Oscillators and Frequency Synthesis

  • Chapter
  • First Online:
Fundamentals of RF and Microwave Techniques and Technologies
  • 1254 Accesses

Abstract

Oscillators are found in all radar and communication systems, as a signal source for up- or down-conversion and as a generator of carrier frequency. This chapter describes the theory and circuit design techniques for generating undamped, periodic, and stable, steady-state RF oscillations at a specific or tunable frequency.

Edited by U. L. Rohde and V. Issakov

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Both four-terminal networks are equivalent for K = 1 and a = 2, i.e. the corresponding four-terminal matrices of both four-terminal networks are identical.

  2. 2.

    In [119] the phase slope is defined as \(S^{*} = \left| {{\text{d}}\varphi_{{\text{k}}} /{\text{d}}f} \right|f = f_{r}\). \(S^{*} = 2\pi S\) applies.

  3. 3.

    All of the following considerations apply to the right quartz (Fig. 10.101b). They also apply to left quartzes if, in contrast to Fig. 10.101a, a left system is introduced for the axes, i.e. the axial direction X is inverted.

References

  1. Ellinger, F.: Radio Frequency Integrated Circuits and Technologies, pp. 381–382 (2007)

    Google Scholar 

  2. Tiebout, M.: Low Power VCO Design in CMOS. Springer, Berlin (2006)

    Google Scholar 

  3. Issakov, V.: A highly integrated D-band multi-channel transceiver chip for radar applications. In: IEEE BCICTS 2019, pp. 1–4

    Google Scholar 

  4. Strecker, F.: Die elektrische Selbsterregung: Hirzel, pp. 17–26 (1947)

    Google Scholar 

  5. Magnus, K.: Schwingungen, pp. 24–25. Teubner, Stuttgart (1961)

    Google Scholar 

  6. Niknejad, A.: EECS 142, Lecture Notes, Berkeley

    Google Scholar 

  7. Perrott, M.H.: Lecture Notes. Accessed on www.cppsim.com

  8. Nguyen, N.M., Meyer, R.G.: Start-up and frequency stability in high-frequency oscillators. IEEE J. Solid-State Circ. 27(5), 810–820 (1992)

    Google Scholar 

  9. Issakov, V.: Microwave Circuits for 24 GHz Automotive Radar in Silicon-Based Technologies. Springer, Berlin (2011)

    Google Scholar 

  10. Trotta, S., et al.: An RCP packaged transceiver chipset for automotive LRR and SRR systems in SiGe BiCMOS technology. IEEE Trans. Microw. Theor. Tech. 60(3), 778–794 (2012)

    Google Scholar 

  11. Gilmour, Jr., A.S.: Microwave Tubes. Artech House, Norwood (1986)

    Google Scholar 

  12. van Iperen, B.B.: Reflexklystrons für 4 und 2,5 mm Wellenlänge. Philips Tech. Rdsch. 21, 217–225 (1959/60)

    Google Scholar 

  13. Rael, J., Abidi, A.: Physical processes of phase noise in differential LC-oscillators. In: IEEE Custom Integrated Circuits Conference (CICC), Orlando, May 2000

    Google Scholar 

  14. Hajimiri, A., Lee, T.H.: Low Noise Oscillators. Kluwer, Boston (1999)

    Google Scholar 

  15. Rohde, U.L., Poddar, A.K., Böck, G.: The Design of Modern Microwave Oscillators for Wireless Applications: Theory and Optimization. Wiley, Hoboken (2005)

    Google Scholar 

  16. Rohde, U.L., Rubiola, E., Whitaker, J.C.: Microwave and Wireless Synthesizers: Theory and Design, 2nd ed. Wiley, Hoboken (2021)

    Google Scholar 

  17. Steimel, K.: Ein zweiter Beitrag zur Lösung des „Rukopschen Problems”. Telefunkenztg 26, 73–76 (1953)

    Google Scholar 

  18. Lukes, J.H.: Halbleiterdiodenschaltungen, pp. 42–61. Oldenbourg, Munich, Vienna (1968)

    Google Scholar 

  19. Rothe, H., Kleen, W.: Elektronenröhren als Schwingungserzeuger und Gleichrichter, p. 9. Becker and Erler, Leipzig (1941)

    Google Scholar 

  20. Taschenbuch der Hochfrequenztechnik, 2nd ed., pp. 1175–1177. Springer, Berlin (1962)

    Google Scholar 

  21. Dosse, J.: Der Transistor, 4th ed., pp. 244–247. Oldenbourg, Munich (1962)

    Google Scholar 

  22. Müller, J.: Experimentelle Untersuchungen über Elektronenschwingungen. Z. Hochfrequenztechn 44, 195–199 (1934)

    Google Scholar 

  23. Llewellyn, F.B., Bowen, A.E.: The production of ultra-high-frequency oscillations by means of diodes. Bell Syst. Tech. J. 18, 280–291 (1939)

    Article  Google Scholar 

  24. Burrus, C.A.: Millimeter wave Esaki diode oscillators. Proc. IRE 48, 2024 (1960). Hilsum, C.: Transferred electron amplifiers and oscillators. Proc. IRE 50, 185–189 (1962)

    Google Scholar 

  25. Hines, M.E.: High-frequency negative-resistance circuit principles for Esaki diode applications. Bell Syst. Tech. J. 39, 477–513 (1960). Kroemer, H.: Theory of the Gunn effect. Proc. IEEF 52, 1736 (1964). Negative conductance in semiconductors. Spectrum IEEE 5, 47–56 (1968)

    Google Scholar 

  26. Esaki, L.: New phenomenon in narrow Germanium p-n-junctions. Phys. Rev. 109, 603–604 (1958). Ridley, B.K., Watkins, T.B.: The possibility of negative resistance in semiconductors. Proc. Phys. Soc. 78, 293–304 (1961)

    Google Scholar 

  27. Sterzer, F., Nelson, D.E.: Tunnel diode microwave oscillators. Proc. IRE 49, 744–753 (1961). Shurmer, H.V.: Microwave Semiconductors Devices, pp. 164–183. Oldenbourg, Munich, Vienna (1971)

    Google Scholar 

  28. Strauss, L.: Wave Generation and Sha**, Ch. 15. Mc-Graw-Hill, New York (1960). Unger, H.G., Harth, W.: Hochfrequenz-Halbleiterelektronik. Hirzel, Stuttgart (1972)

    Google Scholar 

  29. Edson, W.A.: Tapered distributed RC-lines for phase-shift oscillators. Proc. IRE 49, 1021–1024 (1961)

    Google Scholar 

  30. Klein, E.: Die Tunneldiode als Schwingungserzeuger. NTZ 15, 135–142 (1962). Bott, I.B., Fawcett, W.: The Gunn effect in gallium arsenide. In: Young, L. (ed.) Advances in Microwaves, vol. 3, pp. 223–300. Academic Press, New York (1968)

    Google Scholar 

  31. Urtel, R.: Erregung von Schwingungen mit wesentlich nichtlinearen negativen Widerständen. Nachrichtentechn. Fachber. 13, 1–38 (1958). Gunn, J.B.: Effect of domain and circuit properties on oscillations in GaAs. IBM J. Res. Dev. 10, 310–320 (1966)

    Google Scholar 

  32. Dermit, G.: High-frequency power in tunnel-diodes. Proc. IRE 49, 1033–1042 (1961). Mc Cumber, D.B., Chenoweth, A.G.: Theory of negative-conductance amplification and of Gunn-instabilities in “two-valley” semiconductors. IEEE Trans. Electron Dev. ED-13, 4–21 (1966)

    Google Scholar 

  33. Blievernicht, U.: Integrierte Schaltkreise für Mikrowellen. Elektronik-Industrie 7(8), 46–49 (1984)

    Google Scholar 

  34. De Loach, Jr., B.C.: Advances in solid state microwave generators. In: Advances in Microwaves, vol. 2, pp. 43–88. Academic Press, New York (1967). Copeland, J.A.: LSA oscillator diode theory. J. Appl. Phys. 38, 3096–3101 (1967)

    Google Scholar 

  35. Landvogt, G.F.: Näherungen für die periodische Lösung der van-der-Polschen Differentialgleichung und ihre Bedeutung für Oszillatorschaltungen. NTZ 20, 601–609 (1967). Read, W.T.: A proposed high-frequency negative resistance diode. Bell Syst. Tech. J. 37, 401–446 (1958)

    Google Scholar 

  36. Landvogt, G.F.: Eine Verallgemeinerung des van-der-Polschen Oszillatormodells. NTZ 22, 390–394 (1969). Johnston, R.L., De Loach, B.C., Cohen, B.G.: A silicon diode microwave oscillator. Bell Syst. Tech. J. 44, 369–372 (1965)

    Google Scholar 

  37. Landvogt, G.F.: Das elektrische Verhalten eines verallgemeinerten van-der-Polschen Oszillatormodells. NTZ 22, 491–495 (1969). Lee, C.A., et al.: The READ-diode—an avalanching transit-time, negative-resistance oscillator. Appl. Phys. Lett. 6, 89 (1965)

    Google Scholar 

  38. Mouthaan, K.: Lawinen-Laufzeitoszillatoren. Philips Techn. Rdsch. 32, 368–384 (1971/72)

    Google Scholar 

  39. Hieslmair, et al.: State of the art of solid-state and tube transmitters. Microwave J. 46–48 (1983)

    Google Scholar 

  40. Thoren, G.: IMPATT diode progress promises smaller, lightweight mm-wave systems. Microwave System News, pp. 96A–98 (1984)

    Google Scholar 

  41. van der Pol, B.: On „relaxation—oscillations”. Phil. Mag. 2, 978–992 (1926). Prager, H.J., Chang, K.K.N., Weisbrod, P.: High-power high-efficiency silicon avalanche diodes at ultra-high frequencies. Proc. IEEE 55, 586–587 (1967)

    Google Scholar 

  42. Gunn, J.B.: Microwave oscillations of current in III-V semiconductors. Solid State Commun. 1, 88–91 (1963). Chang, K.K.N.: Avalanche diodes as UHF and L-band sources. RCA Rev. 30, 3–14 (1969)

    Google Scholar 

  43. Hines, M.E.: Noise theory for the READ-type avalanche diode. Trans. IEEE ED-13, 158–163 (1966)

    Google Scholar 

  44. Ruegg, H.W.: A proposed punch-through, microwave negative resistance diode. IEEE Trans. ED-15, 577–585 (1968)

    Google Scholar 

  45. Coleman, D.J., Jr., Sze, S.M.: A low-noise metal-semiconductor-metal (MSM) microwave oscillator. Bell. Syst. Tech. J. 50, 1695–1699 (1971)

    Article  Google Scholar 

  46. Spangenberg, K.R.: Vacuum Tubes, pp. 527–620. McGraw-Hill, New York (1948)

    Google Scholar 

  47. Hamilton, J.J.: Reflex klystrons, pp. 65–130. Chapman and Hall, London (1958)

    Google Scholar 

  48. Pierce, J.R., Shepherd, W.G.: Reflex oscillators. Bell Syst. Tech. J. 26, 460–681 (1947)

    Article  Google Scholar 

  49. Hechtel, R.: Das Vielschlitzklystron, ein Generator für kurze elektromagnetische Wellen. Telefunken Röhre 35, 5–30 (1958)

    Google Scholar 

  50. Varian Ass. Canada. Prospekt 10: Introduction to extended interaction oscillators (EIO) (1978)

    Google Scholar 

  51. Epsztein, B.: Franz. Pat. No. 10135379 of 13.4.1951

    Google Scholar 

  52. Kleen, W.: Verzögerungsleitungen mit periodischer Struktur in Wanderfeldröhren. NTZ 7, 547–553 (1954)

    Google Scholar 

  53. Guénard, P., Döhler, O., Warnecke, R.: Sur les propriétés des lignes à structure périodique. C. R. Acad. Sci. Paris 235, 32–34 (1952)

    Google Scholar 

  54. Kleen, W.: Mikrowellen-Elektronik I. Hirzel, Stuttgart (1952)

    Google Scholar 

  55. Warnecke, R., Guénard, P.: Some recent works in France on new types of valves for the highest radio frequencies. J. Inst. Electr. Eng. 100(Part III), 351–362 (1953)

    Google Scholar 

  56. Kompfner, R.: Backward-wave oscillator. Bell Labor. Rec. 31, 281–285 (1953)

    Google Scholar 

  57. Kompfner, R., Williams, N.T.: Backward-wave tubes. Proc. IRE 41, 1602–1611 (1953)

    Article  Google Scholar 

  58. Veith, W.: Das Carcinotron, ein elektrisch durchstimmbarer Generator. NTZ 7, 554–558 (1954)

    Google Scholar 

  59. Pöschl, K.: Zur Theorie des Carcinotrons. NTZ 7, 558–561 (1954)

    Google Scholar 

  60. Goldberger, A.K., Palluel, P.: The “0”-type carcinotron type. Proc. IRE 44, 333–345 (1956)

    Article  Google Scholar 

  61. Doehler, O., Epsztein, B., Guénard, P., Warnecke, W.: The “M”-type carcinotron type. Proc. IRE 43, 413–424 (1955)

    Article  Google Scholar 

  62. Grow, R.W., Watkins, D.A.: Backward-wave oscillator efficiency. Proc. IRE 848–856 (1955)

    Google Scholar 

  63. Heffner, H.: Analysis of the backward-wave tube. Proc. IRE 930–937 (1954)

    Google Scholar 

  64. Walker, L.R.: Starting currents in the backward-wave oscillator. J. Appl. Phys. 24, 854–859 (1953)

    Article  ADS  Google Scholar 

  65. Barnett, L.R., et al.: Backward-wave oscillators for frequencies above 600 GHz. In: Tenth International Conference on Infrared and Millimeter Waves, Florida (1985)

    Google Scholar 

  66. Grant, T.J., et al.: An ultrahigh precision electrongun-tube alignment technique for mm-wave applications. In: IEDM Meeting Washington (1985)

    Google Scholar 

  67. Bava, E., et al.: Phase-lock of a submillimetric carcinotron. Infrared Phys. 23, 157–160 (1983)

    Article  ADS  Google Scholar 

  68. Epsztein, B., Teyssier, L.: Advances in submillimeter carcinotrons. In: IEEE Conference Washington (1981)

    Google Scholar 

  69. Epsztein, B.: Recent progress and future performances of millimeter-wave BWO’s. In: AGARD Conference Proceedings No 245 (1978)

    Google Scholar 

  70. Glass, E.: Ein Rückwärtswellenoszillator von 110–170 GHz. NTG-Fachber. 71, 29–33 (1980)

    Google Scholar 

  71. Henney, K.: Radio Engineering Handbook, pp. 8–18. McGraw-Hill, New York (1959)

    Google Scholar 

  72. Hull, A.W.: The effect of a uniform magnetic field on the motion of electrons between coaxial cylinders. Phys. Rev. 18, 31–57 (1921). Furthermore: the paths of electrons in the magnetron. Phys. Rev. 23, 112 (1924)

    Google Scholar 

  73. Brillouin, L.: Theory of the magnetrons, Part 1. Phys. Rev. 60, 385–396 (1941); likewise Part 2. Phys. Rev. 62, 166–177 (1942)

    Google Scholar 

  74. Collins, G.B.: Microwave Magnetrons. McGraw-Hill, New York (1948)

    Google Scholar 

  75. Habann, E.: Eine neue Generatorröhre. Z. Hochfrequenztechn. 24, 115–120, 135 to 141 (1924)

    Google Scholar 

  76. Herriger, F., Hülster, F.: Die Schwingungen der Magnetfeldröhren. Z. Hochfrequenztech. 49, 123–132 (1937)

    Google Scholar 

  77. Chodorow, M., Susskind, Ch.: Fundamentals of Microwave Electronics. McGraw-Hill, New York (1964)

    Google Scholar 

  78. Okress, E. (ed.): Crassed-Field Microwave Devices, Part I and II. Academic Press, New York (1961)

    Google Scholar 

  79. Hinkel, K.: Magnetrons. Philips Tech. Bibl. 40 (1961)

    Google Scholar 

  80. See [64], p. 118

    Google Scholar 

  81. Schmitt, H.: Coaxial magnetrons. Tech. Mitt. AEG-Telefunken 64, 222–226 (1974)

    ADS  Google Scholar 

  82. Paul, H.: Die Leistungsabgabe des selbsterregten Mikrowellengenerators an eine komplexe Last. Elektron. Rdsch. 10, 29–33; 146–149; 167–170 (1956)

    Google Scholar 

  83. Hirshfield, J.L., Granatstein, V.L.: The electron cyclotron maser—a historical survey. IEEE Trans. MTT-25, 522–527 (1977)

    Google Scholar 

  84. Flyagin, V.A., Gaponov, A.V., et al.: The gyrotron. IEEE Trans. MTT-25, 514–521 (1977)

    Google Scholar 

  85. Hirshfield, J.L., Wachtel, J.M.: Electron cyclotron maser. Phys. Rev. Lett. 12, 533–536 (1964)

    Article  ADS  Google Scholar 

  86. Mourier, G.: Gyrotron tubes—a theoretical study. AEÜ 34, 473–484 (1980)

    Google Scholar 

  87. Granatstein, V.L., Alexeff, I. (ed.): High-Power Microwave Sources. Artech House, Boston (1987)

    Google Scholar 

  88. Kim, K.J., et al.: Design considerations for a megawatt CW gyrotron. Int. J. Electron. 51, 427–445 (1981)

    Article  Google Scholar 

  89. Sprangle, P., Vomvoridis, J.L., Manheimer, W.M.: A classical electron cyclotron quasioptical maser. Appl. Phys. Lett. 5, 310–313 (1981)

    Article  ADS  Google Scholar 

  90. Flyagin, V.A., Luchinin, A.G., Nusinovich, G.S.: Submillimeter-wave gyrotrons theory and experiment. Int. J. Infrared Millimeter Waves 4, 629–637 (1983)

    Google Scholar 

  91. Thumm, M.: Present developments and status of electron sources for high power Gyrotron tubes and free electron masers. Appl. Surf. Sci. 111, 106–120 (1997)

    Article  ADS  Google Scholar 

  92. Küpfmüller, K.: Einführung in die theoretische Elektrotechnik, 10th ed., p. 332. Springer, Berlin (1973)

    Google Scholar 

  93. Mehta, V.B.: Comparison of RC-networks for frequency stability in oscillators. Electron. Rec. 112, 296–300 (1965)

    Google Scholar 

  94. Härder, T., Motz, T., Waldinger, P.: Rückkopplungsnetzwerke für RC-Oszillatoren maximaler Frequenzstabilität. Frequenz 26(242–248), 281–287 (1972)

    ADS  Google Scholar 

  95. Haller, H.: Zur Beurteilung der Güte von Oszillatorschaltungen. Funk und Ton 11, 565–575 (1954)

    Google Scholar 

  96. Tietze, U., Schenk, Ch.: Halbleiter-Schaltungstechnik, 5th ed., p. 433. Springer, Berlin (1980)

    Google Scholar 

  97. Schaltbeispiele mit diskreten Halbleiterbauelementen. Handbuch der Firma Intermetall, Freiburg (1972/1)

    Google Scholar 

  98. Halbleiter-Schaltbeispiele mit integrierten Schaltungen. Handbuch der Firma Siemens, Bereich Halbleiter, Munich (1971/72)

    Google Scholar 

  99. Hinton, W.R.: The design of RC-oscillator phase shifting networks. Electron. Eng. 22, 13–17 (1950)

    Google Scholar 

  100. Vaughan, W.C.: Phase-shift oscillators. Wirel. Eng. 26, 391–395 (1949)

    Google Scholar 

  101. Johnson, R.W.: Extending the frequency range of the phase-shift oscillator. Proc. IRE 33, 597–603 (1945)

    Article  Google Scholar 

  102. Prabhavathi, G., Ramachandran, V.: High Q resistance-capacitance ladder phase-shift networks. IEEE Trans. CT-14, 148–153 (1967)

    Google Scholar 

  103. Hollmann, H.E.: Phasenschieber-oder RC-Generatoren. Elektrotechnik 1, 129–138 (1947)

    Google Scholar 

  104. Wunsch, G.: Theorie und Anwendung linearer Netzwerke, Part I, pp. 337–345. Akad. Verlagsges, Leipzig (1961)

    Google Scholar 

  105. Brown, D.A.H.: The equivalent Q of RC-networks. Electron. Eng. 25, 294–298 (1953)

    Google Scholar 

  106. Sidorowicz, R.S.: Some novel RC-oscillators for radio frequencies. Electron. Eng. 39(498–502), 560–564 (1967)

    Google Scholar 

  107. Sulzer, P.G.: The tapered phase-shift oscillator. Proc. IRE 36, 1302–1305 (1948)

    Article  Google Scholar 

  108. Dutta, R.: Theory of the exponentially tapered RC-transmission lines for phase-shift oscillators. Proc. IEEE 51, 1764–1770 (1963)

    Google Scholar 

  109. Lutz, R.: Zur Dimensionierung linearer Verstärker-Oszillatoren. Diss. Hochschule der Bundeswehr Munich (1983)

    Google Scholar 

  110. Bolle, A.P.: Theory of twin-T RC-networks and their application to oscillators. Br. Inst. Radio Eng. 13, 571–587 (1953)

    Google Scholar 

  111. Smith, D.H.: The characteristics of parallel-T RC-networks. Electron. Eng. 29, 71–77 (1957)

    Google Scholar 

  112. Lutz, R., Gottwald, A.: Ein umfassendes Qualitätsmaß für lineare Verstärker-Oszillatoren. Frequenz 39, 55–59 (1985)

    Article  ADS  Google Scholar 

  113. Gerber, E.A., Sykes, R.A.: Quartz crystal units and oscillators. Proc. IEEE 103–116 (1966)

    Google Scholar 

  114. Cutler, L.S., Searle, C.L.: Some aspects of the theory and measurement of frequency fluctuations in frequency standards. Proc. IEEE 136–154 (1966)

    Google Scholar 

  115. Vollrath, E.: Die Kurzzeitkonstanz der Frequenz von Sinusgeneratoren. NTZ 21, 6–8 (1968)

    Google Scholar 

  116. Sachs, L.: Statistische Auswertungsmethoden, 3rd edn., p. 57. Springer, Berlin (1971)

    MATH  Google Scholar 

  117. Allan, D.: Statistics or atomic frequency standards. Proc. IEEE 221–230 (1966)

    Google Scholar 

  118. Martin, D.: Frequency stability measurements by computing counter system. Hewlett-Packard J. 9–14 (1971)

    Google Scholar 

  119. Herzog, W.: Oszillatoren mit Schwingkristallen, pp. 97–101. Springer, Berlin (1958)

    Google Scholar 

  120. Cady, W.G.: Piezoelectricity. McGraw-Hill, New York (1946)

    Google Scholar 

  121. Bergmann, L.: Der Ultraschall, p. 42. Hirzel, Stuttgart (1949)

    Google Scholar 

  122. Awender, H., Sann, K.: Der Quarz in der Hochfrequenztechnik. In: Handbuch für Hochfrequenz- und Elektrotechniker, vol. II, pp. 160–226. Verlag für Radio-Foto-Kinotechnik, Berlin-Borsigwalde (1953)

    Google Scholar 

  123. Bechmann, R.: Piezoelektrisch erregte Eigenschwingungen von Platten und Stäben und dynamische Bestimmung der elastischen und piezoelektrischen Konstanten. AEÜ 8, 481–490 (1954); Schwingkristalle für Siebschaltungen. AEÜ 18, 129–136 (1964)

    Google Scholar 

  124. Eckstein, H.: High frequency vibrations of thin crystals plates. Phys. Rev. 68, 11–23 (1945)

    Article  ADS  MathSciNet  Google Scholar 

  125. Mindlin, R.O.: Thickness shear and flexual vibrations of crystal plates. J. Appl. Phys. 22, 316–323 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  126. Neubig, B., Briese, W.: Das große Quarzkochbuch. Franzis-Verlag, Feldkirchen (1997). ISBN 3-7723-5853-5

    Google Scholar 

  127. Morse, P.M.: Vibration and Sound, p. 154. McGraw-Hill, New York (1948)

    Google Scholar 

  128. Stark, I.R.: Die Kopplung zwischen Dickenscher- und Biegeschwingungen runder ATgeschnittener Quarzscheiben. Telefunken Ztg. 31, 179–187 (1958)

    Google Scholar 

  129. Kusters, J.A.: Transient thermal compensation for quartz resonators. IEEE Trans. Sonics Ultrason. SU-23(4) (1976)

    Google Scholar 

  130. Holland, R.: Nonuniformly heated anisotropic plates: I. Mechanical distortion and relaxation. IEEE Trans. Sonics Ultrason. SU-21(3) (1974)

    Google Scholar 

  131. Eer Nisse, E.P.: Quartz resonator frequency shifts arising from electrode stress. In: Proceedings of 29th Annual Symposium on Frequency Control, pp. 1–4 (1975)

    Google Scholar 

  132. Kusters, J.A., Leach, J.G.: Further experimental data on stress and thermal gradient compensated crystals. Proc. IEEE 282–284 (1977)

    Google Scholar 

  133. Ward, R.: The SC-Cut Crystal: A Review. Colorado Crystal Corporation (1980)

    Google Scholar 

  134. Pegeot, Cl.: Etude comparative entre des oscillateurs a quartz en coupe AT et en SC (coupes a simple et double rotation). L’onde electrique 59, 65–69 (1979)

    Google Scholar 

  135. Adams, Ch.A., Kusters, J.A.: The SC-Cut, A Brief Summary. Hewlett-Packard (1981)

    Google Scholar 

  136. Brice, J.C.: Crystals for quartz resonators. Rev. Mod. Phys. 57 (1985)

    Google Scholar 

  137. IEC Publication 444: Basic method for the measurement of resonance frequency and equivalent series resonance of quartz crystal units

    Google Scholar 

  138. Scheibe, A.: Konstruktion und Leistung neuer Quarzuhren der Phyakalisch-Technischen Bundesanstalt. Z. angewandte Physik 8, 175–183 (1956)

    Google Scholar 

  139. Rockstuhl, F.: Zur Dimensionierung des quarzgesteuerten Dreipunkt-Röhrenoszillators. Telefunken-Ztg. 31(119), 50–58 (1958)

    Google Scholar 

  140. Rockstuhl, F.G.R.: A method of analysis of fundamental and overtone crystal oscillator circuits. J. Inst. Electr. Eng. 99(Part III), 377–388 (1952)

    Google Scholar 

  141. Telefunken: Laborbuch, vol. I, p. 336, vol. III, p. 272

    Google Scholar 

  142. Kupka, K., Thanhäuser, G.: Transistorquarzoszillatoren in der Trägerfrequenztechnik. Frequenz 24, 357–363 (1970)

    Article  ADS  Google Scholar 

  143. Smith, W.L.: Precision quartz crystal controlled oscillators using transistor circuits. Bell Lab. Rec. 42, 273–279 (1964)

    Google Scholar 

  144. Burgon, J.R.R., Wilson, R.L.: SC-cut quartz oscillator offers improved performance. Hewlett-Packard J. (1981)

    Google Scholar 

  145. Vöge, K.-H., Zinke, O.: Beziehungen zwischen äquivalenten und dualen Reaktanzzweipolen mit maximal vier Reaktanzen. AEÜ 18, 342–349 (1961)

    Google Scholar 

  146. Heegner, K.: Gekoppelte selbsterregte elektrische Kreise und Kreisoszillatoren. ENT 15, 359–368 (1938)

    Google Scholar 

  147. Herzog, W.: Verfahren zur Veränderung der Resonanzfrequenz von Kristalloszillatoren. AEÜ 2, 153–163 (1948)

    Google Scholar 

  148. Becker, G.: Über kristallgesteuerte Oszillatoren. AEÜ 11, 41–47 (1957)

    Google Scholar 

  149. Awender, H., Sann, K.: Zur Klassifizierung der Quarz-Oszillatorschaltungen. Funk und Ton 8(202–214), 253–265 (1954)

    Google Scholar 

  150. Knapp, G.: Frequency stability analysis of transistorized crystal oscillator. IEEE Trans. IM-12, 2–6 (1963)

    Google Scholar 

  151. Driscoll, M.M.: Two-stage self-limiting series mode type quartz crystal oscillator exhibiting improved short-term frequency stability. In: Proceedings of 26th AFSC, p. 43 (1972)

    Google Scholar 

  152. Sulzer, P.C.: Wide range RC-oscillator. Electronics 23, 88–89 (1950)

    Google Scholar 

  153. Shepherd, W.G., Wise, R.O.: Variable-frequency bridge-type frequency-stabilized oscillators. Proc. IRE 31, 256–268 (1943)

    Article  Google Scholar 

  154. Telefunken: Laborbuch, vol. 1, pp. 257–259. AEG-Telefunken, Ulm

    Google Scholar 

  155. Meyer-Ebrecht, D.: Fast amplitude control of a hormonic oscillator. Proc. IEEE 60, 736 (1972). DAS 2103138 of 22.1.1971. Schnelle Amplitudenregelung harmonischer Oszillatoren. Phil. Res. Rep. (1974)

    Google Scholar 

  156. Fliege, N.: Empfindlichkeitsmaße für lineare Systeme und Netzwerke. AEÜ 32, 308–313 (1978)

    Google Scholar 

  157. Pengelly, R.: Microwave Field-Effect Transistors-Theory, Design and Applications, pp. 250–253. Research Studies Press, Chichester (1983)

    Google Scholar 

  158. Johnson, K.M.: Large signal GaAs MESFET oscillator design. IEEE Trans. MTT-27, 217–226 (1979)

    Google Scholar 

  159. Pettenpaul, E., Langer, B., Huber, J., Mampe, H., Zimmermann, W.: Discrete GaAs microwave devices for satellite TV front ends. Siemens Research and Development Report 4 (1984)

    Google Scholar 

  160. Maeda, M., Kimura, K., Kodera, H.: Design and performance or X-band oscillators with, GaAs Schottky-gate field-effect transistors. IEEE Trans. MTT-23, 661–667 (1975)

    Google Scholar 

  161. Plourde, J.M., Ren, C.-L.: Application of dielectric resonators in microwave components. IEEE Trans. MTT-29, 754–770 (1981)

    Google Scholar 

  162. Abe, H., Takayama, Y., Higashisaka, A., Takernizawa, H.: A highly stabilized low-noise GaAs FET integrated oscillator with a dielectric resonator in the C-band. IEEE Trans. MTT-26, 156–162 (1978)

    Google Scholar 

  163. Pospieszalski, M.W.: Cylindrical dielectric resonators and their applications in TEM line microwave circuits. IEEE Trans. MTT-27, 233–238 (1979)

    Google Scholar 

  164. Tserng, H.Q., Macksey, H.M., Sokolov, V.: Performance or GaAs MESFET oscillators in the frequency range 8–25 GHz. Electron. Lett. 13, 85–86 (1977)

    Article  ADS  Google Scholar 

  165. Lesartre, P., et al.: Stable FET local oscillator at 11 GHz with electronic amplitude control. In: Proceedings of 8th European Microwave Conference, pp. 269–273 (1978)

    Google Scholar 

  166. Joshi, J.S., Cockrill, J.R., Turner, J.A.: Monolithic microwave GaAs FET oscillators. JEEE Trans. ED-28, 158–162 (1981)

    Google Scholar 

  167. Tserng, H.Q., Macksey, H.M.: Performance of monolithic GaAs FET oscillators at J-band. IEEE Trans. ED-28, 163–165 (1981)

    Google Scholar 

  168. Tsironis, C., Kermarrec, C., Faguet, J., Harrop, P.: Stable monolithic GaAs FET oscillator. Electron. Lett. 18, 345–347 (1982)

    Google Scholar 

  169. Debney, B.T., Joshi, J.S.: A theory of noise in GaAs FET microwave oscillators and its experimental verification. IEEE Trans. ED-30, 769–776 (1983)

    Google Scholar 

  170. Siemens Matsushita Components 33, Issue 4 (1995)

    Google Scholar 

  171. Rint, C. (ed.): Handbuch für Hochfrequenz- und Elektrotechniker, 13th ed., p. 248. Hüthig, Heidelberg (1981)

    Google Scholar 

  172. Kühnel, C.: Schaltungsdesign mit P-Spice unter Windows: das Design Center für Windows 6.0. Francis, Feldkirchen (1996). ISBN 3-7723-7204-X

    Google Scholar 

  173. Wacker, K., Glas, A.: OFW-Komponenten erobern Keyless-Entry-Systeme. Electronic Industrie 3, 68–72 (1998)

    Google Scholar 

  174. Barkhausen, H.: Elektronen Röhren, Band III. Hirzel, Leipzig (1935)

    Google Scholar 

  175. Sedra, S., Smith, K.: Microelectronic Circuits, 4th edn. Oxford University Press, New York (1998)

    Google Scholar 

  176. Sze, S.M., Ryder, R.M.: Microwave avalanche diodes. Proc. IEEE 59, 1140–1154 (1971)

    Article  Google Scholar 

  177. Berson, B.E.: Transferred electron devices. In: European Microwave Conference, Stockholm (1971)

    Google Scholar 

  178. Scharfetter, D.L.: Power-impedance-frequency limitations of Impatt oscillators calculated from a scaling approximation. IEEE Trans. Electron Devices ED-18, 536–543 (1971)

    Google Scholar 

  179. Müller, R.: Bauelemente der Halbleiter-Elektronik, p. 60. Springer, Berlin (1973)

    Book  Google Scholar 

  180. Llewellyn, F.B., Peterson, L.C.: Vacuum-tube networks. Proc. IRE 32, 144–166 (1944)

    Article  Google Scholar 

  181. Liao, S.Y.: Microwave Devices and Circuits, p. 198. Prentice Hall, Englewood Cliffs (1980)

    Google Scholar 

  182. Best, R.: Theorie und Anwendungen des Phase-Locked-Loops mit Diskette für PLL-Simulation, 5th ed. AT-Verlag. ISBN 3-85502-132-5. VDE-Verlag. ISBN 3-8007-1980-0

    Google Scholar 

  183. Scheibe, A.: Piezoelektrizität des Quarzes, pp. 168–175. Steinkopff, Dresden (1938)

    Google Scholar 

Literature for Further Reading

  1. Kleen, W.: Geschichte, Systematik und Physik der Höchstfrequenzelektronenröhren. ETZ A 76, 53–64 (1955)

    Google Scholar 

  2. Kowalenko, W.F.: Mikrowellenröhren, p. 25. Porta Verlag, Munich (1957)

    Google Scholar 

  3. Guozdover, S.D.: Theory of Microwave Tubes, p. 260. Pergamon Press, Oxford (1961)

    Book  Google Scholar 

  4. Hamilton, D.R., Knipp, J.K., Kuper, J.B.H.: Klystrons and Microwave Triodes, pp. 311–351. McGraw-Hill, New York (1948)

    Google Scholar 

  5. Gundlach, F.W., Meinke, H.H. (ed.): Taschenbuch der Hochfrequenztechnik, 4th ed., p. 860. Springer, Berlin (1986)

    Google Scholar 

  6. Rehwald, W.: Elementare Einführung in die Bessel-, Neumann- und Hankelfunktionen (Mathematische Funktionen in Physik und Technik, vol. 1), p. 9. Hirzel, Stuttgart (1959)

    Google Scholar 

  7. Gilmour, Jr., A.S.: Microwave Tubes. Artech House, Boston (1986)

    Google Scholar 

  8. Hinkel, K.: Magnetrons. Philips Technische Bibliothek, 40 (1961)

    Google Scholar 

  9. Paul, H.: Die Leistungsabgabe des selbsterregten Mikrowellengenerators an eine komplexe Last. Elektron. Rdsch. 10, 29–33 (1956)

    Google Scholar 

  10. Gray, L., Graham, R.: Radio Transmitters, pp. 84–87. McGraw-Hill, New York (1961)

    Google Scholar 

  11. IEC Publication 302: Standard definitions and methods or measurement for piezoelectric vibrators operating over the frequency range upto 30 MHz

    Google Scholar 

  12. IEC Publication 283: Methods for the measurement of frequency and equivalent resistance of unwanted resonances of filter crystal units

    Google Scholar 

  13. An overview of the phase-locked loop (PLL). Application note 177 and: modeling the PLL. Application note 178. In: Professionelle Integrierte Analog- und Spezialschaltungen Part 2. Hüthig, Heidelberg (1987). ISBN 3-7785-1578-0

    Google Scholar 

  14. Voges, E.: Hochfrequenztechnik. Volume 1: Bauelemente und Schaltungen. Hüthig Eltex, Heidelberg (1986)

    Google Scholar 

  15. Kaa, B.: Mikroprozessorgesteuerter HF-Sythesizer bis 1450 MHz, vol. 36, no. 3, pp. 131–169. UKW-Berichte (1996)

    Google Scholar 

  16. The American Radio Relay League: The ARRL Handbook, 74th ed. Newington, Connecticut (1997). ISBN 0-87259-174-3

    Google Scholar 

  17. Valvo, Unternehmensbereich Bauelemente der Philips GmbH (ed.): Integrierte Logikschaltungen High Speed CMOS. Hüthig, Heidelberg (1986). ISBN 3-7785-1331-1

    Google Scholar 

  18. Gardner, F.M., Kent, St.S., Dasenbrock, R.D.: Theory of Phaselock Techniques. Resdel Engineering Corporation, Pasadena, California

    Google Scholar 

  19. Gardner, F.M.: Phaselock Techniques, 2nd edn. Wiley, New York (1979)

    Google Scholar 

  20. Miller, B., Conley, R.J.: A Multiple Modulator Fractional Divider. IEEE Trans. Instrum. Meas. 40(3) (1991)

    Google Scholar 

  21. http://altavista.digital.com; Search term: direct digital synthesis

  22. Wang, T.-P., Yan, Y.-M.: A low-voltage low-power wide-tuning-range hybrid Class-AB/Class-B VCO with robust start-up and high-performance FOMT. IEEE Trans. Microw. Theo. Tech. 62(3), 521–531 (2014)

    Article  ADS  Google Scholar 

  23. You, P.-L., Huang, T.-H.: A switched inductor topology using a switchable artificial grounded metal guard ring for wide-FTR MMW VCO applications. IEEE Trans. Electron Devices 60(2), 759–766 (2013)

    Article  ADS  Google Scholar 

  24. Wu, Q., Elabd, S., Quach, T.K., Mattamana, A., Dooley, S.R., McCue, J., Orlando, P.L., Creech, G.L., Khalil, W.: A −189 dBc/Hz FOMT wide tuning range Ka-band VCO using tunable negative capacitance and inductance redistribution. In: IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Seattle, WA, USA (2013)

    Google Scholar 

  25. Tsai, P.-K., Huang, T.-H.: Integration of current-reused VCO and frequency tripler for 24-GHz low-power phase-locked loop applications. IEEE Trans. Circ. Syst. II Express Briefs 59(4), 199–203 (2012)

    Google Scholar 

  26. Wu, Q., Quach, T., Mattamana, A., Elabd, S., Dooley, S.R., McCue, J.J., Orlando, P.L., Creech, G.L., Khalil, W.: Design of wide tuning-range mm-wave VCOs using negative capacitance. In: IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, CA, USA (2012)

    Google Scholar 

  27. Tsai, P.-K., Liu, C.-Y., Huang, T.-H.: A CMOS voltage controlled oscillator and frequency tripler for 22–27 GHz local oscillator generation. IEEE Microw. Wirel. Compon. Lett. 21(9), 492–494 (2011)

    Article  Google Scholar 

  28. Yang, C.-Y., Chang, C.-H., Lin, J.-M., Weng, J.-H.: A 0.6 V 10 GHz CMOS VCO using a negative-Gm back-gate tuned technique. IEEE Microw. Wirel. Compon. Lett. 21(3), 163–165 (2011)

    Article  Google Scholar 

  29. Jooyaie, A., Chang, M.C.F.: A V-band voltage controlled oscillator with greater than 18 GHz of continuous tuning-range based on orthogonal E mode and H mode control. In: IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Baltimore, MD, USA (2011)

    Google Scholar 

  30. Jimenez, J.L.G., Badets, F., Martineau, B., Belot, D.: A 56GHz LC-tank VCO with 17% tuning range in 65 nm bulk CMOS for wireless HDMI applications. In: IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA (2009)

    Google Scholar 

  31. Zito, D., Pepe, D., Fonte, A.: 13 GHz CMOS active inductor LC VCO. IEEE Microw. Wirel. Compon. Lett. 22(3), 138–140 (2012)

    Article  Google Scholar 

  32. Hsu, M., Chiu, C.-T.: A low power 10 GHz current reused VCO using negative resistance enhancement technique. In: Asia Pacific Microwave Conference (APMC), Singapore (2009)

    Google Scholar 

  33. Borremans, J., Dehan, M., Scheir, K., Kuijk, M., Wambacq, P.: VCO design for 60 GHz applications using differential shielded inductors in 0.13 μm CMOS. In: IEEE Radio Frequency Integrated Circuits Symposium (IMS), Atlanta, GA, USA (2008)

    Google Scholar 

  34. Chien, J.-C., Lu, L.-H.: Design of wide-tuning-range millimeter-wave CMOS VCO with a standing-wave architecture. IEEE J. Solid-State Circuits 42(9), 1942–1952 (2007)

    Article  ADS  Google Scholar 

  35. Jung, B., Harjani, R.: A 20GHz VCO with 5GHz tuning range in 0.25/spl mu/m SiGe BiCMOS. In: IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA (2004)

    Google Scholar 

  36. Wang, T.-P.: A K-band low-power Colpitts VCO with voltage-to-current positive-feedback network in 0.18 μm CMOS. IEEE Microw. Wirel. Compon. Lett. 21(4), 218–220 (2011)

    Article  Google Scholar 

  37. Hsieh, C.-K., Kao, K.-Y., Tseng, J.R., Lin, K.-Y.: A K-band CMOS low power modified Colpitts VCO using transformer feedback. In: IEEE MTT-S International Microwave Symposium (IMS) 2009, Boston, MA, USA (2009)

    Google Scholar 

  38. Yang, J., Kim, C.-Y., Kim, D.-W., Hong, S.: Design of a 24-GHz CMOS VCO with an asymmetric-width transformer. IEEE Trans. Circuits Syst. II Express Briefs 57(3), 173–177 (2010)

    Google Scholar 

  39. Wang, T.-P., Wang, S.-Y.: Frequency-tuning negative-conductance boosted structure and applications for low-voltage low-power wide-tuning-range VCO. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(6), 1137–1144 (2015)

    Google Scholar 

  40. Yoon, H., Lee, Y., Kim, J.J., Choi, J.: A wideband dual-mode LC-VCO with a switchable gate-biased active core. IEEE Trans. Circuits Syst. II Express Briefs 61(5), 289–293 (2014)

    Google Scholar 

  41. Zong, Z., Babaie, M., Staszewski, R.B.: A 60 GHz frequency generator based on a 20 GHz oscillator and an implicit multiplier. IEEE J. Solid-State Circuits 51(5), 1261–1273 (2016)

    Article  ADS  Google Scholar 

  42. Li, L., Reynaert, P., Steyaert, M.S.J.: A 60-GHz CMOS VCO using capacitance-splitting and gate-drain impedance-balancing techniques. IEEE Trans. Microw. Theor. Tech. 59(2), 406–413 (2011)

    Article  ADS  Google Scholar 

  43. Hung, C.-H., Gharpurey, R.: A 57-to-75 GHz dual-mode wide-band reconfigurable oscillator in 65 nm CMOS. In: IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Tampa, FL, USA (2014)

    Google Scholar 

  44. Chan, W.L., Long, J.R.: A 56–65 GHz injection-locked frequency tripler with quadrature outputs in 90-nm CMOS. IEEE J. Solid-State Circuits 43(12), 2739–2746 (2008)

    Article  ADS  Google Scholar 

  45. **, T., Guo, S., Gui, P., Huang, D., Fan, Y., Morgan, M.: Low-phase-noise 54-GHz transformer-coupled quadrature VCO and 76-/90-GHz VCOs in 65-nm CMOS. IEEE Trans. Microw. Theor. Tech. 64(7), 2091–2103 (2016)

    Article  ADS  Google Scholar 

  46. Yin, J., Huong, H.C.: A 57.5-90.1 GHz magnetically-tuned multimode CMOS VCO. IEEE J. Solid-State Circuits 48(8), 1851–1861 (2013)

    Google Scholar 

  47. Li, L., Reynaert, P., Steyaert, M.S.J.: Design and analysis of a 90 nm mm-wave oscillator using inductive-division LC tank. IEEE J. Solid-State Circuits 44(7), 1950–1958 (2009)

    Article  ADS  Google Scholar 

  48. Kim, D.D., Kim, J., Plouchart, J.-O., Cho, C., Li, W., Lim, D., Trzcinski, R., Kumar, M., Norris, C., Ahlgren, D.: A 70 GHz manufacturable complementary LC-VCO with 6.14GHz tuning range in 65 nm SOI CMOS. In: IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA (2007)

    Google Scholar 

  49. Chao, Y., Luong, H.C.: Transformer-based dual-band VCO and ILFD for wide-band mm-wave LO generation. In: IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, USA (2013)

    Google Scholar 

  50. Jia, H., Chi, B., Kuang, L., Wang, Z.: A 47.6-71.0-GHz 65-nm CMOS VCO based on magnetically-coupled pi-type LC network. IEEE Trans. Microw. Theor. Technol. 63(5), 1645–1657 (2015)

    Google Scholar 

  51. Li, W.-T., Cheng, J.-H., Wu, Y.-M., Huang, T.-W.: A 23.67-to-45-GHz wide tuning range dual VCO with phase noise enhancement in 90-nm CMOS technology. In: IEEE MTT-S International Microwave Symposium (IMS) 2013, Seattle, WA, USA (2013)

    Google Scholar 

  52. Wu, L., Luong, H.C.: A 49-to-62 GHz CMOS quadrature VCO with bimodal enhanced magnetic tuning. In: European Solid-State Circuits Conference (ESSCIRC), Bordeaux, France (2012)

    Google Scholar 

  53. Wang, T.-P.: A low-power low-phase-noise wide-tuning-range 60-GHz voltage-controlled oscillator in 0.18-µm CMOS. In: IEEE International Conference of Electron Devices and Solid-State Circuits, Tian**, China (2011)

    Google Scholar 

  54. Wu, L., Ng, A.W.L., Leung, L.L.K., Luong, H.C.: A 24-GHz and 60-GHz dual-band standing-wave VCO in 0.13 µm CMOS process. In: IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Anaheim, CA, USA (2010)

    Google Scholar 

  55. Copani, T., Kim, H., Bakkaloglu, B., Kiaei, S.: A 0.13-µm CMOS local oscillator for 60-GHz applications based on push-push characteristic of capacitive degeneration. In: IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Anaheim, CA, USA (2010)

    Google Scholar 

  56. Kim, D.D., Kim, J., Cho, C., Plouchard, J.-O., Kumar, M., Lee, W.-H., Rim, K.: An array of 4 complementary LC-VCOs with 51.4% W-band coverage in 32 nm SOI CMOS. In: IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA (2009)

    Google Scholar 

  57. Laskin, E., Khanpour, M., Aroca, R., Tang, K.W., Garcia, P., Voinigescu, S.P.: A 95 GHz receiver with fundamental-frequency VCO and static frequency divider in 65 nm digital CMOS. In: IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA (2008)

    Google Scholar 

  58. Tsai, Z.-M., Lin, C.-S., Huang, C.F., Chern, J.G.J., Wang, H.: A fundamental 90-GHz CMOS VCO using new ring-coupled quad. IEEE Microw. Wirel. Compon. Lett. 17(3), 226–228 (2007)

    Article  ADS  Google Scholar 

  59. Shiao, Y.-S.J., Huang, G.-W., Chuang, C.-W., Hsieh, H.-H., Jou, C.-P., Hsueh, F.-L.: A 100-GHz varactorless CMOS VCO using source degeneration. In: IEEE MTT-S International Microwave Symposium (IMS) 2012, Montreal, QC, Canada (2012)

    Google Scholar 

  60. Chakraborty, A., Trotta, S., Wuertele, J., Weigel, R.: A D-band transceiver front-end for broadband applications in a 0.35 μm SiGe bipolar technology. In: IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Tampa, FL, USA (2014)

    Google Scholar 

  61. Sarkas, I., Hasch, J., Balteanu, A., Voinigescu, S.P.: A fundamental frequency 120-GHz SiGe BiCMOS distance sensor with integrated antenna. IEEE Trans. Microw. Theor. Tech. 60(3), 795–812 (2012)

    Article  ADS  Google Scholar 

  62. Li, H., Rein, H.-M., Suttorp, T., Bock, J.: Fully integrated SiGe VCOs with powerful output buffer for 77-GHz automotive radar systems and applications around 100 GHz. IEEE J. Solid-State Circuits 39(10), 1650–1658 (2004)

    Article  ADS  Google Scholar 

  63. Mammei, E., Monaco, E., Mazzanti, A., Svelto, F.: A 33.6-to-46.2 GHz 32 nm CMOS VCO with 177.5 dBc/Hz minimum noise FOM using inductor splitting for tuning extension. In: IEEE International Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, CA, USA (2013)

    Google Scholar 

  64. Fei, W., Yu, H., Yeo, K.S., Lim, W.M.: A 60 GHz VCO with 25.8% tuning range by switching return-path in 65 nm CMOS. In: IEEE Asian Solid State Circuits Conference (A-SSCC), Kobe, Japan (2012)

    Google Scholar 

  65. Ishibashi, K., Motoyoshi, M., Kobayashi, N., Fujishima, M.: 76 GHz CMOS voltage-controlled oscillator with 7% frequency tuning range. In: IEEE Symposium on VLSI Circuits, Kyoto, Japan (2007)

    Google Scholar 

  66. Lee, J., Moon, Y., Ahn, T.: A dual-band VCO using inductor splitting for automotive radar system at W-band. In: International Symposium on Integrated Circuits (ISIC), Singapore (2014)

    Google Scholar 

  67. Chakraborty, A., Trotta, S., Weigel, R.: A low-phase-noise monolithically integrated 60 GHz push-push VCO for 122 GHz applications in a SiGe bipolar technology. In: IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Bordeaux, France (2013)

    Google Scholar 

  68. To, K.-H., Trivedi, V.P.: A 76-81 GHz transmitter with 10 dBm output power at 125 °C for automotive radar in 65 nm bulk CMOS. In: IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, USA (2011)

    Google Scholar 

  69. Issakov, V., Rimmelspacher, J., Trotta, S., Tiebout, M., Hagelauer, A., Weigel, R.: A 52-to-67 GHz dual-core push-push VCO in 40-nm CMOS. In: 47th European Microwave Conference (EuMC), Nuremberg, Germany (2017)

    Google Scholar 

  70. De Paola, F.M., Genesi, R., Manstretta, D.: A 71–73 GHz voltage-controlled standing-wave oscillator in 90 nm CMOS technology. In: 34th European Solid-State Circuits Conference (ESSCIRC), Edinburgh, UK (2008)

    Google Scholar 

  71. Yu, C.-Y., Chen, W.-Z., Wu, C.-Y., Lu, T.-Y.: A 60-GHz, 14% tuning range, multi-band VCO with a single variable inductor. In: IEEE Asian Solid-State Circuits Conference (A-SSCC), Fukuoka, Japan (2008)

    Google Scholar 

  72. Babaie, M., Staszewski, R.B.: A class-F CMOS oscillator. IEEE J. Solid-State Circuits 48(12), 3120–3133 (2013)

    Article  ADS  Google Scholar 

  73. Visweswaran, A., Staszewski, R.B., Long, J.R.: A low phase noise oscillator principled on transformer-coupled hard limiting. IEEE J. Solid-State Circuits 49(2), 373–383 (2014)

    Article  ADS  Google Scholar 

  74. Liu, X., Chen, C., Ren, J., Luong, H.C.: Transformer-based varactor-less 96 GHz–110 GHz VCO and 89 GHz–101 GHz QVCO in 65 nm CMOS. In: IEEE Asian Solid-State Circuits Conference (A-SSCC), Toyama, Japan (2016)

    Google Scholar 

  75. Fanori, L., Liscidini, A., Andreani, P.: A 6.7-to-9.2 GHz 55 nm CMOS hybrid Class-B/Class-C cellular TX VCO. In: IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA (2012)

    Google Scholar 

  76. Cao, C., O, K.K.: Millimeter-wave voltage-controlled oscillators in 0.13-μm CMOS technology. IEEE J. Solid-State Circ. 41(6), 1297–1304 (2006)

    Google Scholar 

  77. Ellinger, F., Morf, T., Buren, G., Kromer, C., Sialm, G., Rodoni, L., Schmatz, M., Jackel, H.: 60 GHz VCO with wideband tuning range fabricated on VLSI SOI CMOS technology. In: IEEE MTT-S International Microwave Symposium (IMS) 2004, Fort Worth, TX, USA (2004)

    Google Scholar 

  78. Liu, R.-C., Chang, H.-Y., Wang, C.-H., Wang, H.: A 63 GHz VCO using a standard 0.25 μm CMOS process. In: IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA (2004)

    Google Scholar 

  79. Cao, C., O, K.K.: A 90-GHz voltage-controlled oscillator with a 2.2-GHz tuning range in a 130-nm CMOS technology. In: Symposium on VLSI Circuits, Kyoto, Japan (2005)

    Google Scholar 

  80. Huang, P.-C., Liu, R.-C., Chang, H.-Y., Lin, C.-S., Lei, M.-F., Wang, H., Su, C.-Y., Chang, C.-L.: A 131 GHz push-push VCO in 90-nm CMOS technology. In: IEEE Radio Frequency integrated Circuits (RFIC) Symposium, Long Beach, CA, USA (2005)

    Google Scholar 

  81. Hu, Y., Siriburanon, T., Staszewski, R.B.: A 30-GHz class-F23 oscillator in 28 nm CMOS using harmonic extraction and achieving 120 kHz 1/f3 corner. In: 43rd IEEE European Solid State Circuits Conference (ESSCIRC), Leuven, Belgium (2017)

    Google Scholar 

  82. Pohl, N., Rein, H.-M., Musch, T., Aufinger, K., Hausner, J.: SiGe bipolar VCO with ultra-wide tuning range at 80 GHz center frequency. IEEE J. Solid-State Circuits 44(10), 2655–2662 (2009)

    Article  ADS  Google Scholar 

  83. Lacaita, N., Bassi, M., Mazzanti, A., Svelto, F.: A K-band low-noise bipolar Class-C VCO for 5G backhaul systems in 55 nm BiCMOS technology. In: IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Miami, FL, USA (2017)

    Google Scholar 

  84. Babaie, M., Staszewski, R.B.: Third-harmonic injection technique applied to a 5.87-to-7.56 GHz 65 nm CMOS Class-F oscillator with 192 dBc/Hz FOM. In: IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA (2013)

    Google Scholar 

  85. Nguyen, N.M., Meyer, R.G.: A 1.8 GHz monolithic LC voltage-controlled oscillator. In: IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA (1992)

    Google Scholar 

  86. Bai, J., Lee, J., Zhang, J., Rohani, N.: A 28-nm CMOS 40-GHz high-resolution digitally controlled oscillator for automotive radar applications. In: IEEE 17th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Phoenix, AZ, USA (2017)

    Google Scholar 

  87. Ghosh, D., Taylor, S.S., Tan, Y., Gharpurey, R.: A 10 GHz low phase noise VCO employing current reuse and capacitive power combining. In: IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, USA (2010)

    Google Scholar 

  88. Luo, X., Qian, H.J., Staszewski, R.B.: A waveform-sha** millimeter-wave oscillator with 184.7 dBc/Hz FOM in 40 nm digital CMOS process. In: IEEE MTT-S International Microwave Symposium (IMS) 2015, Phoenix, AZ, USA (2015)

    Google Scholar 

  89. Wu, W., Bai, X., Staszewski, R.B., Long, J.R.: A 56.4-to-63.4 GHz spurious-free all-digital fractional-N PLL in 65 nm CMOS. In: IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA (2013)

    Google Scholar 

  90. McNeilage, C., Searls, J.H., Ivanov, E.N., Stockwell, P.R., Green, D.M., Mossamaparast, M.: A review of sapphire whispering gallery-mode oscillators including technical progress and future potential of the technology. In: Proceedings of the 2004 IEEE International Frequency Control Symposium and Exposition, pp. 210–218 (2004). http://doi.org/10.1109/FREQ.2004.1418455

  91. Rohde, U.L., Poddar, A.K.: Crystal Oscillators. Wiley Encyclopedia and Electronics Engineering, pp. 1–38 (2012)

    Google Scholar 

  92. Rohde, U.L., Poddar, A.K.: Crystal Oscillator Design. Wiley Encyclopedia of Electrical and Electronics Engineering, pp. 1–47 (2012)

    Google Scholar 

  93. Rohde, U.L., Poddar, A.K.: Latest technology, technological challenges, and market trends for frequency generating and timing devices. IEEE Microwave Magazine, pp. 120–134 (2012)

    Google Scholar 

  94. Rohde, U.L., Poddar, A.K.: Techniques minimize the phase noise in crystal oscillators. In: 2012 IEEE FCS, pp. 01–07 (2012)

    Google Scholar 

  95. Rohde, U., Poddar, A., Apte, A.: How low can they go, oscillator phase noise model, theoretical, experimental validation, and phase noise measurements. IEEE Microwave Magazine, vol. 14, no. 6, pp. 50–72 (2013)

    Google Scholar 

  96. Rohde, U.L., Apte, A.: Everything you always wanted to know about Colpitts oscillators. IEEE Microwave Magazine, vol. 17, no. 8, pp. 59–76 (2016)

    Google Scholar 

  97. Rohde, U.L.: Noise analysis—Then and today. https://synergymwave.com/articles/2018/Large-signal-oscillator-noise-analysis-then-and-today_s.pdf (seen in June 2019) and https://www.microwavejournal.com/articles/29151-noise-analysis-then-and-today?v=preview (seen in June 2019)

  98. http://www.nist.gov/pml/div688/grp50/primary-frequency-standards.cfm (seen in June 2019)

  99. Rohde, U., Poddar, A., Apte, A.: Getting its measure. IEEE Microwave Magazine, vol. 14, no. 6, pp. 73–86 (2013)

    Google Scholar 

  100. Rohde, U.L., Poddar, A.K.: Voltage controlled crystal oscillator. In: IEEE Sarnoff, March 30–April 01, 2009, Princeton, NJ, USA

    Google Scholar 

  101. Rohde, U.L., Poddar, A., Apte, A., Rudolph, M.: Low phase noise 100 MHz crystal oscillator—optimizing phase-noise performance. IEEE Microwave Magazine (June 2017)

    Google Scholar 

  102. Rohde, U.L., Poddar, A.K.: A novel voltage controlled crystal oscillator (VCXO). In: 2009 European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF-IFCS 2009), Besancon, France, April 20–24, 2009

    Google Scholar 

  103. Rohde, U.L., Poddar, A.K.: Phase noise measurement techniques, associated uncertainty and limitations. In: IEEE Joint UFFC Symposia with European Frequency and Time Forum (EFTF) and Piezo Response Force Microscopy, July 21–25, 2013

    Google Scholar 

  104. Rohde, U.L., Poddar, A.K.: Emerging technology and technological challenges in low phase noise oscillator circuit designs. In: Workshop, IMS 2012, June 18, 2012

    Google Scholar 

  105. Rohde, U.L., Poddar, A.K.: Impact of radiated EMI in high frequency crystal oscillator. In: IEEE IMS 2010, May 23–28, 2010, Anaheim, California, USA

    Google Scholar 

  106. Rohde, U.L., Poddar, A.K., Apte, A.: Phase noise measurement and its limitations. Microwave J. (2013)

    Google Scholar 

  107. Rohde, U.L., Poddar, A.K.: Technique to minimize phase noise in crystal oscillator. Microwave J. 132–150 (2013)

    Google Scholar 

  108. Apte, A.: A new analytical design method of ultra-low-noise voltage-controlled VHF crystal oscillators and its validation. Diss. BTU Cottbus-Senftenberg (2020). https://opus4.kobv.de/opus4-btu/files/5138/Anisha_Apte.pdf

  109. Griebel, W.: Weltraumgeeignete 5MHz Quarzoszillatoren mit maximaler Stabilität zwischen 1 und 10 Sekunden. Diss. BTU Cottbus-Senftenberg (2021). https://opus4.kobv.de/opus4-btu/files/5520/Griebel_Wolfgang.pdf

  110. Rohde, U.L.: A new efficient method of designing low noise microwave oscillators. Dr.-Ing. Dissertation, Faculty IV, EEC (Electrical Engineering and Computer Sciences), TU-Berlin, Germany (2004)

    Google Scholar 

  111. Rohde, U.L.: A novel approach for generating active inductors for microwave oscillators. Dr.-Ing. Habil, Dissertation, BTU Cottbus, Germany (2011). https://www-docs.b-tu.de/ag-hochfrequenztechnik/public/rohde/rohde2011ulr_habil_presentation.pdf

  112. Poddar, A.K.: A novel approach for designing integrated ultra low noise microwave wideband voltage‐controlled oscillators. Dr.‐Ing. Dissertation, TU‐Berlin, Germany, Faculty IV, EEC (Electrical Engineering and Computer Sciences), 14 December 2004

    Google Scholar 

  113. Poddar, A.K.: Slow wave resonator based tunable multi-band multi-mode injection-locked oscillators. Dr.-Ing.-Habil Thesis, Chapter 5, pp. 163–177. BTU Cottbus, Germany (2014)

    Google Scholar 

  114. Wang, W.: Systematic optimization of phase noise of voltage-controlled oscillators for millimeter-wave radar, Ph.D Thesis, NC State University, 21 November 2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Issakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Issakov, V., Rohde, U.L. (2023). Oscillators and Frequency Synthesis. In: Hartnagel, H.L., Quay, R., Rohde, U.L., Rudolph, M. (eds) Fundamentals of RF and Microwave Techniques and Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-94100-0_10

Download citation

Publish with us

Policies and ethics

Navigation