One-Dimensional Silicon Nano-/microstructures Based Opto-Electronic Devices

  • Chapter
  • First Online:
Progress in Nanoscale and Low-Dimensional Materials and Devices

Part of the book series: Topics in Applied Physics ((TAP,volume 144))

Abstract

One-dimensional (1D) nanostructures, including nanorods, nanowiskers, nanowires, nanotubes and nanobelts, have been receiving a great deal of research attention from industry and academia in recent years. Due to their special and outstanding many characteristics, such as effective light–trap** ability, bandgap tunability, efficient charge carrier collection, high carrier mobility, large surface-to-volume ratio and excellent thermal conductivity, such nanostructures play a very important role in the manufacture of high-performance devices with novel functionalities. To date, a number of materials, such as TiO2 (titanium-oxide), ZnO2 (zinc-oxide), Si (silicon), C (carbon), Ga2O3 (gallium oxide) and SnO2 (tin-oxide), have been employed in the production of one-dimensional 1D structures for the fabrication of high-performance electronic and opto-electronic devices. Among them, silicon (Si) is particularly attractive material for a wide range of opto-electronic device application owing to its highly developed technology and outstanding features such as high thermal conductivity, facile do** control, hardness and excellent optical and electrical properties. In this chapter, although we discuss the recent advances in optoelectronic applications of 1D Si nano-/microstructures, it focuses mainly on our own recent studies based on the synthesis of ordered and disordered Si-nanowires/micropillars and their applications in photodetection and harvesting solar energy. In particular, a special focus will be given on the fabrication of Si nano-/microstructures based solar cells with transferred 1D nano-/microstructures from Si-wafer to glass substrates via using a fracture-transfer printing technique, which have demonstrated the possibility of the fabrication of low-cost, transparent, flexible and high-efficient next generation 1D Si nano-/microstructures based next generation opto-electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Zhai, L. Li, Y. Ma, M. Liao, X. Wang, X. Fang, J. Yao, Y. Bando, D. Golberg, One-dimensional inorganic nanostructures: synthesis, field-emission and photodetection. Chem. Soc. Rev. 40(5), 2986–3004 (2011). https://doi.org/10.1039/C0CS00126K

    Article  CAS  Google Scholar 

  2. X. Xu, X. Fang, T. Zhai, H. Zeng, B. Liu, X. Hu, Y. Bando, D. Golberg, Tube-in-Tube TiO2 nanotubes with porous walls: fabrication, formation mechanism, and photocatalytic properties. Small 7(4), 445–449 (2011). https://doi.org/10.1002/smll.201001849

    Article  CAS  Google Scholar 

  3. C. Bartolo-Perez, W. Qarony, S. Ghandiparsi, A.S. Mayet, A. Ahamed, H. Cansizoglu, Y. Gao, E. Ponizovskaya Devine, T. Yamada, A.F. Elrefaie, S.-Y. Wang, M.S. Islam, Maximizing absorption in photon-trap** ultrafast silicon photodetectors. Adv. Photon. Res. 2(6), 2000190 (2021). https://doi.org/10.1002/adpr.202000190

    Article  Google Scholar 

  4. Y. Gao, H. Cansizoglu, K.G. Polat, S. Ghandiparsi, A. Kaya, H. Mamtaz, A. Mayet, Y. Wang, X. Zhang, T. Yamada, E.P. Devine, A. Elrefaie, S.-Y. Wang, M. Islam, Photon-trap** microstructures enable high-speed high-efficiency silicon photodiodes. Nat. Photonics 11, 301–308 (2017)

    Article  CAS  Google Scholar 

  5. S. Ghandiparsi, A.F. Elrefaie, A.S. Mayet, T. Landolsi, C. Bartolo-Perez, H. Cansizoglu, Y. Gao, H.H. Mamtaz, H.R. Golgir, E.P. Devine, T. Yamada, S.Y. Wang, M.S. Islam, High-speed high-efficiency photon-trap** broadband silicon pin photodiodes for short-reach optical interconnects in data centers. J. Lightwave Technol. 37(23), 5748–5755 (2019). https://doi.org/10.1109/JLT.2019.2937906

    Article  CAS  Google Scholar 

  6. A.S. Mayet, H. Cansizoglu, Y. Gao, S. Ghandiparsi, A. Kaya, C. Bartolo-Perez, B. AlHalaili, T. Yamada, E. Ponizovskaya Devine, A.F. Elrefaie, S.-Y. Wang, M.S. Islam, Surface passivation of silicon photonic devices with high surface-to-volume-ratio nanostructures. J. Opt. Soc. Am. B 35(5), 1059–1065 (2018). https://doi.org/10.1364/JOSAB.35.001059

    Article  CAS  Google Scholar 

  7. M. Liu, Y. Lu, Z.B. **e, G.M. Chow, Enhancing near-infrared solar cell response using upconverting transparentceramics. Sol. Energy Mater. Sol. Cells 95(2), 800–803 (2011). https://doi.org/10.1016/j.solmat.2010.09.018

    Article  CAS  Google Scholar 

  8. Y. Luo, Y. Huang, G. Zang, X. Ren, X. Duan, S. Cai, Q. Wang, X. Zhang, J. Wang, Zero bias PIN photodetector based on gradient band distribution and do** gradient profile. Infrared Phys. Technol. 67, 391–396 (2014). https://doi.org/10.1016/j.infrared.2014.09.008

    Article  Google Scholar 

  9. O. Guller, E. Peksu, H. Karaagac, Synthesis of TiO2 nanorods for Schottky-Type UV-photodetectors and third-generation solar cells. physica status solidi (a) 215(4), 1700404 (2018). https://doi.org/10.1002/pssa.201700404

  10. T. Gao, Q.H. Li, T.H. Wang, CdS nanobelts as photoconductors. Appl. Phys. Lett. 86(17):173105 (2005).https://doi.org/10.1063/1.1915514

  11. J.S. Jie, W.J. Zhang, Y. Jiang, X.M. Meng, Y.Q. Li, S.T. Lee, Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett. 6(9), 1887–1892 (2006). https://doi.org/10.1021/nl060867g

    Article  CAS  Google Scholar 

  12. H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 14(2), 158–160 (2002). https://doi.org/10.1002/1521-4095(20020116)14:2%3c158::AID-ADMA158%3e3.0.CO;2-W

    Article  CAS  Google Scholar 

  13. X. Liu, C. Li, S. Han, J. Han, C. Zhou, Synthesis and electronic transport studies of CdO nanoneedles. Appl. Phys. Lett. 82, 1950–1952 (2003). https://doi.org/10.1063/1.1562331

    Article  CAS  Google Scholar 

  14. M. Salvato, M. Scagliotti, M. De Crescenzi, M. Boscardin, C. Attanasio, G. Avallone, C. Cirillo, P. Prosposito, F. De Matteis, R. Messi, P. Castrucci, Time response in carbon nanotube/Si based photodetectors. Sens. Actuators, A 292, 71–76 (2019). https://doi.org/10.1016/j.sna.2019.04.004

    Article  CAS  Google Scholar 

  15. G. Shen, D. Chen, One-dimensional nanostructures for photodetectors. Recent Pat. Nanotechnol. 4, 20–31 (2010). https://doi.org/10.2174/187221010790712101

    Article  CAS  Google Scholar 

  16. H. Wu, Y. Sun, D. Lin, R. Zhang, C. Zhang, W. Pan, GaN nanofibers based on electrospinning: facile synthesis, controlled assembly, precise do**, and application as high performance UV photodetector. Adv. Mater. 21(2), 227–231 (2009). https://doi.org/10.1002/adma.200800529

    Article  CAS  Google Scholar 

  17. Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, High performance silicon nanowire field effect transistors. Nano Lett. 3(2), 149–152 (2003). https://doi.org/10.1021/nl025875l

    Article  CAS  Google Scholar 

  18. K. Das, S. Mukherjee, S. Manna, S. Ray, A. Raychaudhuri, Single Si nanowire (diameter ≤ 100nm) based polarization sensitive near-infrared photodetector with ultra-high responsivity. Nanoscale 6 (2014).https://doi.org/10.1039/C4NR03170A

  19. H. Karaagac, M.S. Islam, Enhanced field ionization enabled by metal induced surface states on semiconductor nanotips. Adv. Func. Mater. 24(15), 2224–2232 (2014). https://doi.org/10.1002/adfm.201303308

    Article  CAS  Google Scholar 

  20. E. Peksu, O. Guller, M. Parlak, M.S. Islam, H. Karaagac, Towards the fabrication of third generation solar cells on amorphous, flexible and transparent substrates with well-ordered and disordered Si-nanowires/pillars. Physica E: Low-Dimen. Syst. Nanostructures 124, 114382 (2020).https://doi.org/10.1016/j.physe.2020.114382

  21. E. Peksu, H. Karaagac, A third generation solar cell based on wet-chemically etched Si nanowires and sol-gel derived Cu2ZnSnS4 thin films. J. Alloy. Compd. 774, 1117–1122 (2019). https://doi.org/10.1016/j.jallcom.2018.10.012

    Article  CAS  Google Scholar 

  22. Z. Zhang, R. Zou, L. Yu, J. Hu, One-dimensional silicon-based semiconductor nanomaterials: synthesis, structures, properties and applications. Critical Reviews in Solid State and Material Sciences 36, 148–173 (2011)

    Article  CAS  Google Scholar 

  23. M.D. Henry, S. Walavalkar, A. Homyk, A. Scherer, Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and nanopillars. Nanotechnology 20(25), 255305 (2009).https://doi.org/10.1088/0957-4484/20/25/255305

  24. H.P. Yoon, Y.A. Yuwen, C.E. Kendrick, G.D. Barber, N.J. Podraza, J.M. Redwing, T.E. Mallouk, C.R. Wronski, T.S. Mayer, Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths. Appl. Phys. Lett. 96(21), 213503 (2010).https://doi.org/10.1063/1.3432449

  25. J. Kim, H. Han, Y.H. Kim, S.-H. Choi, J.-C. Kim, W. Lee, Au–Ag Bilayered metal mesh as a Si etching catalyst for controlled fabrication of Si nanowires. ACS Nano 5(4), 3222–3229 (2011). https://doi.org/10.1021/nn2003458

    Article  CAS  Google Scholar 

  26. K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, S.-T. Lee, Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching. Appl. Phys. Lett. 90(16), 163123 (2007).https://doi.org/10.1063/1.2724897

  27. H.J. In, C.R. Field, P.E. Pehrsson, Periodically porous top electrodes on vertical nanowire arrays for highly sensitive gas detection. Nanotechnology 22(35), 355501 (2011).https://doi.org/10.1088/0957-4484/22/35/355501

  28. X.D. Bai, Z. Xu, S. Liu, E.G. Wang, Aligned 1D silicon nanostructure arrays by plasma etching. Sci. Technol. Adv. Mater. 6(7), 804–808 (2005). https://doi.org/10.1016/j.stam.2005.05.015

    Article  CAS  Google Scholar 

  29. C.-H. Hsu, H.-C. Lo, C.-F. Chen, C.T. Wu, J.-S. Hwang, D. Das, J. Tsai, L.-C. Chen, K.-H. Chen, Generally applicable self-masked dry etching technique for nanotip array fabrication. Nano Lett. 4(3), 471–475 (2004). https://doi.org/10.1021/nl049925t

    Article  CAS  Google Scholar 

  30. Y. Hung, S. Lee, B.J. Thibeault, L.A. Coldren, Fabrication of highly ordered silicon nanowire arrays with controllable sidewall profiles for achieving low-surface reflection. IEEE J. Sel. Top. Quantum Electron. 17(4), 869–877 (2011). https://doi.org/10.1109/JSTQE.2010.2068540

    Article  CAS  Google Scholar 

  31. D. Baklykov, M. Andronic, O. Sorokina, S. Avdeev, K. Buzaverov, I. Ryzhikov, I. Rodionov, Self-controlled cleaving method for silicon DRIE process cross-section characterization. Micromachines 12(5) (2021). https://doi.org/10.3390/mi12050534

  32. E. Baquedano, R.V. Martinez, J.M. Llorens, P.A. Postigo, Fabrication of silicon nanobelts and nanopillars by soft lithography for hydrophobic and hydrophilic photonic surfaces. Nanomaterials (Basel) 7(5), 109 (2017). https://doi.org/10.3390/nano7050109

    Article  CAS  Google Scholar 

  33. H. Berthet, J. Jundt, J. Durivault, B. Mercier, D. Angelescu, Time-of-flight thermal flowrate sensor for lab-on-chip applications. Lab. Chip 11(2), 215–223 (2011). https://doi.org/10.1039/C0LC00229A

    Article  CAS  Google Scholar 

  34. B. Saadany, M. Malak, M. Kubota, F. Marty, Y. Mita, D. Khalil, T. Bourouina, Free-space tunable and drop optical filters using vertical bragg mirrors on silicon. IEEE J. Sel. Top. Quantum Electron. 12(6), 1480–1488 (2006). https://doi.org/10.1109/JSTQE.2006.884082

    Article  CAS  Google Scholar 

  35. M. Sasaki, Silicon etching for multiple-height microstructures, in J. Yan (ed.) Micro and Nano Fabrication Technology. Springer Singapore, Singapore, pp 1–22 (2018). https://doi.org/10.1007/978-981-10-6588-0_29-1

  36. R. Abdolvand, F. Ayazi, An advanced reactive ion etching process for very high aspect-ratio sub-micron wide trenches in silicon. Sens. Actuators, A 144(1), 109–116 (2008). https://doi.org/10.1016/j.sna.2007.12.026

    Article  CAS  Google Scholar 

  37. W.J. Park, J.H. Kim, S.M. Cho, S.G. Yoon, S.J. Suh, D.H. Yoon, High aspect ratio via etching conditions for deep trench of silicon. Surf. Coat. Technol. 171(1), 290–295 (2003). https://doi.org/10.1016/S0257-8972(03)00288-3

    Article  CAS  Google Scholar 

  38. A. Cutarelli, S. Ghio, J. Zasso, A. Speccher, G. Scarduelli, M. Roccuzzo, M. Crivellari, N. Maria Pugno, S. Casarosa, M. Boscardin, L. Conti, Vertically-aligned functionalized silicon micropillars for 3D culture of human pluripotent stem cell-derived cortical progenitors. Cells 9(1), 88 (2020)

    Article  CAS  Google Scholar 

  39. D. Mikulik, A.C. Meng, R. Berrazouane, J. Stückelberger, P. Romero-Gomez, K. Tang, F.-J. Haug, Fontcuberta i Morral A, McIntyre PC, Surface defect passivation of silicon micropillars. Adv. Mater. Interfaces 5(20), 1800865 (2018). https://doi.org/10.1002/admi.201800865

    Article  CAS  Google Scholar 

  40. V.K. Singh, J. Nagaraju, S. Avasthi, Radial junction silicon solar cells with micro-pillar array and planar electrode interface for improved photon management and carrier extraction. Curr. Appl. Phys. 19(3), 341–346 (2019). https://doi.org/10.1016/j.cap.2018.12.016

    Article  Google Scholar 

  41. R. Chaudhary, Comparison between silicon nanopillars prepared by Bosch process and metal assisted chemical etching. Protocols Reports Paper 52, 1–8 (2018)

    Google Scholar 

  42. A. Oates, F.J. Cabrera-España, A. Agrawal, H.S. Reehal, Fabrication and characterisation of Si micropillar PV structures. Mater. Res. Innov. 18(7), 500–504 (2014). https://doi.org/10.1179/1433075X14Y.0000000244

    Article  CAS  Google Scholar 

  43. M.Y. Efremov, E.A. Olson, M. Zhang, L.H. Allen, Glass transition of thin films of poly (2-vinyl pyridine) and poly (methyl methacrylate): nanocalorimetry measurements. Thermochim. Acta 403, 37–41 (2003)

    Article  CAS  Google Scholar 

  44. V.J. Logeeswaran, J. Oh, A.P. Nayak, A.M. Katzenmeyer, K.H. Gilchrist, S. Grego, N.P. Kobayashi, S.Y. Wang, A.A. Talin, N.K. Dhar, M.S. Islam, A Perspective on nanowire photodetectors: current status, future challenges, and opportunities. IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011). https://doi.org/10.1109/JSTQE.2010.2093508

    Article  CAS  Google Scholar 

  45. R. Elbersen, W. Vijselaar, R.M. Tiggelaar, H. Gardeniers, J. Huskens, Fabrication and do** methods for silicon nano- and micropillar arrays for solar-cell applications: a review. Adv. Mater. 27(43), 6781–6796 (2015). https://doi.org/10.1002/adma.201502632

    Article  CAS  Google Scholar 

  46. H. Han, Z. Huang, W. Lee, Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today 9(3), 271–304 (2014). https://doi.org/10.1016/j.nantod.2014.04.013

    Article  CAS  Google Scholar 

  47. K.E. Bean, Anisotropic etching of silicon. IEEE Trans. Electron Dev. 25(10), 1185–1193 (1978). https://doi.org/10.1109/T-ED.1978.19250

    Article  Google Scholar 

  48. X. Li, Metal assisted chemical etching for high aspect ratio nanostructures: a review of characteristics and applications in photovoltaics. Curr. Opin. Solid State Mater. Sci. 16(2), 71–81 (2012). https://doi.org/10.1016/j.cossms.2011.11.002

    Article  CAS  Google Scholar 

  49. R. Bhujel, U. Rizal, A. Agarwal, B.S. Swain, B.P. Swain, Synthesis and characterization of silicon nanowires by electroless etching. J. Mater. Eng. Perform. 27(6), 2655–2660 (2018). https://doi.org/10.1007/s11665-018-3179-z

    Article  CAS  Google Scholar 

  50. S.-S. Yoon, D.-Y. Khang, Stretchable, Bifacial Si-organic hybrid solar cells by vertical array of SI micropillars embedded into elastomeric substrates. ACS Appl. Mater. Interfaces. 11(3), 3290–3298 (2019). https://doi.org/10.1021/acsami.8b17826

    Article  CAS  Google Scholar 

  51. H. Lin, F. Wu, P. Gao, W. Shen, Shape-controlled silicon microwire arrays from Au–Ag-catalyzed metal-assisted chemical etching for radial junction solar cells. ACS Appl. Energy Mater. 2(8), 5871–5876 (2019). https://doi.org/10.1021/acsaem.9b01006

    Article  CAS  Google Scholar 

  52. Y. Qian, D.J. Magginetti, S. Jeon, Y. Yoon, T.L. Olsen, M. Wang, J.M. Gerton, H.P. Yoon, Heterogeneous optoelectronic characteristics of Si micropillar arrays fabricated by metal-assisted chemical etching. Sci. Rep. 10(1), 16349 (2020). https://doi.org/10.1038/s41598-020-73445-x

    Article  CAS  Google Scholar 

  53. G. Baytemir, F. Es, R. Turan, Comparison of influence of gold contamination on the performances of planar and three dimensional c-Si solar cells. Renew. Energy 142, 393–399 (2019). https://doi.org/10.1016/j.renene.2019.04.081

    Article  CAS  Google Scholar 

  54. G. Baytemir, E.H. Ciftpinar, R. Turan, Enhanced metal assisted etching method for high aspect ratio microstructures: applications in silicon micropillar array solar cells. Sol. Energy 194, 148–155 (2019). https://doi.org/10.1016/j.solener.2019.10.033

    Article  CAS  Google Scholar 

  55. H, Karaagac, A hybrid solar cell based on silicon nanowire and organic thin film. physica status solidi (a) 211(11):2503–2508 (2014). https://doi.org/10.1002/pssa.201431320

  56. H. Karaagac, M. Parlak, M.S. Islam, Synthesis of Si nanowires by electroless etching technique and their integration into I–III–VI2 thin films for solar cells. MRS Proc. 1408, 1–6 (2012). https://doi.org/10.1557/opl.2012.40

    Article  CAS  Google Scholar 

  57. H. Karaagac, M. Parlak, E. Yengel, M.S. Islam, Heterojunction solar cells with integrated Si and ZnO nanowires and a chalcopyrite thin film. Mater. Chem. Phys. 140(1), 382–390 (2013). https://doi.org/10.1016/j.matchemphys.2013.03.053

    Article  CAS  Google Scholar 

  58. Y. Li, Q. Chen, D. He, J. Li, Radial junction Si micro/nano-wire array photovoltaics: Recent progress from theoretical investigation to experimental realization. Nano Energy 7, 10–24 (2014). https://doi.org/10.1016/j.nanoen.2014.04.015

    Article  CAS  Google Scholar 

  59. B. Pal, K.J. Sarkar, P. Banerji, Fabrication and studies on Si/InP core-shell nanowire based solar cell using etched Si nanowire arrays. Solar Energy Mater. Solar Cells 204, 110217 (2020).https://doi.org/10.1016/j.solmat.2019.110217

  60. K. Lee, I. Hwang, N. Kim, D. Choi, H.-D. Um, S. Kim, K. Seo, 17.6%-Efficient radial junction solar cells using silicon nano/micro hybrid structures. Nanoscale 8(30), 14473–14479 (2016). https://doi.org/10.1039/C6NR04611H

  61. A. Smyrnakis, P. Dimitrakis, P. Normand, E. Gogolides, Fabrication of axial p-n junction silicon nanopillar devices and application in photovoltaics. Microelectron. Eng. 174, 74–79 (2017). https://doi.org/10.1016/j.mee.2017.02.011

    Article  CAS  Google Scholar 

  62. I. Leontis, M.A. Botzakaki, S.N. Georga, A.G. Nassiopoulou, Study of Si nanowires produced by metal-assisted chemical etching as a light-trap** material in n-type c-Si solar cells. ACS Omega 3(9), 10898–10906 (2018). https://doi.org/10.1021/acsomega.8b01049

    Article  CAS  Google Scholar 

  63. M. Seo, S. Yoon, H. Cho, S. Lee, K. Kim, B.D. Kong, M. Meyyappan, C. Baek, Solar cell using hourglass-shaped silicon nanowires for increased light-trap** path. IEEE J. Photovoltaics 10(2), 475–479 (2020). https://doi.org/10.1109/JPHOTOV.2020.2964329

    Article  Google Scholar 

  64. P. Yadav, M. Patel, H. Kim, Y. Cho, H. Kim, J. Kim, J. Yi, D.-W. Kim, Routes for realizing high-performing Si solar cells by using periodic structures. Mater. Res. Bull. 94, 92–99 (2017). https://doi.org/10.1016/j.materresbull.2017.05.027

    Article  CAS  Google Scholar 

  65. H.-P. Wang, D. Periyanagounder, A.-C. Li, J.-H. He, Fabrication of silicon hierarchical structures for solar cell applications. IEEE Access, 1–1 (2018). https://doi.org/10.1109/ACCESS.2018.2885169

  66. H.-S. Kim, D.B. Patel, H. Kim, M. Patel, K.R. Chauhan, W. Park, J. Kim, Electrical and optical properties of Si microwire solar cells. Sol. Energy Mater. Sol. Cells 164, 7–12 (2017). https://doi.org/10.1016/j.solmat.2017.01.046

    Article  CAS  Google Scholar 

  67. L. Karmakar, D. Das, Single-step fabrication of single-junction c–Si nano-structured solar cells by optimization of plasma etching parameters. J. Alloys Compounds 847, 155352 (2020).https://doi.org/10.1016/j.jallcom.2020.155352

  68. M.D. Kumar, H. Kim, J. Kim, Periodically patterned Si pyramids for realizing high efficient solar cells by wet etching process. Sol. Energy 117, 180–186 (2015). https://doi.org/10.1016/j.solener.2015.04.034

    Article  CAS  Google Scholar 

  69. M.Y. Yeh, P.H. Lei, S.H. Lin, C.D. Yang, Copper-Zinc-Tin-Sulphur thin film using spin-coating technology. Materials 9(7), 526 (2016). https://doi.org/10.3390/ma9070526

    Article  CAS  Google Scholar 

  70. L. Vj, A.M. Katzenmeyer, M.S. Islam, Harvesting and transferring vertical pillar arrays of single-crystal semiconductor devices to arbitrary substrates. IEEE T Electron Dev 57(8), 1856–1864 (2010). https://doi.org/10.1109/TED.2010.2051195

    Article  Google Scholar 

  71. E. Peksu, M. Terlemezoglu, M. Parlak, H. Karaagac, Characterization of one-step deposited Cu2ZnSnS4 thin films derived from a single crystalline powder. Renew. Energy 143, 1133–1142 (2019). https://doi.org/10.1016/j.renene.2019.05.076

    Article  CAS  Google Scholar 

  72. E.C. Garnett, P. Yang, Silicon nanowire radial p−n junction solar cells. J. Am. Chem. Soc. 130(29), 9224–9225 (2008). https://doi.org/10.1021/ja8032907

    Article  CAS  Google Scholar 

  73. L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, Silicon nanowire solar cells. Appl. Phys. Lett. 91(23), 233117 (2007).https://doi.org/10.1063/1.2821113

  74. F. Jiang, H. Shen, W. Wang, L. Zhang, Preparation and properties of Cu2ZnSnS4 absorber and Cu2ZnSnS4/amorphous silicon thin-film solar cell. Appl. Phys. Express 4, 4101 (2011). https://doi.org/10.1143/APEX.4.074101

    Article  CAS  Google Scholar 

  75. N. Song, M. Young, F. Liu, P. Erslev, S. Wilson, S.P. Harvey, G. Teeter, Y. Huang, X. Hao, M.A. Green, Epitaxial Cu2ZnSnS4 thin film on Si (111) 4° substrate. Appl. Phys. Lett. 106(25), 252102 (2015).https://doi.org/10.1063/1.4922992

  76. L. Vj, J. Oh, A.P. Nayak, A.M. Katzenmeyer, K.H. Gilchrist, S. Grego, N.P. Kobayashi, S.Y. Wang, A.A. Talin, N.K. Dhar, M.S. Islam, A perspective on nanowire photodetectors: current status, future challenges, and opportunities. IEEE J. Sel. Top. Quantum Electron. 17(4), 1002–1032 (2011). https://doi.org/10.1109/JSTQE.2010.2093508

    Article  CAS  Google Scholar 

  77. V.J. Logeeswaran, A. Sarkar, M.S. Islam, N.P. Kobayashi, J. Straznicky, X. Li, W. Wu, S. Mathai, M.R.T. Tan, S.-Y. Wang, R.S. Williams, A 14-ps full width at half maximum high-speed photoconductor fabricated with intersecting InP nanowires on an amorphous surface. Appl. Phys. A 91(1), 1–5 (2008). https://doi.org/10.1007/s00339-007-4394-x

    Article  CAS  Google Scholar 

  78. K. Zang, X. Jiang, Y. Huo, X. Ding, M. Morea, X. Chen, C.-Y. Lu, J. Ma, M. Zhou, Z. **. Nat. Commun. 8(1), 628 (2017). https://doi.org/10.1038/s41467-017-00733-y

    Article  CAS  Google Scholar 

  79. H. Cansizoglu, C. Bartolo-Perez, Y. Gao, E. Ponizovskaya Devine, S. Ghandiparsi, K.G. Polat, H.H. Mamtaz, T. Yamada, A.F. Elrefaie, S.-Y. Wang, M.S. Islam, Surface-illuminated photon-trap** high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm. Photon Res. 6(7), 734–742 (2018). https://doi.org/10.1364/PRJ.6.000734

    Article  CAS  Google Scholar 

  80. C. Bartolo-Perez, S. Chandiparsi, A.S. Mayet, H. Cansizoglu, Y. Gao, W. Qarony, A. AhAmed, S.-Y. Wang, S.R. Cherry, M. Saif Islam, G. Ariño-Estrada, Avalanche photodetectors with photon trap** structures for biomedical imaging applications. Opt. Express 29(12), 19024–19033 (2021). https://doi.org/10.1364/OE.421857

    Article  CAS  Google Scholar 

  81. H. Cansizoglu, A.S. Mayet, S. Ghandiparsi, Y. Gao, C. Bartolo-Perez, H.H. Mamtaz, E.P. Devine, T. Yamada, A.F. Elrefaie, S.Y. Wang, M.S. Islam, Dramatically enhanced efficiency in ultra-fast silicon MSM photodiodes via light trap** structures. IEEE Photonics Technol. Lett. 31(20), 1619–1622 (2019). https://doi.org/10.1109/LPT.2019.2939541

    Article  CAS  Google Scholar 

  82. S. Ghandiparsi, A.F. Elrefaie, H. Cansizoglu, Y. Gao, C. Bartolo-Perez, H.H. Mamtaz, A. Mayet, T. Yamada, E.P. Devine, S.-Y. Wang, M.S. Islam, High-speed high-efficiency broadband silicon photodiodes for short-reach optical interconnects in data centers, in Optical Fiber Communication Conference, San Diego, California, 2018/03/11 2018. OSA Technical Digest (online). Optical Society of America, p W1I.7. https://doi.org/10.1364/OFC.2018.W1I.7

  83. H. Cansizoglu, E.P. Devine, Y. Gao, S. Ghandiparsi, T. Yamada, A.F. Elrefaie, S. Wang, M.S. Islam, A New Paradigm in high-speed and high-efficiency silicon photodiodes for communication—part i: enhancing photon-material interactions via low-dimensional structures. IEEE T Electron Dev. 65(2), 372–381 (2018). https://doi.org/10.1109/TED.2017.2779145

    Article  CAS  Google Scholar 

  84. H. Cansizoglu, A.F. Elrefaie, C. Bartolo-Perez, T. Yamada, Y. Gao, A.S. Mayet, M.F. Cansizoglu, E.P. Devine, S.Y. Wang, M.S. Islam, A New paradigm in high-speed and high-efficiency silicon photodiodes for communication—part II: device and vlsi integration challenges for low-dimensional structures. IEEE T Electron Dev. 65(2), 382–391 (2018). https://doi.org/10.1109/TED.2017.2779500

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Karaağaç .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karaağaç, H., Peksu, E., Alhalaili, B., Islam, M.S. (2022). One-Dimensional Silicon Nano-/microstructures Based Opto-Electronic Devices. In: Ünlü, H., Horing, N.J.M. (eds) Progress in Nanoscale and Low-Dimensional Materials and Devices. Topics in Applied Physics, vol 144. Springer, Cham. https://doi.org/10.1007/978-3-030-93460-6_26

Download citation

Publish with us

Policies and ethics

Navigation