Multiple Water Reservoirs in African Continent: Scarcity, Abundance and Distribution

  • Conference paper
  • First Online:
Innovations in Smart Cities Applications Volume 5 (SCA 2021)

Abstract

The focus of this article is to give an overview of inland water bodies (lakes, dams and lagoons) and surface water bodies (rivers and wetlands), as well as the various groundwater reserves (water tables and aquifers). These natural water reservoirs, its distribution in Africa plays a fundamental role in the constraint of its geological evolution and habitability. The aquifers constitute good underground water reservoirs, from fissured or fractured rocks, allowing a water supply, which are less sensitive to climatic variations. On the other hand, surface waters are more sensitive to pollution and drought. The framework for sustaining and preserving these resources is good environmental management of the various watersheds and coastal zone planning. In addition, the control of groundwater pum**, to avoid a drop in piezometric levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 06 May 2022

    The original version of this book was inadvertently published with an error. The folowing corrections have been updated in Chapter 51 (Multiple Water Reservoirs in African Continent: Scarcity, Abundance and Distribution):

References

  1. G.M. Bombelli et al., Impact of Prospective Climate Change Scenarios upon Hydropower Potential of Ethiopia in GERD and GIBE Dams. Water. 13(5), 716 (2021). https://doi.org/10.3390/w13050716

  2. A.V. Borges et al., Globally significant greenhouse-gas emissions from African inland waters. Nat. Geosci. 8(8), 637–642 (2015). https://doi.org/10.1038/ngeo2486

    Article  Google Scholar 

  3. J. Brendryen et al., Eurasian Ice Sheet collapse was a major source of Meltwater Pulse 1A 14,600 years ago. Nat. Geosci. 13(5), 363–368 (2020). https://doi.org/10.1038/s41561-020-0567-4

    Article  Google Scholar 

  4. BRGM: Une carte hydrogéologique de l’Afrique | BRGM, https://www.brgm.fr/fr/reference-projet-acheve/carte-hydrogeologique-afrique. Accessed 3 Aug 2021

  5. S. Brunel, L’Afrique: un continent en réserve de développement. Editions Bréal (2003)

    Google Scholar 

  6. A.D. Canning et al., Financial incentives for large-scale wetland restoration: beyond markets to common asset trusts. One Earth. 4(7), 937–950 (2021). https://doi.org/10.1016/j.oneear.2021.06.006

    Article  Google Scholar 

  7. B. Caputo et al., Anopheles gambiae complex along The Gambia river, with particular reference to the molecular forms of an. Malar. J. 7(1), 182 (2008). https://doi.org/10.1186/1475-2875-7-182, gambiae s.s.

  8. A. Carletti et al., A combined methodology for estimating the potential natural aquifer recharge in an arid environment. Hydrol. Sci. J. 64(14), 1727–1745 (2019). https://doi.org/10.1080/02626667.2019.1662422

    Article  Google Scholar 

  9. J. Casanova et al., Recharge artificielle des eaux souterraines : état de l’art et perspectives. BRGM (2013)

    Google Scholar 

  10. D. Conway, From headwater tributaries to international river: observing and adapting to climate variability and change in the Nile basin. Glob. Environ. Chang. 15(2), 99–114 (2005). https://doi.org/10.1016/j.gloenvcha.2005.01.003

    Article  Google Scholar 

  11. A.G. Crosby et al., Structure and evolution of the intracratonic Congo Basin. Geochem. Geophys. Geosystems. 11(6) (2010). https://doi.org/10.1029/2009GC003014.

  12. D. Defrance et al., Consequences of rapid ice sheet melting on the Sahelian population vulnerability. PNAS 114(25), 6533–6538 (2017). https://doi.org/10.1073/pnas.1619358114

    Article  Google Scholar 

  13. L. Descroix et al., Spatio-temporal variability of hydrological regimes around the boundaries between Sahelian and Sudanian areas of West Africa: a synthesis. J. Hydrol. 375(1), 90–102 (2009). https://doi.org/10.1016/j.jhydrol.2008.12.012

    Article  Google Scholar 

  14. P.R. Elsen et al., Global patterns of protection of elevational gradients in mountain ranges. PNAS 115(23), 6004–6009 (2018). https://doi.org/10.1073/pnas.1720141115

    Article  Google Scholar 

  15. FAO: The state of the world’s land and water resources for food and agriculture: Managing systems at risk. FAO, Earthscan from Routledge, London, England (2011)

    Google Scholar 

  16. C.M. Fraser et al., A methodology to identify vulnerable transboundary aquifer hotspots for multi-scale groundwater management. Water Int. 45(7–8), 865–883 (2020). https://doi.org/10.1080/02508060.2020.1832747

    Article  Google Scholar 

  17. R.W. Healy, Estimating Groundwater Recharge. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511780745

  18. A. Hussaini et al., Change detection for the past three decades using geospatial approach in Lake Chad, Central Africa. IOP Conf. Ser. Earth Environ. Sci. 540, 012001 (2020). https://doi.org/10.1088/1755-1315/540/1/012001

  19. E. Kadima et al., Structure and geological history of the Congo Basin: an integrated interpretation of gravity, magnetic and reflection seismic data. Basin Res. 23(5), 499–527 (2011). https://doi.org/10.1111/j.1365-2117.2011.00500.x

    Article  Google Scholar 

  20. A.-H.A. Khedr, Vegetation zonation and management in the Damietta estuary of the River Nile. J. Coast Conserv. 4(1), 79–86 (1998). https://doi.org/10.1007/BF02806493

    Article  Google Scholar 

  21. M. Konaté et al., Structural evolution of the Téfidet trough (East Aïr, Niger) in relation with the West African Cretaceous and Paleogene rifting and compression episodes. C.R. Geosci. 351(5), 355–365 (2019). https://doi.org/10.1016/j.crte.2018.11.009

    Article  Google Scholar 

  22. Y.J.-M. Koné et al., The role of macrophytes in biogenic silica storage in ivory coast lagoons1. Front. Earth Sci. 7, 248 (2019). https://doi.org/10.3389/feart.2019.00248

    Article  Google Scholar 

  23. M.J. Leblanc et al., Land clearance and hydrological change in the Sahel: SW Niger. Glob. Planet. Chang. 61(3), 135–150 (2008). https://doi.org/10.1016/j.gloplacha.2007.08.011

    Article  Google Scholar 

  24. R. Mahmood et al., Analysis of climate variability, trends, and prediction in the most active parts of the Lake Chad basin, Africa. Sci. Rep. 9(1), 6317 (2019). https://doi.org/10.1038/s41598-019-42811-9

  25. I. Mamadou et al., Exorheism growth as an explanation of increasing flooding in the Sahel. CATENA 131, 130–139 (2015). https://doi.org/10.1016/j.catena.2015.03.017

    Article  Google Scholar 

  26. G. Massazza et al., Recent changes in hydroclimatic patterns over medium Niger River basins at the origin of the 2020 flood in Niamey (Niger). Water. 13(12), 1659 (2021). https://doi.org/10.3390/w13121659

  27. B. Meinier, Transboundary Water Management in the Congo Basin. Creative Republic, Thomas Maxeiner Kommunikationsdesi, Deutsche Gesellschaft für Internationale Zusammenarbeit (2014)

    Google Scholar 

  28. A.-S. Mohamed et al., Impacts of climate change and anthropization on groundwater resources in the Nouakchott urban area (coastal Mauritania). C.R. Geosci. 349(6), 280–289 (2017). https://doi.org/10.1016/j.crte.2017.09.011

    Article  Google Scholar 

  29. S. Oiro et al., Using stable water isotopes to identify spatio-temporal controls on groundwater recharge in two contrasting East African aquifer systems. Hydrol. Sci. J. 63(6), 862–877 (2018). https://doi.org/10.1080/02626667.2018.1459625

    Article  Google Scholar 

  30. F.E. Oussou et al., Fracture aquifers identification in the Zou basin (West Africa) using remote sensing and GIS Geocarto Int. 1–24 (2020). https://doi.org/10.1080/10106049.2020.1852613

  31. J. Patrício et al., DPSIR—two decades of trying to develop a unifying framework for marine environmental management? Front. Mar. Sci. 3, 177 (2016). https://doi.org/10.3389/fmars.2016.00177

    Article  Google Scholar 

  32. T.M. Pavelsky, World’s landlocked basins drying. Nat. Geosci. 11(12), 892–893 (2018). https://doi.org/10.1038/s41561-018-0269-3

    Article  Google Scholar 

  33. L.J. Robbins et al., Hydrogeological constraints on the formation of Palaeoproterozoic banded iron formations. Nat. Geosci. 12(7), 558–563 (2019). https://doi.org/10.1038/s41561-019-0372-0

    Article  Google Scholar 

  34. S. Sarkar, R. Maity, Global climate shift in 1970s causes a significant worldwide increase in precipitation extremes. Sci. Rep. 11(1), 11574 (2021). https://doi.org/10.1038/s41598-021-90854-8

  35. S.P. Simonovic, Systems approach to management of water resources—toward performance based water resources engineering. Water. 12(4), 1208 (2020). https://doi.org/10.3390/w12041208

  36. Y. Tramblay et al., Observed changes in flood hazard in Africa. Environ. Res. Lett. 15(10), 1040b5 (2020). https://doi.org/10.1088/1748-9326/abb90b

  37. UNEP: Africa: Mountains Atlas. UNEP, AMCEM, United Kingdom (2014)

    Google Scholar 

  38. K.G. Wheeler et al., Exploring cooperative transboundary river management strategies for the eastern Nile Basin. Water Resour. Res. 54(11), 9224–9254 (2018). https://doi.org/10.1029/2017WR022149

    Article  Google Scholar 

  39. C. Wilcox et al., Trends in hydrological extremes in the Senegal and Niger Rivers. J. Hydrol. 566, 531–545 (2018). https://doi.org/10.1016/j.jhydrol.2018.07.063

    Article  Google Scholar 

  40. R.S. Winton et al., Potential of aquatic weeds to improve water quality in natural waterways of the Zambezi catchment. Sci. Rep. 10(1), 15467 (2020). https://doi.org/10.1038/s41598-020-72499-1

  41. M. Zeitoun, N. Mirumachi, Transboundary water interaction i: reconsidering conflict and cooperation. Int. Environ. Agreements 8(4), 297 (2008). https://doi.org/10.1007/s10784-008-9083-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed El Bakouri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El Bakouri, A., Bouita, M., Dimane, F., Tayebi, M., Belghyti, D. (2022). Multiple Water Reservoirs in African Continent: Scarcity, Abundance and Distribution. In: Ben Ahmed, M., Boudhir, A.A., KaraÈ™, Ä°.R., Jain, V., Mellouli, S. (eds) Innovations in Smart Cities Applications Volume 5. SCA 2021. Lecture Notes in Networks and Systems, vol 393. Springer, Cham. https://doi.org/10.1007/978-3-030-94191-8_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94191-8_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94190-1

  • Online ISBN: 978-3-030-94191-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation