Synthesis Techniques of Shape-Memory Polymer Composites

  • Chapter
  • First Online:
Shape Memory Composites Based on Polymers and Metals for 4D Printing

Abstract

The past decade has seen an impressive development in shape-memory polymers (SMPs) with several significant uses. These materials grant a low-priced and environment-friendly choice to well-established shape-memory alloys. In contrast, SMPs usually elicit less strength and rigidness, limiting their use in many superior functions. To improve their applications, shape-memory polymer composites have emerged as an attractive substitute. The shape-memory polymer composites (SMPCs) are additionally improved as well as expanded usages of shape-memory polymers such as high recovery stress and novel functions like electrical conductivity, magnetism, and bio-functionality. A range of procedures has been established for the manufacturing of SMPCs using different materials such as reinforcement fillers (SiC fiber, TiNi fiber, chopped fiberglass, woven fiberglass, Kevlar fiber, carbon fiber, etc.), carbon nanotubes, polyurethane nanocomposites, nanoclay, and so on. In this chapter, we will focus on different synthetic procedures for the production of SMPCs thoroughly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Verma D, Purohit R, Rana RS, Purohit S, Patel KK (2020) Enhancement of the properties of shape-memory polymers using different nano size reinforcement—a review. Mater Today: Proc 26. https://doi.org/10.1016/j.matpr.2020.02.631

  2. Li F, Leng J, Liu Y, Remillat C, Scarpa F (2020) Temperature dependence of elastic constants in unidirectional carbon fiber reinforced shape-memory polymer composites. Mech Mater 148:103518

    Google Scholar 

  3. Lu W, Le X, Zhang J, Huang Y, Chen T (2017) Supramolecular shape-memory hydrogels: a new bridge between stimuli-responsive polymers and supramolecular chemistry. Chem Soc Rev 46(5):1284–1294

    Article  Google Scholar 

  4. Bai Y, Zhang X, Wang Q, Wang T (2014) A tough shape-memory polymer with triple-shape-memory and two-way shape-memory properties. J Mater Chem A 2(13):4771–4778

    Article  Google Scholar 

  5. Kirillova A, Ionov L (2019) Shape-changing polymers for biomedical applications. J Mater Chem B 7(10):1597–1624. https://doi.org/10.1039/C8TB02579G

    Article  Google Scholar 

  6. Peterson GI, Dobrynin AV, Becker ML (2017) Biodegradable shape-memory polymers in medicine. Adv Healthcare Mater 6(21):1700694

    Article  Google Scholar 

  7. Li W, Liu Y, Leng J (2014) Shape-memory polymer nanocomposite with multi-stimuli response and two-way reversible shape-memory behavior. RSC Adv 4(106):61847–61854

    Article  Google Scholar 

  8. Liang C, Rogers C, Malafeew E (1997) Investigation of shape-memory polymers and their hybrid composites. J Intell Mater Syst Struct 8(4):380–386

    Article  Google Scholar 

  9. Lee BS, Chun BC, Chung Y-C, Sul KI, Cho JW (2001) Structure and thermomechanical properties of polyurethane block copolymers with shape-memory effect. Macromolecules 34(18):6431–6437

    Article  Google Scholar 

  10. Koerner H, Price G, Pearce NA, Alexander M, Vaia RA (2004) Remotely actuated polymer nanocomposites–stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater 3(2):115–120

    Article  Google Scholar 

  11. Yang B, Huang WM, Li C, Chor JH (2005) Effects of moisture on the glass transition temperature of polyurethane shape-memory polymer filled with nano-carbon powder. Eur Polymer J 41(5):1123–1128

    Article  Google Scholar 

  12. Jung YC, Kim JH, Hayashi T, Kim YA, Endo M, Terrones M, Dresselhaus MS (2012) Fabrication of transparent, tough, and conductive shape-memory polyurethane films by incorporating a small amount of high-quality graphene. Macromol Rapid Commun 33(8):628–634

    Article  Google Scholar 

  13. Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y, Li F, Guo T, Chen Y (2009) Infrared-triggered actuators from graphene-based nanocomposites. J Phys Chem C 113(22):9921–9927

    Article  Google Scholar 

  14. Liu Y, Du H, Liu L, Leng J (2014) Shape-memory polymers and their composites in aerospace applications: a review. Smart Mater Struct 23(2):023001

    Google Scholar 

  15. Lan X, Liu L, Liu Y, Leng J (2020) Thermomechanical properties and deformation behavior of a unidirectional carbon-fiber-reinforced shape-memory polymer composite laminate. J Appl Polym Sci 137(14):48532

    Article  Google Scholar 

  16. Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56(7):1077–1135

    Article  Google Scholar 

  17. Wei H, Liu L, Zhang Z, Du H, Liu Y, Leng J (2015) Design and analysis of smart release devices based on shape-memory polymer composites. Compos Struct 133:642–651

    Article  Google Scholar 

  18. Fej’s M, Romhány G, Karger-Kocsis J (2012) Shape-memory characteristics of woven glass fibre fabric reinforced epoxy composite in flexure. J Reinf Plast Compos 31(22):1532–1537

    Google Scholar 

  19. Park YC, Lee GC, Furuya Y (2004) A study on the fabrication of TiNi/Al6061 shape-memory composite material by hot-press method and its mechanical property. Mater Trans 45(2):264–271

    Article  Google Scholar 

  20. Park YC, Kang JH, Lee JK, Lee GC, Furuya Y (2007) Effect of cold rolling on fatigue crack propagation of TiNi/Al6061 shape-memory composite. Smart Mater Struct 16(4):982

    Article  Google Scholar 

  21. Park Y-C, Jo Y-J, Baek S-H, Furuya Y (2009) Fatigue design curve of a TiNi/Al shape-memory alloy composite for aircraft stringer design. Smart Mater Struct 18(5):055009

    Google Scholar 

  22. Yamashita K, Shimamoto A (2005) Control of shape recovery force in SMA fiber reinforced composite materials. In: Smart structures and materials 2005: active materials: behavior and mechanics. International Society for Optics and Photonics, pp 429–439

    Google Scholar 

  23. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape-memory alloys. Prog Mater Sci 50(5):511–678

    Article  Google Scholar 

  24. Li D, Zhang X, ** capacity and high strength. J Alloy Compd 490(1–2):L15–L19

    Article  Google Scholar 

  25. Ahn I-S, Bae S-Y, Kim Y-Y (2004) Properties of Al/TiNi composite using porous TiNi fabricated by a self-propagating high temperature synthesis method. Met Mater Int 10(1):39

    Article  Google Scholar 

  26. Chaudhury Z, Hailat M, Liu Y, Newaz G (2011) Aluminum-based composites reinforced with SiC particles and NiTi fibers: influence of fiber dimensions and aging time on mechanical properties. J Mater Sci 46(6):1945–1955

    Article  Google Scholar 

  27. Akalin O, Ezirmik KV, Urgen M, Newaz GM (2010) Wear characteristics of NiTi/Al6061 short fiber metal matrix composite reinforced with SiC particulates. J Tribol 132(4)

    Google Scholar 

  28. Ohki T, Ni Q-Q, Ohsako N, Iwamoto M (2004) Mechanical and shape-memory behavior of composites with shape-memory polymer. Compos A Appl Sci Manuf 35(9):1065–1073

    Google Scholar 

  29. Wei Z, Sandstroröm R, Miyazaki S (1998) Shape-memory materials and hybrid composites for smart systems: Part I Shape-memory materials. J Mater Sci 33(15):3743–3762

    Article  Google Scholar 

  30. **ong Z, Wang Z, Li Z, Chang R (2008) Micromechanism of deformation in EMC laminates. Mater Sci Eng, A 496(1–2):323–328

    Article  Google Scholar 

  31. Gall K, Mikulas M, Munshi NA, Beavers F, Tupper M (2000) Carbon fiber reinforced shape-memory polymer composites. J Intell Mater Syst Struct 11(11):877–886

    Article  Google Scholar 

  32. Yarborough CN, Childress EM, Kunz RK (2008) Shape recovery and mechanical properties of shape-memory composites. In: ASME International mechanical engineering congress and exposition, pp 111–119

    Google Scholar 

  33. Bae C, Park J, Kim E, Kang Y, Kim B (2011) Organic–inorganic nanocomposite bilayers with triple shape-memory effect. J Mater Chem 21(30):11288–11295

    Article  Google Scholar 

  34. Xu B, Fu YQ, Ahmad M, Luo J, Huang WM, Kraft A, Reuben R, Pei YT, Chen ZG, De Hosson JTM (2010) Thermo-mechanical properties of polystyrene-based shape-memory nanocomposites. J Mater Chem 20(17):3442–3448

    Google Scholar 

  35. Gall K, Dunn ML, Liu Y, Finch D, Lake M, Munshi NA (2002) Shape-memory polymer nanocomposites. Acta Mater 50(20):5115–5126

    Article  Google Scholar 

  36. Liu Y, Gall K, Dunn ML, McCluskey P (2004) Thermomechanics of shape-memory polymer nanocomposites. Mech Mater 36(10):929–940

    Article  Google Scholar 

  37. Plastics-determination of tensile properties: Part 1: General principles. The International Organization for Standardization. (2012). 2(12). ISO527–1:2012

    Google Scholar 

  38. Feng X, Zhao L, Mi X, Li Y, **e H, **angqian Y, Gao B (2013) Improved shape-memory composites combined with TiNi wire and shape-memory epoxy. Mater Des 50:724–727. https://doi.org/10.1016/j.matdes.2013.03.060

  39. Payandeh Y, Meraghni F, Patoor E, Eberhardt A (2012) Study of the martensitic transformation in NiTi-epoxy smart composite and its effect on the overall behavior. Mater Des 39:104. https://doi.org/10.1016/j.matdes.2012.02.041

    Article  Google Scholar 

  40. Gibson RF (2011) Principle of composite material mechanics. CRC Press

    Book  Google Scholar 

  41. Nor Hanim K, Azerai Ali R, Mohd Fadzil A, Mohd Khairul K, Sajith Totthatil AR (2019) Dynamic mechanical properties of Polyurethane Shape-Memory Polymer Composites (SMPC) with different volume fractions of chopped strand mat glass fiber. Int J Integr Eng 10(9)

    Google Scholar 

  42. Joseph P, Joseph K, Thomas S, Pillai C, Prasad V, Groeninckx G, Sarkissova M (2003) The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Compos A Appl Sci Manuf 34(3):253–266

    Article  Google Scholar 

  43. Pothan LA, Oommen Z, Thomas S (2003) Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos Sci Technol 63(2):283–293

    Article  Google Scholar 

  44. Chua PS (1987) Dynamic mechanical analysis studies of the interphase. Polym Compos 8(5):308–313. https://doi.org/10.1002/pc.750080505

    Article  Google Scholar 

  45. Jawaid M, Khalil HA, Hassan A, Dungani R, Hadiyane A (2013) Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites. Compos B Eng 45(1):619–624

    Article  Google Scholar 

  46. Khiyon NH, Rahman AA, Arshad MF, Kamarudin MK, Rahman STA (2018) Dynamic mechanical properties of Polyurethane Shape-Memory Polymer Composites (SMPC) with different volume fractions of chopped strand mat glass fiber. Int J Integr Eng 10(9)

    Google Scholar 

  47. Essabir H, Elkhaoulani A, Benmoussa K, Bouhfid R, Arrakhiz F, Qaiss A (2013) Dynamic mechanical thermal behavior analysis of doum fibers reinforced polypropylene composites. Mater Des 51:780–788

    Article  Google Scholar 

  48. Su X, Wang Y, Peng X (2020) An anisotropic visco-hyperelastic model for thermally-actuated shape-memory polymer-based woven fabric-reinforced composites. Int J Plasticity 102697

    Google Scholar 

  49. Mohanakrishnan D, Sureshkumar M (2015) A comparative analysis of orientation on the shape-memory effect of fabric reinforced shape-memory polymer composites. Mater Sci Forum 830–831:529–532. https://doi.org/10.4028/www.scientific.net/MSF.830-831.529

    Article  Google Scholar 

  50. Mohanakrishnan D, Sureshkumar MA (2015) Comparative analysis of orientation on the shape-memory effect of fabric reinforced shape-memory polymer composites. Materials Science Forum. Trans Tech Publ, pp 529–532

    Google Scholar 

  51. Kececi E, Asmatulu R (2014) Effects of moisture ingression on polymeric laminate composites and its prevention via highly robust barrier films. Int J Adv Manuf Technol 73(9):1657–1664. https://doi.org/10.1007/s00170-014-5974-5

    Article  Google Scholar 

  52. Kececi E (2012) Highly durable hydrophobic thin films for moisture prevention of composite structures for aerospace applications. Wichita State University

    Google Scholar 

  53. An Y, Zhang X, Wang X, Chen Z, Wu X (2018) Nano@lignocellulose intercalated montmorillonite as adsorbent for effective Mn(II) removal from aqueous solution. Sci Rep 8(1):10863. https://doi.org/10.1038/s41598-018-29210-2

    Article  Google Scholar 

  54. Wang Z, Liu J, Guo J, Sun X, Xu L (2017) The study of thermal, mechanical and shape-memory properties of chopped carbon fiber-reinforced tpi shape-memory polymer composites. Polymers 9(11):594

    Article  Google Scholar 

  55. Pieczyska EA, Nowacki WK, Tobushi H, Hayashi S (2009) Thermomechanical properties of shape-memory polymer subjected to tension in various conditions. Quant InfraRed Thermogr J 6(2):189–205

    Article  Google Scholar 

  56. Dastgerdi JN, Marquis G, Salimi M (2013) The effect of nanotubes waviness on mechanical properties of CNT/SMP composites. Compos Sci Technol 86:164–169

    Article  Google Scholar 

  57. Raja M, Ryu SH, Shanmugharaj A (2013) Thermal, mechanical and electroactive shape-memory properties of polyurethane (PU)/poly (lactic acid)(PLA)/CNT nanocomposites. Eur Polymer J 49(11):3492–3500

    Article  Google Scholar 

  58. Ni Q-Q, Zhang C-s, Fu Y, Dai G, Kimura T (2007) Shape-memory effect and mechanical properties of carbon nanotube/shape-memory polymer nanocomposites. Compos Struct 81(2):176–184

    Article  Google Scholar 

  59. Li H, Zhong J, Meng J, **an G (2013) The reinforcement efficiency of carbon nanotubes/shape-memory polymer nanocomposites. Compos B Eng 44(1):508–516

    Article  Google Scholar 

  60. Cho JW, Kim JW, Jung YC, Goo NS (2005) Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun 26(5):412–416

    Article  Google Scholar 

  61. Yang Q-s, He X-q, Liu X, Leng F-f, Mai Y-W (2012) The effective properties and local aggregation effect of CNT/SMP composites. Compos B Eng 43(1):33–38

    Article  Google Scholar 

  62. Cai C, Wei Z, Wang X, Mei C, Fu Y, Zhong W (2018) Novel double-networked polyurethane composites with multi-stimuli responsive functionalities. J Mater Chem A 6(36):17457–17472

    Article  Google Scholar 

  63. Baidya A, Ganayee MA, Jakka Ravindran S, Tam KC, Das SK, Ras RH, Pradeep T (2017) Organic solvent-free fabrication of durable and multifunctional superhydrophobic paper from waterborne fluorinated cellulose nanofiber building blocks. ACS Nano 11(11):11091–11099

    Article  Google Scholar 

  64. Yilgor I, Yilgor E, Guler IG, Ward TC, Wilkes GL (2006) FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer 47(11):4105–4114

    Article  Google Scholar 

  65. Chen K, Tian Q, Tian C, Yan G, Cao F, Liang S, Wang X (2017) Mechanical reinforcement in thermoplastic polyurethane nanocomposite incorporated with polydopamine functionalized graphene nanoplatelet. Ind Eng Chem Res 56(41):11827–11838

    Article  Google Scholar 

  66. Miraftab R, Ramezanzadeh B, Bahlakeh G, Mahdavian M (2017) An advanced approach for fabricating a reduced graphene oxide-AZO dye/polyurethane composite with enhanced ultraviolet (UV) shielding properties: experimental and first-principles QM modeling. Chem Eng J 321:159–174

    Article  Google Scholar 

  67. Fritzsche N, Pretsch T (2014) Programming of temperature-memory onsets in a semicrystalline polyurethane elastomer. Macromolecules 47(17):5952–5959

    Article  Google Scholar 

  68. Li Y, Chen H, Liu D, Wang W, Liu Y, Zhou S (2015) pH-responsive shape-memory poly (ethylene glycol)–poly (ε-caprolactone)-based polyurethane/cellulose nanocrystals nanocomposite. ACS Appl Mater Interfaces 7(23):12988–12999

    Google Scholar 

  69. Auad ML, Contos VS, Nutt S, Aranguren MI, Marcovich NE (2008) Characterization of nanocellulose-reinforced shape-memory polyurethanes. Polym Int 57(4):651–659

    Article  Google Scholar 

  70. Hadjadj A, Jbara O, Tara A, Gilliot M, Malek F, Maafi EM, Tighzert L (2016) Effects of cellulose fiber content on physical properties of polyurethane based composites. Compos Struct 135:217–223

    Article  Google Scholar 

  71. Li Z, Young RJ, Kinloch IA (2013) Interfacial stress transfer in graphene oxide nanocomposites. ACS Appl Mater Interfaces 5(2):456–463

    Article  Google Scholar 

  72. McNally T, Pötschke P, Halley P, Murphy M, Martin D, Bell SE, Brennan GP, Bein D, Lemoine P, Quinn JP (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46(19):8222–8232

    Article  Google Scholar 

  73. Li Y, Chen H, Liu D, Wang W, Liu Y, Zhou S (2015) pH-responsive shape-memory poly(ethylene glycol)–Poly(ε-caprolactone)-based polyurethane/cellulose nanocrystals nanocomposite. ACS Appl Mater Interfaces 7(23):12988–12999. https://doi.org/10.1021/acsami.5b02940

  74. Zhao Q, Sun G, Yan K, Zhou A, Chen Y (2013) Novel bio-antifelting agent based on waterborne polyurethane and cellulose nanocrystals. Carbohyd Polym 91(1):169–174

    Article  Google Scholar 

  75. NCCLS, National Committee for Clinical Laboratory Standards, Performance Standards for Antimicrobial Disk Susceptibility Test (1997). 6th ed, Approved Standard, Wayne, PA, M2-A6

    Google Scholar 

  76. Annamalai PK, Dagnon KL, Monemian S, Foster EJ, Rowan SJ, Weder C (2014) Water-responsive mechanically adaptive nanocomposites based on styrene-butadiene rubber and cellulose nanocrystals processing matters. ACS Appl Mater Interfaces 6(2):967–976

    Article  Google Scholar 

  77. Pan G, Huang W, Ng Z, Liu N, Phee S (2008) The glass transition temperature of polyurethane shape-memory polymer reinforced with treated/non-treated attapulgite (playgorskite) clay in dry and wet conditions. Smart Mater Struct 17(4):045007

    Google Scholar 

  78. Xu B, Huang WM, Pei YT, Chen ZG, Kraft A, Reuben R, De Hosson JTM, Fu YQ (2009) Mechanical properties of attapulgite clay reinforced polyurethane shape-memory nanocomposites. Eur Polymer J 45(7):1904–1911

    Article  Google Scholar 

  79. Xu B, Fu YQ, Huang WM, Pei YT, Chen ZG, De Hosson J, Kraft A, Reuben RL (2010) Thermal-mechanical properties of polyurethane-clay shape-memory polymer nanocomposites. Polymers 2(2):31–39

    Article  Google Scholar 

  80. Rezanejad S, Kokabi M (2007) Shape-memory and mechanical properties of cross-linked polyethylene/clay nanocomposites. Eur Polymer J 43(7):2856–2865

    Article  Google Scholar 

  81. Luo X, Mather PT (2013) Shape-memory assisted self-healing coating. ACS Macro Lett 2(2):152–156

    Article  Google Scholar 

  82. Xu H, Yu C, Wang S, Malyarchuk V, **e T, Rogers JA (2013) Deformable, programmable, and shape-memorizing micro-optics. Adv Func Mater 23(26):3299–3306

    Article  Google Scholar 

  83. Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA (2016) Biomimetic 4D printing. Nat Mater 15(4):413–418

    Article  Google Scholar 

  84. Chung T, Romo-Uribe A, Mather PT (2008) Two-way reversible shape-memory in a semicrystalline network. Macromolecules 41(1):184–192

    Google Scholar 

  85. Essabir H, Nekhlaoui S, Bensalah M-o, Bouhfid R (2020) Shape-memory based on composites and nanocomposites materials: from synthesis to application. In: Polymer nanocomposite-based smart materials. Elsevier, pp 103–120

    Google Scholar 

  86. Tibbits S (2014) 4D printing: multi-material shape change. Arch Des 84(1):116–121

    Google Scholar 

  87. Zhang Y, Shi L, Hu D, Chen S, **e S, Lu Y, Cao Y, Zhu Z, ** L, Guan B-O (2019) Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing. Nanoscale Horizons 4(3):601–609

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, G.M., Shah, V., Vora, M. (2022). Synthesis Techniques of Shape-Memory Polymer Composites. In: Maurya, M.R., Sadasivuni, K.K., Cabibihan, JJ., Ahmad, S., Kazim, S. (eds) Shape Memory Composites Based on Polymers and Metals for 4D Printing. Springer, Cham. https://doi.org/10.1007/978-3-030-94114-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94114-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94113-0

  • Online ISBN: 978-3-030-94114-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation