. ISPRS Int. J. Geo-Inf. 7(5), 191 (2018). https://doi.org/10.3390/ijgi7050191

    Article  Google Scholar 

  79. Amirebrahimi, S., Rajabifard, A., Mendis, P., Ngo, T.: A data model for integrating GIS and BIM for assessment and 3D visualisation of flood damage to building. In: CEUR Workshop Proceedings, vol. 1323, pp. 78–89 (2015). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84925114451&partnerID=40&md5=d9e8480f9f78906b1df25173faec30ef

  80. Navas-Carrillo, D., Gómez de Cózar, J.C., Pérez Cano, M.T.: Geographic information systems (GIS) and building information modeling (BIM): tools for assessing the cultural values of mass housing neighbourhoods in medium-sized cities of andalusia. In: Calderón, P.O., Puerto, F.P., Verhagen, P., Prieto, A.J. (eds.) Science and Digital Technology for Cultural Heritage: Interdisciplinary Approach to Diagnosis, Vulnerability, Risk Assessment and Graphic Information Models, pp. 104–108. CRC Press (2019). https://doi.org/10.1201/9780429345470-19

    Chapter  Google Scholar 

  81. Rechichi, F.: Chimera: a BIM+GIS system for cultural heritage. Int. Photogram. Remote Sens. Spat. Inf. Sci. XLIII-B4-2020, 493–500 (2020). https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-493-2020

    Article  Google Scholar 

  82. Saccucci, M., Pelliccio, A.: Integrated BIM-GIS system for the enhancement of urban heritage. In: 2018 IEEE International Conference on Metrology for Archaeology and Cultural Heritage, MetroArchaeo 2018, pp. 222–226 (2018). https://doi.org/10.1109/MetroArchaeo43810.2018.13625

  83. Scianna, A., La Guardia, M.: Main features of a 3D GIS for a monumental complex with an historical-cultural relevance. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XLII-5/W1, 519–526 (2017). https://doi.org/10.5194/isprs-archives-XLII-5-W1-519-2017

    Article  Google Scholar 

  84. Syed Abdul Rahman, S.A.F., Abdul Maulud, K.N.: Approaching BIM-GIS integration for 3D evacuation planning requirement using multipatch geometry data format. In: 4th International Conference on Research Methodology for Built Environment and Engineering 2019, ICRMBEE 2019, vol. 385, no. 1 (2019). https://doi.org/10.1088/1755-1315/385/1/012033

  85. Syed Mustorpha, S.N.A., Wan Mohd, W.M.N.: A BIM oriented model to a 3D indoor GIS for space management– a requirement analysis. IOP Conf. Ser. Earth Environ. Sci. 385(1), 012046 (2019). https://doi.org/10.1088/1755-1315/385/1/012046

    Article  Google Scholar 

  86. Teo, T.-A., Cho, K.-H.: BIM-oriented indoor network model for indoor and outdoor combined route planning. Adv. Eng. Inf. 30(3), 268–282 (2016). https://doi.org/10.1016/j.aei.2016.04.007

    Article  Google Scholar 

  87. Tomchinskaya, T., Galanina, M.: University management system based on BIM-GIS-technologies. In: 30th International Conference on Computer Graphics and Machine Vision, GraphiCon 2020, vol. 2744 (2020). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098157474&partnerID=40&md5=f44d65147e7458164eaf85a89d2c8df4

  88. Tsai, C.-F., **ao, Y.-T., Chen, H.-S., Ye, Y.-X., Wang, C.-H., Liang, T.-W.: Integration of BIM & GIS to query management on pipeline of building-A case study of dormitory. In: 2017 IEEE International Conference on Applied System Innovation, ICASI 2017, pp. 944–947 (2017). https://doi.org/10.1109/ICASI.2017.7988597

  89. Tsilimantou, E., Delegou, E.T., Nikitakos, I.A., Ioannidis, C., Moropoulou, A.: GIS and BIM as integrated digital environments for modeling and monitoring of historic buildings. Appl. Sci. 10(3), 1078 (2020). https://doi.org/10.3390/app10031078

    Article  Google Scholar 

  90. Atyabi, S., Kiavarz Moghaddam, M., Rajabifard, A.: Optimization of emergency evacuation in fire building by integrated BIM and GIS. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XLII-4/W18, 131–139 (2019). https://doi.org/10.5194/isprs-archives-XLII-4-W18-131-2019

    Article  Google Scholar 

  91. Vacca, G., Quaquero, E., Pili, D., Brandolini, M.: GIS-HBIM integration for the management of historical buildings. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XLII–2, 1129–1135 (2018). https://doi.org/10.5194/isprs-archives-XLII-2-1129-2018

    Article  Google Scholar 

  92. Wang, T., Krijnen, T., De Vries, B.: Combining GIS and BIM for facility reuse: a profiling approach. Research in Urban. Ser. 4 (1), 185–203 (2016). TU Delft. https://doi.org/10.7480/rius.4.824

  93. Wang, T.-K., Zhang, Q., Chong, H.-Y., Wang, X.: Integrated supplier selection framework in a resilient construction supply chain: An approach via analytic hierarchy process (AHP) and grey relational analysis (GRA). Sustainability 9(2), 289 (2017). https://doi.org/10.3390/su9020289

    Article  Google Scholar 

  94. Wong, J.K.W., Ge, J., He, S.X.: Digitisation in facilities management: a literature review and future research directions. Autom. Constr. 92, 312–326 (2018). https://doi.org/10.1016/j.autcon.2018.04.006

    Article  Google Scholar 

  95. Wu, B., Zhang, S.: Integration of GIS And BIM for indoor geovisual analytics. ISPRS – Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XLI-B2, 455–458 (2016). https://doi.org/10.5194/isprsarchives-XLI-B2-455-2016

    Article  Google Scholar 

  96. Yang, X., Grussenmeyer, P., Koehl, M., Macher, H., Murtiyoso, A., Landes, T.: Review of built heritage modelling: integration of HBIM and other information techniques. J. Cult. Herit. (2020). https://doi.org/10.1016/j.culher.2020.05.008

    Article  Google Scholar 

  97. Baik, A., Yaagoubi, R., Boehm, J.: Integration of jeddah historical bim and 3D GIS for documentation and restoration of historical monument. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XL-5/W7, 29–34 (2015). https://doi.org/10.5194/isprsarchives-XL-5-W7-29-2015

    Article  Google Scholar 

  98. Bayat, H., Delavar, M.R., Barghi, W., EslamiNezhad, S.A., Hanachi, P., Zlatanova, S.: Modeling of emergency evacuation in building fire. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XLIII-B4-2020, 321–327 (2020). https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-321-2020

    Article  Google Scholar 

  99. Bottaccioli, L., et al.: Building energy modelling and monitoring by integration of IoT devices and building information models. In: 41st IEEE Annual Computer Software and Applications Conference, COMPSAC 2017, vol. 1, pp. 914–922 (2017). https://doi.org/10.1109/COMPSAC.2017.75

  100. Boyes, G.A., Ellul, C., Irwin, D.: Exploring BIM for operational integrated asset management – a preliminary study utilising real-world infrastructure data. ISPRS Ann. Photogram. Remote Sens. Spat. Inf. Sci. IV-4/W5, 49–56 (2017). https://doi.org/10.5194/isprs-annals-IV-4-W5-49-2017

    Article  Google Scholar 

  101. Bruno, N., Rechichi, F., Achille, C., Zerbi, A., Roncella, R., Fassi, F.: Integration of historical GIS data in a HBIM system. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XLIII-B4-2020, 427–434 (2020). https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-427-2020

    Article  Google Scholar 

  102. Cecchini, C., Magrini, A., Morandotti, M.: The energy-oriented management of public historic buildings: an integrated approach and methodology applications. Sustainability 12(11), 4576 (2020). https://doi.org/10.3390/su12114576

    Article  Google Scholar 

  103. Ding, X., Yang, J., Liu, L., Huang, W., Peng, W.: Integrating IFC and CityGML model at schema level by using linguistic and text mining techniques. IEEE Access 8, 56429–56440 (2020). https://doi.org/10.1109/ACCESS.2020.2982044

    Article  Google Scholar 

  104. Sani, M.J., Musliman, I.A., Abdul Rahman, A.: Extraction and transformation of IFC data to CityGML format. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XLII-4/W16, 595–601 (2019). https://doi.org/10.5194/isprs-archives-XLII-4-W16-595-2019

    Article  Google Scholar 

  105. Tauscher, H., Lim, J., Stouffs, R.: A modular graph transformation rule set for IFC-to-CityGML conversion. Trans. GIS (2021). https://doi.org/10.1111/tgis.12723

    Article  Google Scholar 

  106. Wang, N., Issa, R.R.A.: Ontology-based integration of BIM and GIS for indoor routing. In: Construction Research Congress 2020: Computer Applications, pp. 1010–1019 (2020). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096758553&partnerID=40&md5=6252ce45ea5a010be73336c8b97537ea

  107. Usmani, A.U., Jadidi, M., Sohn, G.: Automatic ontology generation of BIM and GIS data. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XLIII-B4-2020, 77–80 (2020). https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-77-2020

    Article  Google Scholar 

  108. BuildingSMART: Calls for Participation (2019). https://www.buildingsmart.org/standards/calls-for-participation/

  109. Murphy, M., Mcgovern, E., Pavia, S.: Historic building information modelling (HBIM). Struct. Surv. 27(4), 311–327 (2009). https://doi.org/10.1108/02630800910985108

    Article  Google Scholar 

  110. Vacca, G., Quaquero, E., Pili, D., Brandolini, M.: Integrating BIM and GIS data to support the management of large building stocks. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 42(4), 717–724 (2018). https://doi.org/10.5194/isprs-archives-XLII-4-647-2018

    Article  Google Scholar 

  111. Malinverni, E.S., Naticchia, B., Lerma Garcia, J.L., Gorreja, A., Lopez Uriarte, J., Di Stefano, F.: A semantic graph database for the interoperability of 3D GIS data. Appl. Geom. 1, 14 (2020). https://doi.org/10.1007/s12518-020-00334-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Mangia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mangia, M., Lazoi, M., Mangialardi, G. (2022). Digital Management of Large Building Stocks: BIM and GIS Integration-Based Systems. In: Canciglieri Junior, O., Noël, F., Rivest, L., Bouras, A. (eds) Product Lifecycle Management. Green and Blue Technologies to Support Smart and Sustainable Organizations. PLM 2021. IFIP Advances in Information and Communication Technology, vol 639. Springer, Cham. https://doi.org/10.1007/978-3-030-94335-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94335-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94334-9

  • Online ISBN: 978-3-030-94335-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation