Numerical Modeling of Electric and Magnetic Fields Induced by External Source in Frequency Domain

  • Conference paper
  • First Online:
High-Performance Computing Systems and Technologies in Scientific Research, Automation of Control and Production (HPCST 2021)

Abstract

To study effective electromagnetic properties of the heterogeneous media, it is important to know both electric and magnetic field distributions. In this paper, we consider the harmonic electromagnetic field induced by an external current source in the heterogeneous media. We propose an approach that couples the electric field and the magnetic field via special boundary conditions for the magnetic field strength, which act as a source of the magnetic field. Discretization of the mathematical model is performed by the vector finite element method in a space with partial continuity H (curl). Electric and magnetic fields are calculated on the same unstructured tetrahedral mesh. We analyze the behavior of the magnetic field obtained by means of our approach at the interfaces separating the media and contrasting conductive or magnetic inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 96.29
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mondol, N.H.: Well logging: principles, applications and uncertainties. In: Bjørlykke, K. (ed.) Petroleum Geoscience. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-642-34132-8_16

  2. Ziolkowski, A., Slob, E.: Introduction to Controlled-Source Electromagnetic Methods: Detecting Subsurface Fluids. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  3. North, L., Best, A.I., Sothcott, J., MacGregor, L.: Laboratory determination of the full electrical resistivity tensor of heterogeneous carbonate rocks at elevated pressures. Geophys. Prospect. 61(2), 458–470 (2013). Rock Physics for Reservoir Exploration, Characterization and Monitoring

    Google Scholar 

  4. Yu, M., Wu, D., Chen, Y., Wang, H., Chen, J.: Electromagnetic rock properties’ characterization and modeling using 3D micro-CT rock images. J. Electromagn. Waves Appl. 34(8), 1073–1089 (2020)

    Article  Google Scholar 

  5. Aladadi, Y.T., Alkanhal, M.A.S.: Classification and characterization of electromagnetic materials. Sci. Rep. 10(1), 1–11 (2020). https://doi.org/10.1038/s41598-020-68298-3

    Article  Google Scholar 

  6. Ouchetto, O., Zouhdi, S., Bossavit, A., Griso, G., Miara, B.: Modeling of 3-D periodic multiphase composites by homogenization. IEEE Trans. Microw. Theor. Tech. 54(6), 2615–2619 (2006)

    Article  Google Scholar 

  7. Zhang, F., Kang, L., Zhao, Q., Zhou, J., Lippens, D.: Magnetic and electric coupling effects of dielectric metamaterial. New J. Phys. 14(3), 033031 (2012)

    Article  Google Scholar 

  8. Wang, H., Yang, W., Huang, Y.: An adaptive edge finite element method for the Maxwell’s equations in metamaterials. Electron. Res. Arch. 28(2), 961 (2020)

    Article  MathSciNet  Google Scholar 

  9. Wallis, T., Kabos, P.: Nanoscale electromagnetic measurements for life science applications. In: Measurement Techniques for Radio Frequency Nanoelectronics. The Cambridge RF and Microwave Engineering Series, pp. 251–278. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  10. Ouchetto, O., Essakhi, B.: Frequency domain homogenization of Maxwell equations in complex media. Int. J. Eng. Math. Model. 2(1), 1–15 (2015)

    Google Scholar 

  11. Gallistl, D., Henning, P., Verfürth, B.: Numerical homogenization of H (curl)-problems. SIAM J. Numer. Anal. 56(3), 1570–1596 (2018)

    Article  MathSciNet  Google Scholar 

  12. Shurina, E.P., Epov, M.I., Shtabel, N.V., Mikhaylova, E.I.: The calculation of the effective tensor coefficient of the medium for the objects with microinclusions. Engineering 6(3), 101–112 (2014)

    Article  Google Scholar 

  13. Rajamohan, S.: A streamline upwind/Petrov-Galerkin FEM based time-accurate solution of 3D time-domain Maxwell’s equations for dispersive materials. Ph.D. dissertation. University of Tennessee at Chattanooga, Chattanooga, Tennessee (2014)

    Google Scholar 

  14. Sheu, T.W.H., Wang, Y.C., Li, J.H.: Development of a 3D staggered FDTD scheme for solving Maxwell’s equations in Drude medium. Comput. Math. Appl. 71(6), 1198–1226 (2016)

    Article  MathSciNet  Google Scholar 

  15. Kim, J.: Finite element time domain techniques for Maxwell’s equations based on differential forms. Ph.D. dissertation. Ohio State University, Columbus, Ohio (2011)

    Google Scholar 

  16. Ernst, O.G., Gander, M.J.: Why it is difficult to solve Helmholtz problems with classical iterative methods. In: Graham, I., Hou, T., Lakkis, O., Scheichl, R. (eds.) Numerical Analysis of Multiscale Problems. Lecture Notes in Computational Science and Engineering, vol. 83. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-22061-6_10

  17. Bello, M., Liu, J., Guo, R.: Three-dimensional wide-band electromagnetic forward modelling using potential technique. Appl. Sci. 9(7), 1328 (2019)

    Article  Google Scholar 

  18. Niyonzima, I., Sabariego, R., Dular, P., Jacques, K., Geuzaine, C.: Multiscale finite element modeling of nonlinear magnetoquasistatic problems using magnetic induction conforming formulations. Multiscale Model. Simul. 16(1), 300–326 (2018)

    Article  MathSciNet  Google Scholar 

  19. Nédélec, J.-C.: Mixed finite elements in R3. Numer. Math. 3, 315–341 (1980). https://doi.org/10.1007/BF01396415

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The research was supported by Project No. FWZZ-2022-0025, Project No. FWZZ-2022-0030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda Shtabel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shtabel, N., Dobroliubova, D. (2022). Numerical Modeling of Electric and Magnetic Fields Induced by External Source in Frequency Domain. In: Jordan, V., Tarasov, I., Faerman, V. (eds) High-Performance Computing Systems and Technologies in Scientific Research, Automation of Control and Production. HPCST 2021. Communications in Computer and Information Science, vol 1526. Springer, Cham. https://doi.org/10.1007/978-3-030-94141-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94141-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94140-6

  • Online ISBN: 978-3-030-94141-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation