Advances in the Genomic and Transcriptomic Sequencing of North American Pines

  • Chapter
  • First Online:
The Pine Genomes

Abstract

Genetic and evolutionary questions are being addressed in pines using a host of high-throughput sequencing strategies, including whole-genome sequencing, transcriptome sequencing, and target enrichment of nuclear genes. Some of the questions being addressed include the genetic basis of pathogen and drought resistance, differential expression, genetic map**, phylogeography, and phylogenetics. Pine genomes are enormous, ranging from 20 to 40 Gb. At present, draft genomes are available for only two pine species, P. taeda (loblolly pine) and P. lambertiana (sugar pine), but most other approximately 80 species of North American pines have been represented in evolutionary studies based on complete plastomes, low-copy nuclear genes, and transcriptomes. A number of online databases have been developed and made publicly available for comparative studies of pines and other conifers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baker EAG, Wegrzyn JL, Sezen UU, Falk T, Maloney PE, Vogler DR, Delfino-Mix A, Jensen C, Mitton J, Wright J, Neale DB (2018) Comparative transcriptomics among four white pine species. G3 Genes Genomes Genet 8(5):1461–1474. https://doi.org/10.1534/g3.118.200257

  • Crepeau MW, Langley CH, Stevens KA (2017) From pine cones to read clouds: rescaffolding the megagenome of sugar pine (Pinus lambertiana). G3 Genes|Genomes|Genet 7(5):1563–1568. https://doi.org/10.1534/g3.117.040055

  • De La Torre AR, Birol I, Bousquet J, Ingvarsson PK, Jansson S, Jones SJM, Keeling CI, MacKay J, Nilsson O, Ritland K et al (2014) Insights into conifer giga-genomes. Plant Physiol 166:1–9

    Google Scholar 

  • De La Torre AR, Piot A, Liu B, Wilhite B, Weiss M, Porth I (2019) Functional and morphological evolution in gymnosperms: a portrait of implicated gene families. Invited Contribution to Special Issue in Evol Appl 13(1):210–227

    Google Scholar 

  • De Oliveira Junkes CF, de Araújo Júnior AT, de Lima JC, de Costa F, Füller T, de Almeida MR, Neis FA, da Silva Rodrigues-Correa KC, Fett JP, Fett-Neto AG (2019) Resin tap** transcriptome in adult slash pine (Pinus elliottii var. elliottii). Ind Crops Prod 139(June):111545. https://doi.org/10.1016/j.indcrop.2019.111545

  • DeGiorgio M, Syring J, Eckert AJ, Liston A, Cronn R, Neale DB, Rosenberg NA (2014) An empirical evaluation of two-stage species tree inference strategies using a multilocus dataset from North American pines. BMC Evol Biol 14:67

    Article  PubMed  PubMed Central  Google Scholar 

  • Falk T, Herndon N, Grau E, Buehler S, Richter P, Zaman S, Baker EM, Ramnath R, Ficklin S, Staton M, Feltus FA, Jung S, Main D, Wegrzyn JL (2018) Growing and cultivating the forest genomics database, TreeGenes. Database. https://doi.org/10.1093/database/bay084 Bottom of Form

  • Figueroa-Corona L, Valerio PD, Wegrzyn J, Piñero D (2021) Transcriptome of wee** pinyon pine, Pinus pinceana, shows differences across heterogeneous habitats. Trees. https://doi.org/10.1007/s00468-021-02125-8

  • Gernandt DS, Aguirre Dugua X, Vázquez-Lobo A, Willyard A, Moreno Letelier A, Pérez de la Rosa JA, Piñero D, Liston A (2018) Multi-locus phylogenetics, lineage sorting, and reticulation in Pinus subsection Australes. Am J Bot 105:711–725

    Article  CAS  PubMed  Google Scholar 

  • Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W, Fennell T et al (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27:182–189

    Article  CAS  PubMed Central  Google Scholar 

  • Gonzalez-Ibeas D, Martínez-García PJ, Famula RA, Delfino-Mix A, Stevens KA et al (2016) Assessing the gene content of the megagenome: sugar pine (Pinus lambertiana). G3 (Bethesda) 6:3787–3802

    Google Scholar 

  • Hale H, Gardner EM, Viruel J, Pokorny L, Johnson MG (2020) Strategies for reducing per-sample costs in target capture sequencing for phylogenomics and population genomics in plants. Appl Plant Sci 8

    Google Scholar 

  • ** WT, Gernandt DS, Wehenkel C, **a XM, Wei XX, Wang XQ (2021) Phylogenomic and ecological analyses reveal the spatiotemporal evolution of global pines. Proc Natl Acad Sci United States of America 118 (20). https://doi.org/10.1073/PNAS.2022302118

  • Li X, Wu HX, Southerton SG (2011) Transcriptome profiling of wood maturation in Pinus radiata identifies differentially expressed genes with implications in juvenile and mature wood variation. Gene 487(1):62–71. https://doi.org/10.1016/j.gene.2011.07.028

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Feau N, Vidakovic DO, Ukrainetz N, Wong B, Aitken SN, Hamelin RC, Yeaman S (2021) Comparative gene expression analysis reveals mechanism of pinus contorta response to the Fungal Pathogen Dothistroma septosporum. Mol Plant Microbe Interact 34(4):397–409. https://doi.org/10.1094/MPMI-10-20-0282-R

    Article  CAS  PubMed  Google Scholar 

  • Luo R, Liu B, **e Y, Li Z, Huang W et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  • McKeand SE, Payn KG, Heine AJ, Abt RC (2021) Economic significance of continued improvement of loblolly pine genetics and its efficient deployment to landowners in the southern United States. J For 119:62–72. https://doi.org/10.1093/jofore/fvaa044

    Article  Google Scholar 

  • Montes JR, Peláez P, Willyard A, Moreno-Letelier A, Piñero D, Gernandt DS (2019) Phylogenetics of Pinus subsection Cembroides Engelm. (Pinaceae) inferred from low-copy nuclear gene sequences. Syst Bot 44:501–518

    Article  Google Scholar 

  • Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD et al (2014) Decoding the massive genomes of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15:R59

    Article  PubMed  PubMed Central  Google Scholar 

  • Neves LG, Davis JM, Barbazuk WB, Kirst M (2013) Whole-exome targeted sequencing of the uncharacterized pine genome. Plant J 75:146–156

    Article  CAS  PubMed  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584

    Article  CAS  PubMed  Google Scholar 

  • Peláez P, Ortiz-Martínez A, Figueroa-Corona L, Montes JR, Gernandt DS (2020) Population structure, diversifying selection, and local adaptation in Pinus patula. Am J Bot 107:1555–1566

    Article  PubMed  Google Scholar 

  • Proost S, Van Bel M, Vaneechoutte D, Van de Peer Y, Inzé D, Mueller-Roeber B, Vandepoele K (2015) PLAZA 3.0: an access point for plant comparative genomics. Nucl Acids Res 43(D1):D974–D981. https://doi.org/10.1093/nar/gku986

  • Springer MS, Gatesy J (2016) The gene tree delusion. Mol Phylogenet Evol 94:1–33

    Article  PubMed  Google Scholar 

  • Stevens KA, Wegrzyn JL, Zimin A, Puiu D, Crepeau M, Cardeno C, Paul R, Gonzalez-Ibeas D, Koriabine M, Holtz-Morris AE, Martínez-García PJ, Sezen UU, Marçais G, Jermstad K, McGuire PE, Loopstra CA, Davis JM, Eckert A, de Jong P, Yorke JA, Salzberg SL, Neale DB, Langley CH (2016) Sequence of the sugar pine megagenome. Genetics 204:1613–1626. https://doi.org/10.1534/genetics.116.193227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundell D, Mannapperuma C, Netotea S, Delhomme N, Lin Y-C, Sjödin A, Van de Peer Y, Jansson S, Hvidsten TR, Street NR (2015) The plant genome integrative explorer resource: PlantGenIE.org. New Phytol 208:1149–1156. https://doi.org/10.1111/nph.13557

    Article  CAS  PubMed  Google Scholar 

  • Syring J, Farrell K, Businský R, Cronn R, Liston A (2007) Widespread genealogical nonmonophyly in species of Pinus subgenus Strobus. Syst Biol 56:163–181

    Article  CAS  PubMed  Google Scholar 

  • Van Bel M, Diels T, Vancaester E, Kreft L, Botzki A, Van de Peer Y, Coppens F, Vandepoele K (2018) PLAZA 4.0: an integrative resource for functional, evolutionary and comparative plant genomics. Nucl Acids Res 46 (D1):D1190–D1196. https://doi.org/10.1093/nar/gkx1002

  • Vasquez-Gross HA, Yu JJ, Figueroa B, Gessler DDG, Neale DB, Wegrzyn JL (2013) CartograTree: connecting tree genomes, phenotypes and environment. Mol Ecol Resour 13:528–537. https://doi.org/10.1111/1755-0998.12067

    Article  PubMed  Google Scholar 

  • Visser EA, Wegrzyn JL, Myburg AA, Naidoo S (2018) Defence transcriptome assembly and pathogenesis related gene family analysis in Pinus Tecunumanii (Low Elevation). BMC Genom 19(1):1–13. https://doi.org/10.1186/s12864-018-5015-0

    Article  CAS  Google Scholar 

  • Visser EA, Wegrzyn JL, Steenkamp ET, Myburg AA, Naidoo S (2019) Dual Rna-Seq analysis of the Pine-Fusarium Circinatum interaction in resistant (Pinus Tecunumanii) and susceptible (Pinus Patula) hosts. Microorganisms 7(9):7–9. https://doi.org/10.3390/microorganisms7090315

    Article  CAS  Google Scholar 

  • Visser EA, Wegrzyn JL, Steenkmap ET, Myburg AA, Naidoo S (2015) Combined de Novo and genome guided assembly and annotation of the Pinus patula juvenile shoot transcriptome. BMC Genom 16(1):1–13. https://doi.org/10.1186/s12864-015-2277-7

    Article  CAS  Google Scholar 

  • Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci 91:9794–9798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Wang X-R (2014) Mitochondrial DNA capture and divergence in Pinus provide new insights into the evolution of the genus. Mol Phylogenet Evol 80:20–30

    Article  CAS  PubMed  Google Scholar 

  • Wegrzyn JL, Lee JM, Tearse BR, Neale DB (2008) TreeGenes: a forest tree genome database. Int J Plant Genom 412875:7

    Google Scholar 

  • Wegrzyn JL, Liechty JD, Stevens KA, Wu LS, Loopstra CA, Vasquez-Gross AH, Dougherty WM, Lin BY, Zieve JJ, Martínez-García PJ, Holt C, Yandell M, Zimin AV, Yorke YA, Crepeau MW, Puiu D, Salzberg SL, de Jong PJ, Mockaitis K, Main D, Langley CH, Neale DB (2014) Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics 196(3):891–909. https://doi.org/10.1534/genetics.113.159996

  • Wegrzyn JL, Staton MA, Street NR., Main D, Grau E, Herndon N, Buehler S, Falk T, Zaman S, Ramnath R, Richter P, Sun L, Condon B, Almsaeed A, Chen M, Mannapperuma C, Jung S, Ficklin S (2019) Cyberinfrastructure to improve forest health and productivity: the role of tree databases in connecting genomes, phenomes, and the environment. Front Plant Sci 10: 813. https://www.frontiersin.org/article/, https://doi.org/10.3389/fpls.2019.00813

  • Weiss M, Sniezko R, Puiu D, Crepeau MW, Stevens K, Salzberg SL, Langley CH, Neale DB, De La Torre AR (2020) Genomic basis of white pine blister rust quantitative disease resistance and its relationship with qualitative resistance. Plant J. https://doi.org/10.1111/tpj.14928

    Article  PubMed  Google Scholar 

  • Weitemier K, Straub SCK, Cronn RC, Fishbein M, Schmickl R, McDonnell A, Liston A (2014) Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics. Appl Plant Sci 2:1400042

    Article  Google Scholar 

  • Willyard A, Syring J, Gernandt DS, Liston A, Cronn R (2007) Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for Pinus. Mol Biol Evol 24:90–101

    Article  PubMed  Google Scholar 

  • Willyard A, Gernandt DS, Cooper B, Douglas C, Finch K, Karemera H, Lindberg E, Langer SK, Lefler J, Marquardt P, Pouncey DL (2021) Phylogenomics in the Hard Pines (Pinus subsection Ponderosae; Pinaceae) Confirms Paraphyly in Pinus ponderosa, and Places Pinus jeffreyi with the California Big Cone Pines. Sys Bot 46:538–561

    Google Scholar 

  • Zimin A, Marais G, Puiu D, Roberts M, Salzberg S et al (2013) The MaSuRCA genome assembler. Bioinformatics 29:2669–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G, Puiu D, Roberts M, Wegrzyn JL, de Jong PJ, Neale DB, Salzberg SL, Yorke JA, Langley CH (2014) Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics 196(3):875–890. https://doi.org/10.1534/genetics.113.159715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra Vázquez-Lobo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vázquez-Lobo, A., Gernandt, D.S., Martínez-García, P.J., De La Torre, A.R. (2022). Advances in the Genomic and Transcriptomic Sequencing of North American Pines. In: De La Torre, A.R. (eds) The Pine Genomes. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-93390-6_1

Download citation

Publish with us

Policies and ethics

Navigation