Ventilation

  • Chapter
  • First Online:
The Very Old Critically Ill Patients

Part of the book series: Lessons from the ICU ((LEICU))

  • 781 Accesses

Abstract

In this chapter the reader will learn the physiological effects and the commonly accepted indications for noninvasive respiratory support (high flow nasal cannulae [HFNC], noninvasive mechanical ventilation [NIMV]) and invasive mechanical ventilation (IMV), with special consideration to the elderly patient, whenever there is specific information in the literature regarding this age group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rochwerg B, Einav S, Chaudhuri D, et al. The role for high flow nasal cannula as a respiratory support strategy in adults: a clinical practice guideline. Intensive Care Med. 2020;46(12):2226–37.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Roca O, Riera J, Torres F, Masclans JR. High-flow oxygen therapy in acute respiratory failure. Respir Care. 2010;55(4):408–13.

    PubMed  Google Scholar 

  3. Tiruvoipati R, Lewis D, Haji K, Botha J. High-flow nasal oxygen vs high-flow face mask: a randomized crossover trial in extubated patients. J Crit Care. 2010;25(3):463–8.

    Article  PubMed  Google Scholar 

  4. Rittayamai N, Tscheikuna J, Rujiwit P. High-flow nasal cannula versus conventional oxygen therapy after endotracheal extubation: a randomized crossover physiologic study. Respir Care. 2014;59(4):485–90.

    Article  PubMed  Google Scholar 

  5. Sim MA, Dean P, Kinsella J, et al. Performance of oxygen delivery devices when the breathing pattern of respiratory failure is simulated. Anaesthesia. 2008;63(9):938–40.

    Article  CAS  PubMed  Google Scholar 

  6. Ritchie JE, Williams AB, Gerard C, Hockey H. Evaluation of a humidified nasal high-flow oxygen system, using oxygraphy, capnography and measurement of upper airway pressures. Anaesth Intensive Care. 2011;39(6):1103–10.

    Article  CAS  PubMed  Google Scholar 

  7. Wagstaff TA, Soni N. Performance of six types of oxygen delivery devices at varying respiratory rates. Anaesthesia. 2007;62(5):492–503.

    Article  CAS  PubMed  Google Scholar 

  8. Parke RL, McGuinness SP. Pressures delivered by nasal high flow oxygen during all phases of the respiratory cycle. Respir Care. 2013;58(10):1621–4.

    Article  PubMed  Google Scholar 

  9. Parke RL, Eccleston ML, McGuinness SP. The effects of flow on airway pressure during nasal high-flow oxygen therapy. Respir Care. 2011;56(8):1151–5.

    Article  PubMed  Google Scholar 

  10. Groves N, Tobin A. High flow nasal oxygen generates positive airway pressure in adult volunteers. Aust Crit Care. 2007;20(4):126–31.

    Article  PubMed  Google Scholar 

  11. Parke R, McGuinness S, Dixon R, Jull A. Open-label, phase II study of routine high-flow nasal oxygen therapy in cardiac surgical patients. Br J Anaesth. 2013;111(6):925–31.

    Article  CAS  PubMed  Google Scholar 

  12. Corley A, Caruana LR, Barnett AG, et al. Oxygen delivery through high-flow nasal cannulae increase end-expiratory lung volume and reduce respiratory rate in postcardiac surgical patients. Br J Anaesth. 2011;107(6):998–1004.

    Article  CAS  PubMed  Google Scholar 

  13. Frat JP, Brugiere B, Ragot S, et al. Sequential application of oxygen therapy via high-flow nasal cannula and noninvasive ventilation in acute respiratory failure: an observational pilot study. Respir Care. 2015;60(2):170–8.

    Article  PubMed  Google Scholar 

  14. Schwabbauer N, Berg B, Blumenstock G, et al. Nasal high-flow oxygen therapy in patients with hypoxic respiratory failure: effect on functional and subjective respiratory parameters compared to conventional oxygen therapy and non-invasive ventilation (NIV). BMC Anesthesiol. 2014;14:66. https://doi.org/10.1186/1471-2253-14-66. eCollection 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nishimura M. High-flow nasal cannula oxygen therapy in adults: physiological benefits, indication, clinical benefits, and adverse effects. Respir Care. 2016;61(4):529–41.

    Article  PubMed  Google Scholar 

  16. Nedel WL, Deutschendorf C, Moraes Rodrigues Filho E. High-flow nasal cannula in critically ill subjects with or at risk for respiratory failure: a systematic review and meta-analysis. Respir Care. 2017;62(1):123–32.

    Article  PubMed  Google Scholar 

  17. Luo J, Duke T, Chisti MJ, Kepreotes E, Kalinowski V, Li J. Efficacy of high-flow nasal cannula vs standard oxygen therapy or nasal continuous positive airway pressure in children with respiratory distress: a meta-analysis. J Pediatr. 2019;215:199–208.

    Article  CAS  PubMed  Google Scholar 

  18. Lewis SR, Baker PE, Parker R, Smith AF. High-flow nasal cannulae for respiratory support in adult intensive care patients. Cochrane Database Syst Rev. 2021;3(3):CD010172. https://doi.org/10.1002/14651858.CD010172.pub3. PMID: 33661521; PMCID: PMC8094160.

    Article  PubMed  Google Scholar 

  19. Azoulay E, Lemiale V, Mokart D, et al. Effect of high-flow nasal oxygen vs standard oxygen on 28-day mortality in immunocompromised patients with acute respiratory failure: the HIGH randomized clinical trial. JAMA. 2018;320(20):2099–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bell N, Hutchinson CL, Green TC, Rogan E, Bein KJ, Dinh MM. Randomised control trial of humidified high flow nasal cannulae versus standard oxygen in the emergency department. Emerg Med Austr EMA. 2015;7(6):537–41.

    Article  Google Scholar 

  21. Frat JP, Thille AW, Mercat A, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372(23):2185–96.

    Article  CAS  PubMed  Google Scholar 

  22. Jones PG, Kamona S, Doran O, Sawtell F, Wilsher M. Randomized controlled trial of humidified high-flow nasal oxygen for acute respiratory distress in the emergency department: the HOT-ER study. Respir Care. 2016;61(3):291–9.

    Article  PubMed  Google Scholar 

  23. Lemiale V, Mokart D, Mayaux J, et al. The effects of a 2-h trial of high-flow oxygen by nasal cannula versus Venturi mask in immunocompromised patients with hypoxemic acute respiratory failure: a multicenter randomized trial. Crit Care. 2015;19:380.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Makdee O, Monsomboon A, Surabenjawong U, et al. High-flow nasal cannula versus conventional oxygen therapy in emergency department patients with cardiogenic pulmonary edema: a randomized controlled trial. Ann Emerg Med. 2017;70(4):465–72.

    Article  PubMed  Google Scholar 

  25. Ferreyro BL, Angriman F, Munshi L, et al. Association of Noninvasive Oxygenation Noninvasive ventilation in adults with acute respiratory failure: strategies with all-cause mortality in adults with acute hypoxemic respiratory failure: a systematic review and meta-analysis. JAMA. 2020;324(1):57–67.

    Article  CAS  PubMed  Google Scholar 

  26. Grieco DL, Menga LS, Raggi V, Bongiovanni F, Anzellotti GM, Tanzarella ES, Bocci MG, Mercurio G, Dell’Anna AM, Eleuteri D, Bello G, Maviglia R, Conti G, Maggiore SM, Antonelli M. Physiological comparison of high-flow nasal cannula and helmet noninvasive ventilation in acute hypoxemic respiratory failure. Am J Respir Crit Care Med. 2020;201(3):303–12.

    Article  PubMed  Google Scholar 

  27. Jaber S, Monnin M, Girard M, et al. Apnoeic oxygenation via high-flow nasal cannula oxygen combined with non-invasive ventilation preoxygenation for intubation in hypoxaemic patients in the intensive care unit: the single-Centre, blinded, randomized controlled OPTINIV trial. Intensive Care Med. 2016;42(12):1877–87.

    Article  CAS  PubMed  Google Scholar 

  28. Miguel-Montanes R, Hajage D, Messika J, et al. Use of high-flow nasal cannula oxygen therapy to prevent desaturation during tracheal intubation of intensive care patients with mild-to-moderate hypoxemia. Crit Care Med Crit Care Med. 2015;43(3):574–83.

    Article  CAS  PubMed  Google Scholar 

  29. Vourc'h M, Asfar P, Volteau C, et al. High-flow nasal cannula oxygen during endotracheal intubation in hypoxemic patients: a randomized controlled clinical trial. Intensive Care Med. 2015;41:1538.29.

    Google Scholar 

  30. Semler MW, Janz DR, Lentz RJ, et al. Randomized trial of Apneic oxygenation during endotracheal intubation of the critically ill. Am J Respir Crit Care Med. 2016;193(3):273–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hernandez G, Vaquero C, Gonzalez P, et al. Effect of postextubation high-flow nasal cannula vs conventional oxygen therapy on reintubation in low-risk patients: a randomized clinical trial. JAMA. 2016;315(13):1354–61.

    Article  CAS  PubMed  Google Scholar 

  32. Futier E, Paugam-Burtz C, Godet T, et al. Effect of early postextubation high-flow nasal cannula vs conventional oxygen therapy on hypoxaemia in patients after major abdominal surgery: a French multicentre randomised controlled trial (OPERA). Intensive Care Med. 2016;42(12):1888–98.

    Article  CAS  PubMed  Google Scholar 

  33. Maggiore SM, Idone FA, Vaschetto R, et al. Nasal high-flow versus Venturi mask oxygen therapy after extubation. Effects on oxygenation, comfort, and clinical outcome. Am J Respir Crit Care Med. 2014;190(3):282–8.

    Article  PubMed  Google Scholar 

  34. Fernandez R, Subira C, Frutos-Vivar F, et al. High-flow nasal cannula to prevent postextubation respiratory failure in high-risk non-hypercapnic patients: a randomized multicenter trial. Ann Intensive Care. 2017;7(1):47. https://doi.org/10.1186/s13613-017-0270-9. Epub 2017 May 2. PMID: 28466461; PMCID: PMC5413462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Song HZ, Gu JX, **u HQ, Cui W, Zhang GS. The value of high-flow nasal cannula oxygen therapy after extubation in patients with acute respiratory failure. Clinics (Sao Paulo). 2017;72(9):562–7.

    Article  Google Scholar 

  36. Hernandez G, Vaquero C, Colinas L, et al. Effect of postextubation high-flow nasal cannula vs noninvasive ventilation on reintubation and postextubation respiratory failure in high-risk patients: a randomized clinical trial. JAMA. 2016;316(15):1565–74.

    Article  CAS  PubMed  Google Scholar 

  37. Theerawit PN, Sutherasan Y. The efficacy of the Whisperflow CPAP system versus high flow nasal cannula in patients at high risk for postextubation failure. J Crit Care. 2021;63:117–23.

    Article  PubMed  Google Scholar 

  38. **g G, Li J, Hao D, et al. Comparison of high flow nasal cannula with noninvasive ventilation in chronic obstructive pulmonary disease patients with hypercapnia in preventing postextubation respiratory failure: a pilot randomized controlled trial. Res Nurs Health. 2019;42(3):217–25.

    Article  PubMed  Google Scholar 

  39. Stephan F, Barrucand B, Petit P, et al. High-flow nasal oxygen vs noninvasive positive airway pressure in hypoxemic patients after cardiothoracic surgery: a randomized clinical trial. JAMA. 2015;313(23):2331–9.

    Article  CAS  PubMed  Google Scholar 

  40. Lu Z, Chang W, Meng S, et al. The effect of high-flow nasal oxygen therapy on postoperative pulmonary complications and hospital length of stay in postoperative patients: a systematic review and meta-analysis. J Intensive Care Med. 2020;35:1129–40.

    Article  PubMed  Google Scholar 

  41. Ansari BM, Hogan MP, Collier TJ, et al. A randomized controlled trial of high-flow nasal oxygen (Optiflow) as part of an enhanced recovery program after lung resection surgery. Ann Thorac Surg. 2016;101(2):459–64.

    Article  PubMed  Google Scholar 

  42. Brainard J, Scott BK, Sullivan BL, et al. Heated humidified high-flow nasal cannula oxygen after thoracic surgery—a randomized prospective clinical pilot trial. J Crit Care. 2017;40:225–8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Corley A, Bull T, Spooner AJ, Barnett AG, Fraser JF. Direct extubation onto high-flow nasal cannulae post-cardiac surgery versus standard treatment in patients with a BMI >/=30: a randomised controlled trial. Intensive Care Med. 2015;41(5):887–94.

    Article  PubMed  Google Scholar 

  44. Pennisi MA, Bello G, Congedo MT, et al. Early nasal high-flow versus Venturi mask oxygen therapy after lung resection: a randomized trial. Crit Care (Lond Engl). 2019;23(1):68. https://doi.org/10.1186/s13054-019-2361-5.

    Article  Google Scholar 

  45. Sahin M, El H, Akkoc I. Comparison of mask oxygen therapy and high-flow oxygen therapy after cardiopulmonary bypass in obese patients. Can Respir J. 2018;2018:1039635. https://doi.org/10.1155/2018/1039635. PMID: 29623135; PMCID: PMC5829344

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tatsuishi W, Sato T, Kataoka G, Sato A, Asano R, Nakano K. High-flow nasal cannula therapy with early extubation for subjects undergoing off-pump coronary artery bypass graft surgery. Respir Care. 2020;65(2):183–90.

    Article  PubMed  Google Scholar 

  47. Yu Y, Qian X, Liu C, Zhu C. Effect of high-flow nasal cannula versus conventional oxygen therapy for patients with thoracoscopic lobectomy after extubation. Can Respir J. 2017;2017:7894631. https://doi.org/10.1155/2017/7894631. Epub 2017 Feb 19

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zochios V, Collier T, Blaudszun G, et al. The effect of high-flow nasal oxygen on hospital length of stay in cardiac surgical patients at high risk for respiratory complications: a randomised controlled trial. Anaesthesia. 2018;73(12):1478–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roca O, Messika J, Caralt B, et al. Predicting success of high-flow nasal cannula in pneumonia patients with hypoxemic respiratory failure: the utility of the ROX index. J Crit Care. 2016;35:200–5.

    Article  PubMed  Google Scholar 

  50. Roca O, Caralt B, Messika J, et al. An index combining respiratory rate and oxygenation to predict outcome of nasal high-flow therapy. Am J Respir Crit Care Med. 2019;199(11):1368–76.

    Article  PubMed  Google Scholar 

  51. Vega ML, Dongilli R, Olaizola G, Colaianni N, Sayat MC, Pisani L, Romagnoli M, Spoladore G, Prediletto I, Montiel G, Nava S. COVID-19 pneumonia and ROX index: time to set a new threshold for patients admitted outside the ICU. Pulmonology. 2021;S2531-0437(21)00092-1 https://doi.org/10.1016/j.pulmoe.2021.04.003.

  52. Cornillon A, Balbo J, Coffinet J, Floch T, Bard M, Giordano-Orsini G, Malinovsky JM, Kanagaratnam L, Michelet D, Legros V. The ROX index as a predictor of standard oxygen therapy outcomes in thoracic trauma. Scand J Trauma Resusc Emerg Med. 2021;29(1):81. https://doi.org/10.1186/s13049-021-00876-4.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Drinker PA, McKhann CF 3rd. Landmark perspective: the iron lung. First practical means of respiratory support. JAMA. 1986;255(11):1476–80.

    Article  CAS  PubMed  Google Scholar 

  54. Motley HL, Cournand A, et al. Intermittent positive pressure breathing; a means of administering artificial respiration in man. JAMA. 1948;137(4):370–82.

    Article  CAS  Google Scholar 

  55. Motley HL, Lang LP, Gordon B. Use of intermittent positive pressure breathing combined with nebulization in pulmonary disease. Am J Med. 1948;5(6):853–6.

    Article  CAS  PubMed  Google Scholar 

  56. Sullivan CE, Issa FG, Berthon-Jones M, Eves L. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet. 1981;1(8225):862–5.

    Article  CAS  PubMed  Google Scholar 

  57. Kerby GR, Mayer LS, **leton SK. Nocturnal positive pressure ventilation via nasal mask. Am Rev Respir Dis. 1987;135(3):738–40.

    CAS  PubMed  Google Scholar 

  58. Bersten AD, Holt AW, Vedig AE, Skowronski GA, Baggoley CJ. Treatment of severe cardiogenic pulmonary edema with continuous positive airway pressure delivered by face mask. N Engl J Med. 1991;325(26):1825–30.

    Article  CAS  PubMed  Google Scholar 

  59. Bott J, Carroll MP, Conway JH, et al. Randomised controlled trial of nasal ventilation in acute ventilatory failure due to chronic obstructive airways disease. Lancet. 1993;341(8860):1555–7.

    Article  CAS  PubMed  Google Scholar 

  60. Brochard L, Mancebo J, Wysocki M, et al. Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med. 1995;333(13):817–22.

    Article  CAS  PubMed  Google Scholar 

  61. British Thoracic Society Standards of Care Committee. Non-invasive ventilation in acute respiratory failure. Thorax. 2002;57(3):192–211.

    Article  Google Scholar 

  62. Antonelli M, Conti G. Noninvasive positive pressure ventilation as treatment for acute respiratory failure in critically ill patients. Crit Care. 2000;4(1):15–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stevenson NJ, Walker PP, Costello RW, Calverley PM. Lung mechanics and dyspnea during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;172(12):1510–6.

    Article  PubMed  Google Scholar 

  64. O’Donnell DE, Parker CM. COPD exacerbations. 3: pathophysiology. Thorax. 2006;61(4):354–61.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Organized jointly by the American Thoracic Society, the European Respiratory Society, the European Society of Intensive Care Medicine, and the Société de Réanimation de Langue Française, and approved by ATS Board of Directors, December 2000. International Consensus Conferences in Intensive Care Medicine: noninvasive positive pressure ventilation in acute Respiratory failure. Am J Respir Crit Care Med. 2001;163(1):283–91.

    Google Scholar 

  66. Williams JW Jr, Cox CE, Hargett CW, et al. Noninvasive Positive-Pressure Ventilation (NPPV) for Acute Respiratory Failure [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2012 Jul. Report No.: 12-EHC089-EF. PMID: 22876372.

    Google Scholar 

  67. Diaz O, Iglesia R, Ferrer M, et al. Effects of noninvasive ventilation on pulmonary gas exchange and hemodynamics during acute hypercapnic exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1997;156(6):1840–5.

    Article  CAS  PubMed  Google Scholar 

  68. Lindenauer PK, Stefan MS, Shieh MS, Pekow PS, Rothberg MB, Hill NS. Outcomes associated with invasive and noninvasive ventilation among patients hospitalized with exacerbations of chronic obstructive pulmonary disease. JAMA Intern Med. 2014;174(12):1982–93.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Osadnik CR, Tee VS, Carson-Chahhoud KV, Picot J, Wedzicha JA, Smith BJ. Non-invasive ventilation for the management of acute hypercapnic respiratory failure due to exacerbation of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2017;7(7):CD004104. https://doi.org/10.1002/14651858.CD004104.pub4. PMID: 28702957; PMCID: PMC6483555.

    Article  PubMed  Google Scholar 

  70. Conti G, Antonelli M, Navalesi P, et al. Noninvasive vs. conventional mechanical ventilation in patients with chronic obstructive pulmonary disease after failure of medical treatment in the ward: a randomized trial. Intensive Care Med. 2002;28(12):1701–7.

    Article  CAS  PubMed  Google Scholar 

  71. Kramer N, Meyer TJ, Meharg J, Cece RD, Hill NS. Randomized, prospective trial of noninvasive positive pressure ventilation in acute respiratory failure. Am J Respir Crit Care Med. 1995;151(6):1799–806.

    Article  CAS  PubMed  Google Scholar 

  72. Angus RM, Ahmed AA, Fenwick LJ, Peacock AJ. Comparison of the acute effects on gas exchange of nasal ventilation and doxapram in exacerbations of chronic obstructive pulmonary disease. Thorax. 1996;51(10):1048–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Celikel T, Sungur M, Ceyhan B, Karakurt S. Comparison of noninvasive positive pressure ventilation with standard medical therapy in hypercapnic acute respiratory failure. Chest. 1998;114(6):1636–42.

    Article  CAS  PubMed  Google Scholar 

  74. Plant PK, Owen JL, Elliott MW. Early use of non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease on general respiratory wards: a multicentre randomised controlled trial. Lancet. 2000;355(9219):1931–5.

    Article  CAS  PubMed  Google Scholar 

  75. Mehta S, Hill NS. Noninvasive ventilation. Am J Respir Crit Care Med. 2001;163(2):540–77.

    Article  CAS  PubMed  Google Scholar 

  76. Wedzicha JA Ers Co-Chair, Miravitlles M, Hurst JR, Calverley PM, Albert RK, Anzueto A, Criner GJ, Papi A, Rabe KF, Rigau D, Sliwinski P, Tonia T, Vestbo J, Wilson KC, Krishnan JA Ats Co-Chair. Management of COPD exacerbations: a European Respiratory Society/American Thoracic Society guideline. Eur Respir J. 2017;49(3):1600791. https://doi.org/10.1183/13993003.00791-2016. PMID: 28298398.

    Article  PubMed  Google Scholar 

  77. Roberts CM, Stone RA, Buckingham RJ, Pursey NA, Lowe D, National Chronic Obstructive Pulmonary Disease Resources and Outcomes Project Implementation Group. Acidosis, non-invasive ventilation and mortality in hospitalised COPD exacerbations. Thorax. 2011;66(1):43–8.

    Article  CAS  PubMed  Google Scholar 

  78. National Collaborating Centre for Chronic Conditions. Chronic obstructive pulmonary disease. National clinical guideline on management of chronic obstructive pulmonary disease in adults in primary and secondary care. Thorax. 2004;59(Suppl 1):1–232.

    Google Scholar 

  79. National Clinical Guideline Centre. Chronic obstructive pulmonary disease: management of chronic obstructive pulmonary disease in adults in primary and secondary care. London: National Clinical Guideline Centre. 2010. Available at: http://guidance.nice.org.uk/CG101/Guidance/pdf/English.

  80. Connolly MJ. Acute non-invasive ventilation in older patients: medical evolution and improvement in survival of the un-fittest. Age Ageing. 2011;40(4):414–6.

    Article  PubMed  Google Scholar 

  81. Nava S, Grassi M, Fanfulla F, et al. Non-invasive ventilation in elderly patients with acute hypercapnic respiratory failure: a randomised controlled trial. Age Ageing. 2011;40(4):444–50.

    Article  PubMed  Google Scholar 

  82. Balami JS, Packham SM, Gosney MA. Non-invasive ventilation for respiratory failure due to acute exacerbations of chronic obstructive pulmonary disease in older patients. Age Ageing. 2006;35(1):75–9.

    Article  CAS  PubMed  Google Scholar 

  83. Nicolini A, Santo M, Ferrera L, Ferrari-Bravo M, Barlascini C, Perazzo A. The use of non-invasive ventilation in very old patients with hypercapnic acute respiratory failure because of COPD exacerbation. Int J Clin Pract. 2014;68(12):1523–9.

    Article  CAS  PubMed  Google Scholar 

  84. Vaudan S, Ratano D, Beuret P, Hauptmann J, Contal O, Garin N. Impact of a dedicated noninvasive ventilation team on intubation and mortality rates in severe COPD exacerbations. Respir Care. 2015;60(10):1404–8.

    Article  PubMed  Google Scholar 

  85. Siirilä-Waris K, Lassus J, Melin J, Peuhkurinen K, Nieminen MS, Harjola VP, FINN-AKVA Study Group. Characteristics, outcomes, and predictors of 1-year mortality in patients hospitalized for acute heart failure. Eur Heart J. 2006;27(24):3011–7.

    Article  PubMed  Google Scholar 

  86. Girou E, Brun-Buisson C, Taillé S, Lemaire F, Brochard L. Secular trends in nosocomial infections and mortality associated with noninvasive ventilation in patients with exacerbation of COPD and pulmonary edema. JAMA. 2003;290(22):2985–91.

    Article  CAS  PubMed  Google Scholar 

  87. Nieminen MS, Böhm M, Cowie MR, ESC Committee for Practice Guideline (CPG). Executive summary of the guidelines on the diagnosis and treatment of acute heart failure: the Task Force on Acute Heart Failure of the European Society of Cardiology. Eur Heart J. 2005;26(4):384–416.

    Article  PubMed  Google Scholar 

  88. Gray A, Goodacre S, Newby DE, Masson M, Sampson F, Nicholl J. 3CPO Trialists. Noninvasive ventilation in acute cardiogenic pulmonary edema. N Engl J Med. 2008;359(2):142–51.

    Article  CAS  PubMed  Google Scholar 

  89. Masip J, Roque M, Sánchez B, Fernández R, Subirana M, Expósito JA. Noninvasive ventilation in acute cardiogenic pulmonary edema: systematic review and meta-analysis. JAMA. 2005;294(24):3124–30.

    Article  CAS  PubMed  Google Scholar 

  90. Potts JM. Noninvasive positive pressure ventilation: effect on mortality in acute cardiogenic pulmonary edema: a pragmatic meta-analysis. Pol Arch Med Wewn. 2009;119:349–53.

    PubMed  Google Scholar 

  91. Goodacre SW, Gray A, Newby D. Errors in meta-analysis regarding the 3CPO trial. Ann Intern Med. 2010;153(4):277–8.

    Article  PubMed  Google Scholar 

  92. Bello G, De Santis P, Antonelli M. Non-invasive ventilation in cardiogenic pulmonary edema. Ann Transl Med. 2018;6(18):355. https://doi.org/10.21037/atm.2018.04.39. PMID: 30370282; PMCID: PMC6186545.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Weng CL, Zhao YT, Liu QH, et al. Meta-analysis: noninvasive ventilation in acute cardiogenic pulmonary edema. Ann Intern Med. 2010;152(9):590–600.

    Article  PubMed  Google Scholar 

  94. Mariani J, Macchia A, Belziti C, et al. Noninvasive ventilation in acute cardiogenic pulmonary edema: a meta-analysis of randomized controlled trials. J Card Fail. 2011;17(10):850–9.

    Article  PubMed  Google Scholar 

  95. Nava S, Carbone G, DiBattista N, Bellone A, Baiardi P, Cosentini R, Marenco M, Giostra F, Borasi G, Groff P. Noninvasive ventilation in cardiogenic pulmonary edema: a multicenter randomized trial. Am J Respir Crit Care Med. 2003;168(12):1432–7.

    Article  PubMed  Google Scholar 

  96. Nouira S, Boukef R, Bouida W, et al. Non-invasive pressure support ventilation and CPAP in cardiogenic pulmonary edema: a multicenter randomized study in the emergency department. Intensive Care Med. 2011;37(2):249–56.

    Article  PubMed  Google Scholar 

  97. Masip J, Betbesé AJ, Páez J, et al. Non-invasive pressure support ventilation versus conventional oxygen therapy in acute cardiogenic pulmonary oedema: a randomised trial. Lancet. 2000;356(9248):2126–32.

    Article  CAS  PubMed  Google Scholar 

  98. Cabrini L, Landoni G, Oriani A, et al. Noninvasive ventilation and survival in acute care settings: a comprehensive systematic review and metaanalysis of randomized controlled trials. Crit Care Med. 2015;43(4):880–8.

    Article  PubMed  Google Scholar 

  99. Mehta S, Al-Hashim AH, Keenan SP. Noninvasive ventilation in patients with acute cardiogenic pulmonary edema. Respir Care. 2009;54(2):186–95.

    PubMed  Google Scholar 

  100. Winck JC, Azevedo LF, Costa-Pereira A, Antonelli M, Wyatt JC. Efficacy and safety of non-invasive ventilation in the treatment of acute cardiogenic pulmonary edema--a systematic review and meta-analysis. Crit Care. 2006;10(2):R69. https://doi.org/10.1186/cc4905. PMID: 16646987; PMCID: PMC1550884.

    Article  PubMed  PubMed Central  Google Scholar 

  101. L’Her E, Duquesne F, Girou E, et al. Noninvasive continuous positive airway pressure in elderly cardiogenic pulmonary edema patients. Intensive Care Med. 2004;30(5):882–8.

    Article  PubMed  Google Scholar 

  102. Ferrer M, Esquinas A, Leon M, Gonzalez G, Alarcon A, Torres A. Noninvasive ventilation in severe hypoxemic respiratory failure: a randomized clinical trial. Am J Respir Crit Care Med. 2003;168(12):1438–44.

    Article  PubMed  Google Scholar 

  103. Martin TJ, Hovis JD, Costantino JP, et al. A randomized, prospective evaluation of noninvasive ventilation for acute respiratory failure. Am J Respir Crit Care Med. 2000;161:807–13.

    Article  CAS  PubMed  Google Scholar 

  104. Antonelli M, Conti G, Rocco M, et al. A comparison of noninvasive positive-pressure ventilation and conventional mechanical ventilation in patients with acute respiratory failure. N Engl J Med. 1998;339(7):429–35.

    Article  CAS  PubMed  Google Scholar 

  105. Delclaux C, L’Her E, Alberti C, et al. Treatment of acute hypoxemic nonhypercapnic respiratory insufficiency with continuous positive airway pressure delivered by a face mask: a randomized controlled trial. JAMA. 2000;284(18):2352–60.

    Article  CAS  PubMed  Google Scholar 

  106. Keenan SP, Sinuff T, Cook DJ, Hill NS. Does noninvasive positive pressure ventilation improve outcome in acute hypoxemic respiratory failure? A systematic review. Crit Care Med. 2004;32(12):2516–23.

    Article  PubMed  Google Scholar 

  107. Hernandez G, Fernandez R, Lopez-Reina P, et al. Noninvasive ventilation reduces intubation in chest trauma-related hypoxemia: a randomized clinical trial. Chest. 2010;137(1):74–80.

    Article  PubMed  Google Scholar 

  108. Faria DA, da Silva EM, Atallah ÁN, Vital FM. Noninvasive positive pressure ventilation for acute respiratory failure following upper abdominal surgery. Cochrane Database Syst Rev. 2015;2015(10):CD009134. https://doi.org/10.1002/14651858.CD009134.pub2. PMID: 26436599; PMCID: PMC8080101.

    Article  PubMed Central  Google Scholar 

  109. Xu XP, Zhang XC, Hu SL, et al. Noninvasive ventilation in acute hypoxemic Nonhypercapnic respiratory failure: a systematic review and meta-analysis. Crit Care Med. 2017;45(7):e727–33. https://doi.org/10.1097/CCM.0000000000002361. PMID: 28441237; PMCID: PMC5470860.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Schettino G, Altobelli N, Kacmarek RM. Noninvasive positive-pressure ventilation in acute respiratory failure outside clinical trials: experience at the Massachusetts General Hospital. Crit Care Med. 2008;36(2):441–7.

    Article  PubMed  Google Scholar 

  111. Duan J, Chen L, Liang G, et al. Noninvasive ventilation failure in patients with hypoxemic respiratory failure: the role of sepsis and septic shock. Ther Adv Respir Dis. 2019;13:1753466619888124. https://doi.org/10.1177/1753466619888124. PMID: 31722614; PMCID: PMC6856973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Baldomero AK, Melzer AC, Greer N, et al. Effectiveness and harms of high-flow nasal oxygen for acute respiratory failure: an evidence report for a clinical guideline from the American College of Physicians. Ann Intern Med. 2021;174(7):952–66.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Bellani G, Laffey JG, Pham T, LUNG SAFE Investigators, ESICM Trials Group, et al. Noninvasive ventilation of patients with acute respiratory distress syndrome. Insights from the LUNG SAFE study. Am J Respir Crit Care Med. 2017;195(1):67–77.

    Article  PubMed  Google Scholar 

  114. Ferguson ND, Fan E, Camporota L, et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012;38(10):1573–82.

    Article  PubMed  Google Scholar 

  115. Antonelli M, Conti G, Bufi M, et al. Noninvasive ventilation for treatment of acute respiratory failure in patients undergoing solid organ transplantation: a randomized trial. JAMA. 2000;283(2):235–41.

    Article  CAS  PubMed  Google Scholar 

  116. Adda M, Coquet I, Darmon M, Thiery G, Schlemmer B, Azoulay E. Predictors of noninvasive ventilation failure in patients with hematologic malignancy and acute respiratory failure. Crit Care Med. 2008;36(10):2766–72.

    Article  PubMed  Google Scholar 

  117. Squadrone V, Massaia M, Bruno B, et al. Early CPAP prevents evolution of acute lung injury in patients with hematologic malignancy. Intensive Care Med. 2010;36(10):1666–74.

    Article  PubMed  Google Scholar 

  118. Gristina GR, Antonelli M, Conti G, GiViTI (Italian Group for the Evaluation of Interventions in Intensive Care Medicine), et al. Noninvasive versus invasive ventilation for acute respiratory failure in patients with hematologic malignancies: a 5-year multicenter observational survey. Crit Care Med. 2011;39(10):2232–9.

    Article  PubMed  Google Scholar 

  119. Lemiale V, Resche-Rigon M, Mokart D, et al. Acute respiratory failure in patients with hematological malignancies: outcomes according to initial ventilation strategy. A groupe de recherche respiratoire en réanimation onco-hématologique (Grrr-OH) study. Ann Intensive Care. 2015;5(1):28. https://doi.org/10.1186/s13613-015-0070-z. Epub 2015 Sep 30. PMID: 26429355; PMCID: PMC4883632.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Azoulay E, Mokart D, Pène F, et al. Outcomes of critically ill patients with hematologic malignancies: prospective multicenter data from France and Belgium–a groupe de recherche respiratoire en réanimation onco-hématologique study. J Clin Oncol. 2013;31(22):2810–8.

    Article  PubMed  Google Scholar 

  121. Conti G, Marino P, Cogliati A, et al. Noninvasive ventilation for the treatment of acute respiratory failure in patients with hematologic malignancies: a pilot study. Intensive Care Med. 1998;24(12):1283–8.

    Article  CAS  PubMed  Google Scholar 

  122. Depuydt PO, Benoit DD, Roosens CD, Offner FC, Noens LA, Decruyenaere JM. The impact of the initial ventilatory strategy on survival in hematological patients with acute hypoxemic respiratory failure. J Crit Care. 2010;25(1):30–6.

    Article  PubMed  Google Scholar 

  123. Lemiale V, Mokart D, Resche-Rigon M, Groupe de Recherche en Réanimation Respiratoire du patient d’Onco-Hématologie (GRRR-OH), et al. Effect of noninvasive ventilation vs oxygen therapy on mortality among immunocompromised patients with acute respiratory failure: a randomized clinical trial. JAMA. 2015;314(16):1711–9.

    Article  CAS  PubMed  Google Scholar 

  124. Nava S, Ambrosino N, Clini E, et al. Noninvasive mechanical ventilation in the weaning of patients with respiratory failure due to chronic obstructive pulmonary disease. A randomized, controlled trial. Ann Intern Med. 1998;128(9):721–8.

    Article  CAS  PubMed  Google Scholar 

  125. Girault C, Daudenthun I, Chevron V, Tamion F, Leroy J, Bonmarchand G. Noninvasive ventilation as a systematic extubation and weaning technique in acute-on-chronic respiratory failure: a prospective, randomized controlled study. Am J Respir Crit Care Med. 1999;160(1):86–92.

    Article  CAS  PubMed  Google Scholar 

  126. Ferrer M, Esquinas A, Arancibia F, et al. Noninvasive ventilation during persistent weaning failure: a randomized controlled trial. Am J Respir Crit Care Med. 2003;168(1):70–6.

    Article  PubMed  Google Scholar 

  127. Vaschetto R, Turucz E, Dellapiazza F, et al. Noninvasive ventilation after early extubation in patients recovering from hypoxemic acute respiratory failure: a single-Centre feasibility study. Intensive Care Med. 2012;38(10):1599–606.

    Article  PubMed  Google Scholar 

  128. Trevisan CE, Vieira SR, Research Group in Mechanical Ventilation Weaning. Noninvasive mechanical ventilation may be useful in treating patients who fail weaning from invasive mechanical ventilation: a randomized clinical trial. Crit Care. 2008;12(2):R51. https://doi.org/10.1186/cc6870. Epub 2008 Apr 17. PMID: 18416851; PMCID: PMC2447605.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Collaborating Research Group for Noninvasive Mechanical Ventilation of Chinese Respiratory, S., Pulmonary infection control window in treatment of severe respiratory failure of chronic obstructive pulmonary diseases: a prospective, randomized controlled, multi-centred study. Chin Med J. 2005;118(19):1589–94.

    Google Scholar 

  130. Prasad SB, Chaudhry D, Khanna R. Role of noninvasive ventilation in weaning from mechanical ventilation in patients of chronic obstructive pulmonary disease: an Indian experience. Indian J Crit Care Med. 2009;13(4):207–12.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Girault C, Bubenheim M, Abroug F, VENISE Trial Group, et al. Noninvasive ventilation and weaning in patients with chronic hypercapnic respiratory failure: a randomized multicenter trial. Am J Respir Crit Care Med. 2011;184(6):672–9.

    Article  PubMed  Google Scholar 

  132. Burns KE, Meade MO, Premji A, Adhikari NK. Noninvasive ventilation as a weaning strategy for mechanical ventilation in adults with respiratory failure: a Cochrane systematic review. CMAJ. 2014;186(3):E112–22.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Keenan SP, Powers C, McCormack DG, Block G. Noninvasive positive-pressure ventilation for postextubation respiratory distress: a randomized controlled trial. JAMA. 2002;287(24):3238–44.

    Article  PubMed  Google Scholar 

  134. Esteban A, Frutos-Vivar F, Ferguson ND, et al. Noninvasive positive-pressure ventilation for respiratory failure after extubation. N Engl J Med. 2004;350(24):2452–60.

    Article  CAS  PubMed  Google Scholar 

  135. Lin C, Yu H, Fan H, Li Z. The efficacy of noninvasive ventilation in managing postextubation respiratory failure: a meta-analysis. Heart Lung. 2014;43(2):99–104.

    Article  PubMed  Google Scholar 

  136. Nava S, Gregoretti C, Fanfulla F, Squadrone E, Grassi M, Carlucci A, Beltrame F, Navalesi P. Noninvasive ventilation to prevent respiratory failure after extubation in high-risk patients. Crit Care Med. 2005;33(11):2465–70.

    Article  PubMed  Google Scholar 

  137. Ferrer M, Valencia M, Nicolas JM, Bernadich O, Badia JR, Torres A. Early noninvasive ventilation averts extubation failure in patients at risk: a randomized trial. Am J Respir Crit Care Med. 2006;173(2):164–70.

    Article  PubMed  Google Scholar 

  138. El-Solh AA, Aquilina A, Pineda L, Dhanvantri V, Grant B, Bouquin P. Noninvasive ventilation for prevention of post-extubation respiratory failure in obese patients. Eur Respir J. 2006;28(3):588–95.

    Article  CAS  PubMed  Google Scholar 

  139. Ferrer M, Sellarés J, Valencia M, Carrillo A, Gonzalez G, Badia JR, Nicolas JM, Torres A. Non-invasive ventilation after extubation in hypercapnic patients with chronic respiratory disorders: randomised controlled trial. Lancet. 2009;374(9695):1082–8.

    Article  PubMed  Google Scholar 

  140. Khilnani GC, Galle AD, Hadda V, Sharma SK. Non-invasive ventilation after extubation in patients with chronic obstructive airways disease: a randomised controlled trial. Anaesth Intensive Care. 2011;39(2):217–23.

    Article  CAS  PubMed  Google Scholar 

  141. Jaber S, Lescot T, Futier E, NIVAS Study Group, et al. Effect of noninvasive ventilation on tracheal reintubation among patients with hypoxemic respiratory failure following abdominal surgery: a randomized clinical trial. JAMA. 2016;315(13):1345–53.

    Article  CAS  PubMed  Google Scholar 

  142. Jaber S, Chanques G, Jung B. Postoperative noninvasive ventilation. Anesthesiology. 2010;112(2):453–61.

    Article  PubMed  Google Scholar 

  143. Chiumello D, Chevallard G, Gregoretti C. Non-invasive ventilation in postoperative patients: a systematic review. Intensive Care Med. 2011;37(6):918–29.

    Article  CAS  PubMed  Google Scholar 

  144. Bellani G, Laffey JG, Pham T, LUNG SAFE Investigators, ESICM Trials Group, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.

    Article  CAS  PubMed  Google Scholar 

  145. Parhar KKS, Zjadewicz K, Soo A, et al. Epidemiology, mechanical power, and 3-year outcomes in acute respiratory distress syndrome patients using standardized screening. An observational cohort study. Ann Am Thorac Soc. 2019;16(10):1263–72. https://doi.org/10.1513/AnnalsATS.201812-910OC. PMID: 31247145; PMCID: PMC6812172.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Esteban A, Frutos-Vivar F, Muriel A, et al. Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med. 2013;188(2):220–30.

    Article  PubMed  Google Scholar 

  147. Dennis JM, McGovern AP, Vollmer SJ, Mateen BA. Improving survival of critical care patients with coronavirus disease 2019 in England: a National Cohort Study, March to June 2020. Crit Care Med. 2021;49(2):209–14.

    Article  CAS  PubMed  Google Scholar 

  148. COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. Intensive Care Med. 2021;47:60–73.

    Google Scholar 

  149. Prescott HC, Levy MM. Survival from severe coronavirus disease 2019: is it changing? Crit Care Med. 2021;49(2):351–3.

    Article  CAS  PubMed  Google Scholar 

  150. Dres M, Hajage D, Lebbah S, COVID-ICU Investigators, et al. Characteristics, management, and prognosis of elderly patients with COVID-19 admitted in the ICU during the first wave: insights from the COVID-ICU study: prognosis of COVID-19 elderly critically ill patients in the ICU. Ann Intensive Care. 2021;11(1):77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kurtz P, Bastos LSL, Dantas LF, et al. Evolving changes in mortality of 13,301 critically ill adult patients with COVID-19 over 8 months. Intensive Care Med. 2021;47(5):538–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fernández R, González de Molina FJ, Batlle M, Fernández MM, Hernandez S, Villagra A, Grupo Semicríticos Covid. Non-invasive ventilatory support in patients with COVID-19 pneumonia: a Spanish multicenter registry. Med Intensiva (Engl Ed). 2021;45(5):315–7.

    Article  Google Scholar 

  153. Franco C, Facciolongo N, Tonelli R, et al. Feasibility and clinical impact of out-of-ICU noninvasive respiratory support in patients with COVID-19-related pneumonia. Eur Respir J. 2020;56(5):2002130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Patel M, Gangemi A, Marron R, et al. Retrospective analysis of high flow nasal therapy in COVID-19-related moderate-to-severe hypoxaemic respiratory failure. BMJ Open Respir Res. 2020;7(1):e000650. https://doi.org/10.1136/bmjresp-2020-000650. PMID: 32847947; PMCID: PMC7451488.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Zucman N, Mullaert J, Roux D, Roca O, Ricard JD, Contributors. Prediction of outcome of nasal high flow use during COVID-19- related acute hypoxemic respiratory failure. Intens Care Med. 2020;46(10):1924–6.

    Article  CAS  Google Scholar 

  156. Panadero C, Abad-Fernández A, Rio-Ramirez MT, et al. High-flow nasal cannula for Acute Respiratory Distress Syndrome (ARDS) due to COVID-19. Multidiscip Respir Med. 2020;15(1):693. https://doi.org/10.4081/mrm.2020.693. PMID: 32983456; PMCID: PMC7512942.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Vianello A, Arcaro G, Molena B, et al. High-flow nasal cannula oxygen therapy to treat patients with hypoxemic acute respiratory failure consequent to SARS- CoV-2 infection. Thorax. 2020;75(11):998–1000.

    Article  PubMed  Google Scholar 

  158. Hifumi T, **bo I, Okada I, et al. The impact of age on outcomes of elderly ED patients ventilated due to community acquired pneumonia. Am J Emerg Med. 2015;33(2):277–81.

    Article  PubMed  Google Scholar 

  159. Frengley JD, Sansone GR, Shakya K, Kaner RJ. J Am Geriatr Soc. 2014;62(1):1–9.

    Article  Google Scholar 

  160. Fujii M, Iwakami S, Takagi H, et al. Factors influencing weaning from mechanical ventilation in elderly patients with severe pneumonia. Geriatr Gerontol Int. 2012;12(2):277–83.

    Article  PubMed  Google Scholar 

  161. Cader SA, Vale RG, Castro JC, et al. Inspiratory muscle training improves maximal inspiratory pressure and may assist weaning in older intubated patients: a randomised trial. J Physiother. 2010;56(3):171–7.

    Article  PubMed  Google Scholar 

  162. Epstein CD, Peerless JR. Weaning readiness and fluid balance in older critically ill surgical patients. Am J Crit Care. 2006;15(1):54–64.

    Article  PubMed  Google Scholar 

  163. Ely EW, Evans GW, Haponik EF. Mechanical ventilation in a cohort of elderly patients admitted to an intensive care unit. Ann Int Med. 1999;131(2):96–104.

    Article  CAS  PubMed  Google Scholar 

  164. Kher S, Roberts RJ, Garpestad E, et al. Development, implementation, and evaluation of an institutional daily awakening and spontaneous breathing trial protocol: a quality improvement project. J Intensive Care Med. 2013;28(3):189–97.

    Article  PubMed  Google Scholar 

  165. Jackson DL, Proudfoot CW, Cann KF, Walsh T. A systematic review of the impact of sedation practice in the ICU on resource use, costs and patient safety. Crit Care. 2010;14(2):R59. https://doi.org/10.1186/cc8956. Epub 2010 Apr 9. PMID: 20380720; PMCID: PMC2887180.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Schweickert WD, Pohlman MC, Pohlman AS, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373(9678):1874–82.

    Article  PubMed  Google Scholar 

  167. MacIntyre NR, Cook DJ, Ely EW, et al. Evidence-based guidelines for weaning and discontinuing ventilatory support: a collective task force facilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American College of Critical Care Medicine. Chest. 2001;120(6 suppl):375S–95S.

    Article  CAS  PubMed  Google Scholar 

  168. Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013;41(1):263–306.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Lorente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lorente-Ros, M., Artigas, A., Lorente, J.A. (2022). Ventilation. In: Flaatten, H., Guidet, B., Vallet, H. (eds) The Very Old Critically Ill Patients. Lessons from the ICU. Springer, Cham. https://doi.org/10.1007/978-3-030-94133-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94133-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94132-1

  • Online ISBN: 978-3-030-94133-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation