Molecular Dynamic of the Nanoparticle Reinforcement in the Pb-Free Solder During Reflow Soldering Process

  • Chapter
  • First Online:
Recent Progress in Lead-Free Solder Technology

Abstract

Nano-reinforcement in Pb-free solder has emerged as a potential alternative to improve lead-free solder’s mechanical and physical properties. With the aids of molecular dynamics simulation software, this study attempts to model the trajectory of doped nickel (Ni) nanoparticles in Sn100C solder during reflow soldering. A model that is capable of simulating Ni nanoparticle movement in Sn solder during three reflow soldering process phases. The simulation of Ni-reinforced solder was conducted at three different temperatures: room temperature (30 °C), soaking phase (150 °C), and reflow phase (250 °C) using LAMMPS software. The simulation provides the visualization of the accumulation and aggregation of Ni nanoparticles in the solder. This study better understands the Ni nanoparticles’ phenomenon in the solder paste during the reflow process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abas, A., Gan, Z. L., Ishak, M. H. H., Abdullah, M. Z., & Fuat Khor, S. (2016a). Lattice Boltzmann method of different BGA orientations on I-type dispensing method. PLoS ONE, 11. https://doi.org/10.1371/journal.pone.0159357

  • Abas, A., Ishak, M. H. H., Abdullah, M. Z., Che Ani, F., & Khor, S. F. (2016b). Lattice Boltzmann method study of bga bump arrangements on void formation. Microelectronics Reliability, 56, 170–181. https://doi.org/10.1016/j.microrel.2015.10.014

  • Allen, M. P. (1987). Computer simulation of liquids. Clarendon Press.

    Google Scholar 

  • Atkins, P., & de Paula, J. (2006). Physical chemistry for the life sciences. ChemPhysChem, 7. https://doi.org/10.1002/cphc.200600131

  • Chellvarajoo, S., Abdullah, M. Z., & Samsudin, Z. (2015). Effects of Fe2NiO4 nanoparticles addition into lead free Sn–3.0Ag–0.5Cu solder pastes on microstructure and mechanical properties after reflow soldering process. Materials & Design, 67, 197–208. https://doi.org/10.1016/j.matdes.2014.11.025

    Article  CAS  Google Scholar 

  • Chen, J., An, H., Yan, B., Liang, W., & Liu, X. (2019). Redesign NAMD molecular dynamics non-bonded force-field on sunway manycore processor. In 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS) (pp. 1257–1265). https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00176

  • Crozier, P. S. (2011). LAMMPS molecular dynamics simulator. https://lammps.sandia.gov/index.html

  • Devonshire, J. E. L.-J. (1938). Critical phenomena in gases. Nature, 141(3582), 1148.

    Google Scholar 

  • Dong, H., Fan, L., Moon, K., & Wong, C. P. (2005). Molecular dynamics simulation of lead free solder for low temperature reflow applications. In Proceedings Electronic Components and Technology, 2005. ECTC ’05 (Vol. 1, pp. 983–987). https://doi.org/10.1109/ECTC.2005.1441391

  • Haseeb, A. S. M. A., Arafat, M. M., Tay, S. L., & Leong, Y. M. (2017). Effects of metallic nanoparticles on interfacial intermetallic compounds in tin-based solders for microelectronic packaging. Journal of Electronic Materials, 46(10), 5503–5518. https://doi.org/10.1007/s11664-017-5591-9

    Article  CAS  Google Scholar 

  • Krokhotin, A., & Dokholyan, N. V. (2015). Chapter Three—Computational methods toward accurate RNA structure prediction using coarse-grained and all-atom models. In S.-J. Chen & D. H. Burke-Aguero (Eds.), Computational methods for understanding riboswitches (Vol. 553, pp. 65–89). Academic Press. https://doi.org/10.1016/bs.mie.2014.10.052

  • Lee, S. L. (2016). Effects of nanoparticle aggregation, particle size and temperature of nanofluids using molecular dynamics simulation. University of Malaya Kuala Lumpur.

    Google Scholar 

  • Liu, P., Gu, X., Fu, H., & Liu, Y. (2016). The effects of Cu nanoparticles addition in Sn-3.0Ag-0.5Cu solder paste on the microstructure and shear strength of the solder joints. In 2016 17th International Conference on Electronic Packaging Technology, ICEPT 2016 (pp. 852–855). https://doi.org/10.1109/ICEPT.2016.7583264

  • Loomans, M. E., Vaynman, S., Ghosh, G., & Fine, M. E. (1994). Investigation of multi-component lead-free solders. Journal of Electronic Materials, 23(8), 741–746. https://doi.org/10.1007/BF02651368

    Article  CAS  Google Scholar 

  • Najib, A. M., Abdullah, M. Z., Khor, C. Y., & Saad, A. A. (2015). Experimental and numerical investigation of 3D gas flow temperature field in infrared heating reflow oven with circulating fan. International Journal of Heat and Mass Transfer, 87, 49–58.

    Article  Google Scholar 

  • Niranjani, V. L., Chandra Rao, B. S. S., Sarkar, R., & Kamat, S. V. (2012). The influence of addition of nanosized molybdenum and nickel particles on creep behavior of Sn–Ag lead free solder alloy. Journal of Alloys and Compounds, 542, 136–141. https://doi.org/10.1016/j.jallcom.2012.07.044

  • Ong, E. E. S., & Liow, J.-L. (2019). The temperature-dependent structure, hydrogen bonding and other related dynamic properties of the standard TIP3P and CHARMM-modified TIP3P water models. Fluid Phase Equilibria, 481, 55–65. https://doi.org/10.1016/j.fluid.2018.10.016

  • Pitman, M. R., & Menz, R. I. (2006). 2—Methods for protein homology modelling. In D. K. Arora, R. M. Berka, & G. B. Singh (Eds.), Applied Mycology and Biotechnology (Vol. 6, pp. 37–59). Elsevier. https://doi.org/10.1016/S1874-5334(06)80005-5

  • Polanski, J. (2009). 4.14—Chemoinformatics. In S. D. Brown, R. Tauler, & B. B. T.-C. C. Walczak (Eds.) (pp. 459–506). Elsevier. https://doi.org/10.1016/B978-044452701-1.00006-5

  • Shang, S., Wang, Y., Wang, Y., Ma, H., & Kunwar, A. (2019). Enhancement of hardness of bulk solder by do** Cu nanoparticles at the interface of Sn/Cu solder joint. Microelectronic Engineering, 208, 47–53. https://doi.org/10.1016/j.mee.2019.01.009

  • Shipley, J. F. (1975). Influence of flux, substrate and solder composition on solder wetting. Welding Journal (Miami, Fla), 54(10).

    Google Scholar 

  • Suganuma, K. (2001). Advances in lead-free electronics soldering. Current Opinion in Solid State and Materials Science, 5(1), 55–64. https://doi.org/10.1016/S1359-0286(00)00036-X

  • Theng, S., Jumbri, K., & Wirzal, M. D. H. (2017). Molecular dynamics simulation of membrane in room temperature ionic liquids. In AIP Conference Proceedings (Vol. 1891). https://doi.org/10.1063/1.5005466

  • Vianco, P. T., & Feng, Y. (2016). Electronic packaging: Solder mounting technologies. Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.10099-2

  • Witherspoon, V. J., Mercado, R., Braun, E., Mace, A., Bachman, J., Long, J. R., … Reimer, J. A. (2019). Combined nuclear magnetic resonance and molecular dynamics study of methane adsorption in M2(dobdc) metal–organic frameworks. The Journal of Physical Chemistry C, 123(19), 12286–12295. https://doi.org/10.1021/acs.jpcc.9b01733

  • Yadav, M., & Khandelwal, S. (2019). Homology modeling and molecular dynamics simulation study of β carbonic anhydrase of Ascaris. Bioinformation, 15(8), 572–578. https://doi.org/10.6026/97320630015572

  • Yao, P., Liu, P., & Liu, J. (2008). Effects of multiple reflows on intermetallic morphology and shear strength of SnAgCu–xNi composite solder joints on electrolytic Ni/Au metallized substrate. Journal of Alloys and Compounds, 462(1), 73–79. https://doi.org/10.1016/j.jallcom.2007.08.041

Download references

Acknowledgements

Acknowledgement to Ministry of Higher Education Malaysia for Fundamental Research Grant Scheme with Project Code FRGS/1/2020/TK0/USM/03/6. The authors would also like to thank Universiti Sains Malaysia for providing technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Khor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aziz, M.S.A., Sahrudin, I.N., Rusdi, M.S., Ishak, M.H.H., Khor, C.Y., Salleh, M.A.A.M. (2022). Molecular Dynamic of the Nanoparticle Reinforcement in the Pb-Free Solder During Reflow Soldering Process. In: Salleh, M.A.A.M., Abdul Aziz, M.S., Jalar, A., Izwan Ramli, M.I. (eds) Recent Progress in Lead-Free Solder Technology. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-93441-5_4

Download citation

Publish with us

Policies and ethics

Navigation