The Function and Structure of the Microsporidia Polar Tube

  • Chapter
  • First Online:
Microsporidia

Abstract

Microsporidia are obligate intracellular pathogens that were initially identified about 160 years ago. Current phylogenetic analysis suggests that they are grouped with Cryptomycota as a basal branch or sister group to the fungi. Microsporidia are found worldwide and can infect a wide range of animals from invertebrates to vertebrates, including humans. They are responsible for a variety of diseases once thought to be restricted to immunocompromised patients but also occur in immunocompetent individuals. The small oval spore containing a coiled polar filament, which is part of the extrusion and invasion apparatus that transfers the infective sporoplasm to a new host, is a defining characteristic of all microsporidia. When the spore becomes activated, the polar filament uncoils and undergoes a rapid transition into a hollow tube that will transport the sporoplasm into a new cell. The polar tube has the ability to increase its diameter from approximately 100 nm to over 600 nm to accommodate the passage of an intact sporoplasm and penetrate the plasmalemma of the new host cell. During this process, various polar tube proteins appear to be involved in polar tube attachment to host cell and can interact with host proteins. These various interactions act to promote host cell infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aurrecoechea C, Barreto A, Brestelli J, Brunk BP, Caler EV, Fischer S, Gajria B, Gao X, Gingle A, Grant G, Harb OS, Heiges M, Iodice J, Kissinger JC, Kraemer ET, Li W, Nayak V, Pennington C, Pinney DF, Pitts B, Roos DS, Srinivasamoorthy G, Stoeckert CJ Jr, Treatman C, Wang H (2011) AmoebaDB and MicrosporidiaDB: functional genomic resources for Amoebozoa and microsporidia species. Nucleic Acids Res 39(Database Issue):D612–D619. https://doi.org/10.1093/nar/gkq1006

    Article  CAS  PubMed  Google Scholar 

  • Beznoussenko GV, Dolgikh VV, Seliverstova EV, Semenov PB, Tokarev YS, Trucco A, Micaroni M, Di Giandomenico D, Auinger P, Senderskiy IV, Skarlato SO, Snigirevskaya ES, Komissarchik YY, Pavelka M, De Matteis MA, Luini A, Sokolova YY, Mironov AA (2007) Analogs of the Golgi complex in microsporidia: structure and avesicular mechanisms of function. J Cell Sci 120(Pt 7):1288–1298. https://doi.org/10.1242/jcs.03402

    Article  CAS  PubMed  Google Scholar 

  • Bohne W, Ferguson DJ, Kohler K, Gross U (2000) Developmental expression of a tandemly repeated, glycine-and serine-rich spore wall protein in the microsporidian pathogen Encephalitozoon cuniculi. Infect Immun 68(4):2268–2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouzahzah B, Weiss LM (2010) Glycosylation of the major polar tube protein of Encephalitozoon cuniculi. Parasitol Res 107(3):761–764. https://doi.org/10.1007/s00436-010-1950-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouzahzah B, Nagajyothi F, Ghosh K, Takvorian PM, Cali A, Tanowitz HB, Weiss LM (2010) Interactions of Encephalitozoon cuniculi polar tube proteins. Infect Immun 78(6):2745–2753. https://doi.org/10.1128/IAI.01205-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brosson D, Kuhn L, Prensier G, Vivares CP, Texier C (2005) The putative chitin deacetylase of Encephalitozoon cuniculi: a surface protein implicated in microsporidian spore-wall formation. FEMS Microbiol Lett 247(1):81–90

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Lu X, Qiu H, Li M, Feng Z (2011) Identification of a Nosema bombycis (microsporidia) spore wall protein corresponding to spore phagocytosis. Parasitology 138(9):1102–1109. https://doi.org/10.1017/S0031182011000801

    Article  CAS  PubMed  Google Scholar 

  • Cali A, Takvorian PM (2014) Developmental morphology and life cycles of the microsporidia. In: Microsporidia, pp 71–133. https://doi.org/10.1002/9781118395264.ch2

    Chapter  Google Scholar 

  • Cali A, Weiss LM, Takvorian PM (2002) Brachiola algerae spore membrane systems, their activity during extrusion, and a new structural entity, the multilayered interlaced network, associated with the polar tube and the sporoplasm. J Eukaryot Microbiol 49(2):164–174. https://doi.org/10.1111/j.1550-7408.2002.tb00361.x

    Article  PubMed  Google Scholar 

  • Chen J, Geng L, Long M, Li T, Li Z, Yang D, Ma C, Wu H, Ma Z, Li C (2013) Identification of a novel chitin-binding spore wall protein (NbSWP12) with a BAR-2 domain from Nosema bombycis (microsporidia). Parasitology 140(11):1394–1402

    Article  CAS  PubMed  Google Scholar 

  • Chioralia G, Trammer T, Maier WA, Seitz HM (1998) Morphologic changes in Nosema algerae (Microspora) during extrusion. Parasitol Res 84(2):123–131. https://doi.org/10.1007/s004360050368

    Article  CAS  PubMed  Google Scholar 

  • Cornman RS, Chen YP, Schatz MC, Street C, Zhao Y, Desany B, Egholm M, Hutchison S, Pettis JS, Lipkin WI (2009) Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees. PLoS Pathog 5(6):e1000466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delbac F, Duffieux F, David D, Metenier G, Vivares CP (1998a) Immunocytochemical identification of spore proteins in two microsporidia, with emphasis on extrusion apparatus. J Eukaryot Microbiol 45(2):224–231

    Article  CAS  PubMed  Google Scholar 

  • Delbac F, Peyret P, Metenier G, David D, Danchin A, Vivares CP (1998b) On proteins of the microsporidian invasive apparatus: complete sequence of a polar tube protein of Encephalitozoon cuniculi. Mol Microbiol 29(3):825–834

    Article  CAS  PubMed  Google Scholar 

  • Delbac F, Peuvel I, Metenier G, Peyretaillade E, Vivares CP (2001) Microsporidian invasion apparatus: identification of a novel polar tube protein and evidence for clustering of ptp1 and ptp2 genes in three Encephalitozoon species. Infect Immun 69(2):1016–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desportes-Livage I, Datry A (2005) Infections à microsporidies, Isospora et Sarcocystis. EMC - Maladies Infectieuses 2(4):178–196. https://doi.org/10.1016/j.emcmi.2005.08.001

    Article  Google Scholar 

  • Didier ES, Weiss LM (2011) Microsporidiosis: not just in AIDS patients. Curr Opin Infect Dis 24(5):490

    Article  PubMed  PubMed Central  Google Scholar 

  • Dolgikh VV, Semenov PB, Mironov AA, Beznoussenko GV (2005) Immunocytochemical identification of the major exospore protein and three polar-tube proteins of the microsporidia Paranosema grylli. Protist 156(1):77–87

    Article  CAS  PubMed  Google Scholar 

  • Dolgikh VV, Semenov PB, Beznusenko GV (2007) Protein glycosylation in the spores of the microsporidia Paranosema (Antonospora) grylli. Tsitologiia 49(7):607–613

    CAS  PubMed  Google Scholar 

  • Frixione E, Ruiz L, Santillan M, Devargas LV, Tejero JM, Undeen AH (1992) Dynamics of polar filament discharge and Sporoplasm expulsion by microsporidian spores. Cell Motil Cytoskel 22(1):38–50. https://doi.org/10.1002/cm.970220105

    Article  Google Scholar 

  • Goldberg AV, Molik S, Tsaousis AD, Neumann K, Kuhnke G, Delbac F, Vivares CP, Hirt RP, Lill R, Embley TM (2008) Localization and functionality of microsporidian iron–Sulphur cluster assembly proteins. Nature 452(7187):624–628

    Article  CAS  PubMed  Google Scholar 

  • Gool TV, Vetter JCM, Weinmayr B, Dam AV, Derouin F, Dankert J (1997) High seroprevalence of Encephalitozoon species in immunocompetent subjects. J Infect Dis 175(4):1020–1024

    Article  PubMed  Google Scholar 

  • Han B, Weiss LM (2017) Microsporidia: obligate intracellular pathogens within the fungal kingdom. Microbiol Spectr 5(2). https://doi.org/10.1128/microbiolspec.FUNK-0018-2016

  • Han B, Polonais V, Sugi T, Yakubu R, Takvorian PM, Cali A, Maier K, Long M, Levy M, Tanowitz HB, Pan G, Delbac F, Zhou Z, Weiss LM (2017) The role of microsporidian polar tube protein 4 (PTP4) in host cell infection. PLoS Pathog 13(4):e1006341. https://doi.org/10.1371/journal.ppat.1006341PPATHOGENS-D-16-01789. [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Han B, Ma Y, Tu V, Tomita T, Mayoral J, Williams T, Horta A, Huang H, Weiss LM (2019) Microsporidia interact with host cell mitochondria via voltage-dependent anion channels using sporoplasm surface protein 1. mBio 10(4):e01944–e01919. https://doi.org/10.1128/mBio.01944-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han B, Takvorian PM, Weiss LM (2020) Invasion of host cells by microsporidia. Front Microbiol 11(172):1–16. https://doi.org/10.3389/fmicb.2020.00172

    Article  Google Scholar 

  • Han B, Pan G, Weiss LM (2021) Microsporidiosis in humans. Clin Microbiol Rev 34(4):e0001020. https://doi.org/10.1128/CMR.00010-20

    Article  PubMed  Google Scholar 

  • Haro M, Del Aguila C, Fenoy S, Henriques-Gil N (2003) Intraspecies genotype variability of the microsporidian parasite Encephalitozoon hellem. J Clin Microbiol 41(9):4166–4171. https://doi.org/10.1128/jcm.41.9.4166-4171.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haro M, Izquierdo F, Henriques-Gil N, Andrés I, Alonso F, Fenoy S, del Águila C (2005) First detection and genoty** of human-associated microsporidia in pigeons from urban parks. Appl Environ Microbiol 71(6):3153. https://doi.org/10.1128/AEM.71.6.3153-3157.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayman JR, Hayes SF, Amon J, Nash TE (2001) Developmental expression of two spore wall proteins during maturation of the microsporidian Encephalitozoon intestinalis. Infect Immun 69(11):7057–7066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayman JR, Southern TR, Nash TE (2005) Role of sulfated glycans in adherence of the microsporidian Encephalitozoon intestinalis to host cells in vitro. Infect Immun 73(2):841–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huger A (1960) Electron microscope study on the cytology of a microsporidian spore by means of ultrathin sectioning. J Insect Pathol 2:84–105

    Google Scholar 

  • James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N, Stajich JE (2013) Shared signatures of parasitism and phylogenomics unite Cryptomycota and microsporidia. Curr Biol 23(16):1548–1553. https://doi.org/10.1016/j.cub.2013.06.057

    Article  CAS  PubMed  Google Scholar 

  • Jaroenlak P, Sanguanrut P, Williams BAP, Stentiford GD, Flegel TW, Sritunyalucksana K, Itsathitphaisarn O (2016) A nested PCR assay to avoid false positive detection of the microsporidian enterocytozoon hepatopenaei (EHP) in environmental samples in shrimp farms. PLoS One 11(11). https://doi.org/10.1371/JOURNAL.PONE.0166320

  • Jaroenlak P, Boakye DW, Vanichviriyakit R, Williams BA, Sritunyalucksana K, Itsathitphaisarn O (2018) Identification, characterization and heparin binding capacity of a spore-wall, virulence protein from the shrimp microsporidian, Enterocytozoon hepatopenaei (EHP). Parasit Vectors 11(1):177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaroenlak P, Cammer M, Davydov A, Sall J, Usmani M, Liang FX, Ekiert DC, Bhabha G (2020) 3-dimensional organization and dynamics of the microsporidian polar tube invasion machinery. PLoS Pathog 16(9):e1008738. https://doi.org/10.1371/journal.ppat.1008738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juarez S, Putaporntip C, Jongwutiwes S, Ichinose A, Yanagi T, Kanbara H (2005) In vitro cultivation and electron microscopy characterization of Trachipleistophora anthropophthera isolated from the cornea of an AIDS patient. J Eukaryot Microbiol 52:179–190. https://doi.org/10.1111/j.1550-7408.2005.00024.x

    Article  PubMed  Google Scholar 

  • Kanitchinda S, Srisala J, Suebsing R, Prachumwat A, Chaijarasphong T (2020) CRISPR-Cas fluorescent cleavage assay coupled with recombinase polymerase amplification for sensitive and specific detection of Enterocytozoon hepatopenaei. Biotechnol Rep 27:e00485. https://doi.org/10.1016/J.BTRE.2020.E00485

    Article  Google Scholar 

  • Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivares CP (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414(6862):450–453

    Article  CAS  PubMed  Google Scholar 

  • Keohane EM, Weiss LM (1998) Characterization and function of the microsporidian polar tube: a review. Folia Parasitol 45(2):117–127

    CAS  Google Scholar 

  • Keohane E, Weiss LM (1999) The structure, function, and composition of the microsporidian polar tube. In: Wittner M, Weiss LM (eds) The Microsporidia and Microsporidiosis. ASM Press, Washington, DC, pp 196–224

    Google Scholar 

  • Keohane E, Takvorian PM, Cali A, Tanowitz HB, Wittner M, Weiss LM (1994) The identification and characterization of a polar tube reactive monoclonal antibody. J Eukaryot Microbiol 41(5):48S

    CAS  PubMed  Google Scholar 

  • Keohane EM, Orr GA, Takvorian PM, Cali A, Tanowitz HB, Wittner M, Weiss LM (1996a) Purification and characterization of a microsporidian polar tube proteins. J Eukaryot Microbiol 43(5):100S

    Article  CAS  PubMed  Google Scholar 

  • Keohane EM, Orr GA, Takvorian PM, Cali A, Tanowitz HB, Wittner M, Weiss LM (1996b) Identification of a microsporidian polar tube reactive monoclonal antibody. J Euk Micobiol 43(1):26–31

    Article  CAS  Google Scholar 

  • Keohane EM, Takvorian PM, Cali A, Tanowitz HB, Wittner M, Weiss LM (1996c) Identification of a microsporidian polar tube protein reactive monoclonal antibody. J Eukaryot Microbiol 43(1):26–31

    Article  CAS  PubMed  Google Scholar 

  • Keohane EM, Orr GA, Zhang HS, Takvorian PM, Cali A, Tanowitz HB, Wittner M, Weiss LM (1998) The molecular characterization of the major polar tube protein gene from Encephalitozoon hellem, a microsporidian parasite of humans. Mol Biochem Parasitol 94(2):227–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keohane EM, Orr GA, Takvorian PM, Cali A, Tanowitz HB, Wittner M, Weiss LM (1999) Analysis of the major microsporidian polar tube proteins. J Eukaryot Microbiol 46(5):29S–30S

    CAS  PubMed  Google Scholar 

  • Kramer JP (1960) Observations on the emergence of the microsporidian sporoplasm. J Insect Pathol 2:433–439

    Google Scholar 

  • Li Y, Wu Z, Pan G, He W, Zhang R, Hu J, Zhou Z (2009) Identification of a novel spore wall protein (SWP26) from microsporidia Nosema bombycis. Int J Parasitol 39(4):391–398. https://doi.org/10.1016/j.ijpara.2008.08.011

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Pan G, Li T, Huang W, Chen J, Geng L, Yang D, Wang L, Zhou Z (2012) SWP5, a spore wall protein, interacts with polar tube proteins in the parasitic microsporidian Nosema bombycis. Eukaryot Cell 11(2):229–237. https://doi.org/10.1128/EC.05127-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Li M, Cai S, He X, Shao Y, Lu X (2016) Ricin-B-lectin enhances microsporidia Nosema bombycis infection in BmN cells from silkworm Bombyx mori. Acta Biochim Biophys Sin Shanghai 48(11):1050–1057. https://doi.org/10.1093/abbs/gmw093

    Article  CAS  PubMed  Google Scholar 

  • Lom J, Vavra J (1963) The mode of sporoplasm extrusion in microsporidian spores. Acta Protozool 1:81–89

    Google Scholar 

  • Lussier M, Sdicu AM, Bussereau F, Jacquet M, Bussey H (1997) The Ktr1p, Ktr3p, and Kre2p/Mnt1p mannosyltransferases participate in the elaboration of yeast O- and N-linked carbohydrate chains. J Biol Chem 272(24):15527–15531. https://doi.org/10.1074/jbc.272.24.15527

    Article  CAS  PubMed  Google Scholar 

  • Lv Q, Wang L, Fan Y, Meng X, Liu K, Zhou B, Chen J, Pan G, Long M, Zhou Z (2020) Identification and characterization a novel polar tube protein (NbPTP6) from the microsporidian Nosema bombycis. Parasit Vectors 13(1):475. https://doi.org/10.1186/s13071-020-04348-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moss JA, Snyder RA (2017) Biofilms for monitoring presence of microsporidia in environmental water. J Eukaryot Microbiol 64(4):533–538. https://doi.org/10.1111/jeu.12390

    Article  CAS  PubMed  Google Scholar 

  • Ohshima K (1937) On the function of the polar filament of Nosema bombycis. Parasitology 29(02):220–224

    Article  Google Scholar 

  • Omura M, Furuya K, Kudo S, Sugiura W, Azuma H (2007) Detecting immunoglobulin M antibodies against microsporidian Encephalitozoon cuniculi polar tubes in sera from healthy and human immunodeficiency virus-infected persons in Japan. Clin Vaccine Immunol 14(2):168–172. https://doi.org/10.1128/CVI.00224-06

    Article  CAS  PubMed  Google Scholar 

  • Orlandi PA, Chu D-MT, Bier JW, Jackson GJ (2002) Parasites and the food supply. Food Technology-Champaign Then Chicago 56(4):72–79

    Google Scholar 

  • Pan GQ, Xu JS, Li T, **a QY, Liu SL, Zhang GJ, Li SG, Li CF, Liu HD, Yang L, Liu T, Zhang X, Wu ZL, Fan W, Dang XQ, **ang H, Tao ML, Li YH, Hu JH, Li Z, Lin LP, Luo J, Geng LN, Wang LL, Long MX, Wan YJ, He NJ, Zhang Z, Lu C, Keeling PJ, Wang J, **ang ZH, Zhou ZY (2013) Comparative genomics of parasitic silkworm microsporidia reveal an association between genome expansion and host adaptation. BMC Genomics 14:186. https://doi.org/10.1186/1471-2164-14-186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson RRM, Lima N (2015) Molecular biology of food and water borne Mycotoxigenic and mycotic fungi. CRC Press, Boca Raton

    Book  Google Scholar 

  • Peek R, Delbac F, Speijer D, Polonais V, Greve S, Wentink-Bonnema E, Ringrose J, van Gool T (2005) Carbohydrate moieties of microsporidian polar tube proteins are targeted by immunoglobulin G in immunocompetent individuals. Infect Immun 73(12):7906–7913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peuvel I (2000) Polymorphism of the gene encoding a major polar tube protein PTP1 in two microsporidia of the genus Encephalitozoon. Parasitology 121(6):581

    Article  CAS  PubMed  Google Scholar 

  • Peuvel I, Peyret P, Metenier G, Vivares CP, Delbac F (2002) The microsporidian polar tube: evidence for a third polar tube protein (PTP3) in Encephalitozoon cuniculi. Mol Biochem Parasitol 122(1):69–80

    Article  CAS  PubMed  Google Scholar 

  • Peuvel-Fanget I, Polonais V, Brosson D, Texier C, Kuhn L, Peyret P, Vivares C, Delbac F (2006) EnP1 and EnP2, two proteins associated with the Encephalitozoon cuniculi endospore, the chitin-rich inner layer of the microsporidian spore wall. Int J Parasitol 36(3):309–318

    Article  CAS  PubMed  Google Scholar 

  • Polonais V, Prensier G, Méténier G, Vivarès CP, Delbac F (2005) Microsporidian polar tube proteins: highly divergent but closely linked genes encode PTP1 and PTP2 in members of the evolutionarily distant Antonospora and Encephalitozoon groups. Fungal Genet Biol 42(9):791–803

    Article  CAS  PubMed  Google Scholar 

  • Polonais V, Belkorchia A, Roussel M, Peyretaillade E, Peyret P, Diogon M, Delbac F (2013) Identification of two new polar tube proteins related to polar tube protein 2 in the microsporidian Antonospora locustae. FEMS Microbiol Lett 346(1):36–44. https://doi.org/10.1111/1574-6968.12198

    Article  CAS  PubMed  Google Scholar 

  • Procop GW (2007) Molecular diagnostics for the detection and characterization of microbial pathogens. Clin Infect Dis 45(Supplement_2):S99–S111

    Article  CAS  PubMed  Google Scholar 

  • Ramanan P, Pritt BS (2014) Extraintestinal Microsporidiosis. J Clin Microbiol 52(11):3839–3844. https://doi.org/10.1128/jcm.00971-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Sak B, Brady D, Pelikánová M, Květoňová D, Rost M, Kostka M, Tolarová V, Hůzová Z, Kváč M (2011) Unapparent microsporidial infection among immunocompetent humans in the Czech Republic. J Clin Microbiol 49(3):1064–1070. https://doi.org/10.1128/jcm.01147-10

    Article  PubMed  PubMed Central  Google Scholar 

  • Southern TR, Jolly CE, Lester ME, Hayman JR (2007) EnP1, a microsporidian spore wall protein that enables spores to adhere to and infect host cells in vitro. Eukaryot Cell 6(8):1354–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stentiford G, Becnel J, Weiss L, Keeling P, Didier E, Williams B, Bjornson S, Kent M, Freeman M, Brown M (2016a) Microsporidia–emergent pathogens in the global food chain. Trends Parasitol 32(4):336–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stentiford GD, Becnel J, Weiss LM, Keeling PJ, Didier ES, Williams BP, Bjornson S, Kent ML, Freeman MA, Brown MJF, Troemel ER, Roesel K, Sokolova Y, Snowden KF, Solter L (2016b) Microsporidia - emergent pathogens in the global food chain. Trends Parasitol 32(4):336–348. https://doi.org/10.1016/j.pt.2015.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suebsing R, Prombun P, Srisala J, Kiatpathomchai W (2013) Loop-mediated isothermal amplification combined with colorimetric nanogold for detection of the microsporidian Enterocytozoon hepatopenaei in penaeid shrimp. J Appl Microbiol 114(5):1254–1263. https://doi.org/10.1111/JAM.12160

    Article  CAS  PubMed  Google Scholar 

  • Szumowski SC, Troemel ER (2015) Microsporidia-host interactions. Curr Opin Microbiol 26:10–16. https://doi.org/10.1016/j.mib.2015.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takvorian PM, Cali A (1986) The ultrastructure of spores (protozoa: Microsporida) from Lophius americanus, the angler fish. J Protozool 33(4):570–575. https://doi.org/10.1111/j.1550-7408.1986.tb05664.x

    Article  CAS  PubMed  Google Scholar 

  • Takvorian PM, Cali A (1994) Enzyme-histochemical identification of the Golgi-apparatus in the microsporidian, Glugea-Stephani. J Eukaryot Microbiol 41(5):S63–S64

    Google Scholar 

  • Takvorian PM, Cali A (1996) Polar tube formation and nucleoside diphosphatase activity in the microsporidian, Glugea stephani. J Eukaryot Microbiol 43(5):S102–S103. https://doi.org/10.1111/j.1550-7408.1996.tb05025.x

    Article  Google Scholar 

  • Takvorian PM, Weiss LM, Cali A (2005) The early events of Brachiola algerae (microsporidia) infection: spore germination, sporoplasm structure, and development within host cells. Folia Parasitol 52(1–2):118–129

    Article  Google Scholar 

  • Takvorian PM, Han B, Cali A, Rice WJ, Gunther L, Macaluso F, Weiss LM (2020) An ultrastructural study of the extruded polar tube of Anncaliia algerae (microsporidia). J Eukaryot Microbiol 67(1):28–44. https://doi.org/10.1111/jeu.12751

    Article  CAS  PubMed  Google Scholar 

  • Tamim El Jarkass H, Reinke AW (2020) The ins and outs of host-microsporidia interactions during invasion, proliferation and exit. Cell Microbiol 22(11):e13247. https://doi.org/10.1111/cmi.13247

    Article  CAS  PubMed  Google Scholar 

  • Thellier M, Breton J (2008) Enterocytozoon bieneusi in human and animals, focus on laboratory identification and molecular epidemiology. Parasite 15(3):349–358. https://doi.org/10.1051/parasite/2008153349

    Article  CAS  PubMed  Google Scholar 

  • Thelohan P (1894) Sur la presence d’une capsule a filament dans les spores des microsporidies. CR Acad Sci 118:1425–1427

    Google Scholar 

  • van Gool T, Snijders F, Reiss P, Eeftinck Schattenkerk JK, van den Bergh Weerman MA, Bartelsman JF, Bruins JJ, Canning EU, Dankert J (1993) Diagnosis of intestinal and disseminated microsporidial infections in patients with HIV by a new rapid fluorescence technique. J Clin Pathol 46(8):694–699

    Article  PubMed  PubMed Central  Google Scholar 

  • Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3(2):97–130. https://doi.org/10.1093/GLYCOB/3.2.97

    Article  CAS  PubMed  Google Scholar 

  • Vavra J (1976) Structure of the microsporidia. In: Bulla LA Jr, Cheng TC (eds) Comparative pathobiology, vol 1. Plenum Press, New York, pp 1–85

    Google Scholar 

  • Vavra J, Dahbiova R, Hollister W, Canning E (1992) Staining of microsporidian spores by optical brighteners with remarks on the use of brighteners for the diagnosis of AIDS associated human microsporidioses. Folia Parasitol 40(4):267–272

    Google Scholar 

  • Visvesvara GS (2002) In vitro cultivation of microsporidia of clinical importance. Clin Microbiol Rev 15(3):401–413

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang JY, Chambon C, Lu CD, Huang KW, Vivares CP, Texier C (2007) A proteomic-based approach for the characterization of some major structural proteins involved in host-parasite relationships from the silkworm parasite Nosema bombycis (microsporidia). Proteomics 7(9):1461–1472. https://doi.org/10.1002/pmic.200600825

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Dang X, Ma Q, Liu F, Pan G, Li T, Zhou Z (2015) Characterization of a novel spore wall protein NbSWP16 with proline-rich tandem repeats from Nosema bombycis (microsporidia). Parasitology 142(4):534–542

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Lv Q, He Y, Gu R, Zhou B, Chen J, Fan X, Pan G, Long M, Zhou Z (2020) Integrated qPCR and staining methods for detection and quantification of Enterocytozoon hepatopenaei in Shrimp Litopenaeus vannamei. Microorganismsv 8:1366. https://doi.org/10.3390/MICROORGANISMS8091366

    Article  CAS  Google Scholar 

  • Weber R, Bryan RT, Owen RL, Wilcox CM, Gorelkin L, Visvesvara GS, Group EOIW (1992) Improved light-microscopal detection of microsporidia spores in stool and duodenal aspirates. New England J Med 326:161–166

    Article  CAS  Google Scholar 

  • Weber R, Bryan RT, Schwartz DA, Owen RL (1994) Human Microsporidial infections. Clin Microbiol Rev 7(4):426–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber R, Deplazes P, Schwartz D (2000) Diagnosis and clinical aspects of human microsporidiosis. Contrib Microbiol 6:166–192

    Article  CAS  PubMed  Google Scholar 

  • Weidner E (1972) Ultrastructural study of microsporidian invasion into cells. Z Parasitenkd 40(3):227–242. https://doi.org/10.1007/BF00329623

    Article  CAS  PubMed  Google Scholar 

  • Weidner E (1976) The microsporidian spore invasion tube. The ultrastructure, isolation, and characterization of the protein comprising the tube. J Cell Biol 71(1):23–34

    Article  CAS  PubMed  Google Scholar 

  • Weiss LM (2014) Clinical syndromes associated with microsporidiosis. Microsporidia: pathogens of opportunity. Wiley-Blackwell, Oxford, pp 371–401

    Google Scholar 

  • Weiss LM (2020) Microsporidiosis. In: Hunter’s tropical medicine and emerging infectious diseases. Elsevier, Amsterdam, pp 825–831

    Chapter  Google Scholar 

  • Weiss LM, Bechnel JJ (2014) Microsporidia: pathogens of opportunity. Wiley Press, New York

    Google Scholar 

  • Weiss LM, Vossbrinck CR (1999) Molecular biology, molecular phylogeny, and molecular diagnostic approaches to the microsporidia. In: Wittner M, Weiss LM (eds) The microsporidia and microsporidia. ASM Press, Washington, DC, pp 129–171

    Google Scholar 

  • Weiss LM, Delbac F, Hayman JR, Pan G, Dang X, Zhou Z (2014) The microsporidian polar tube and Spore Wall. In: Weiss LM, Bechnel JJ (eds) Microsporidia: pathogens of opportunity. Wiley Blackwell, Oxford, pp 261–306

    Google Scholar 

  • Williams BAP, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865. https://doi.org/10.1038/nature00949

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Li Y, Pan G, Tan X, Hu J, Zhou Z, **ang Z (2008) Proteomic analysis of spore wall proteins and identification of two spore wall proteins from Nosema bombycis (microsporidia). Proteomics 8(12):2447–2461. https://doi.org/10.1002/pmic.200700584

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Li Y, Pan G, Zhou Z, **ang Z (2009) SWP25, a novel protein associated with the Nosema bombycis endospore. J Eukaryot Microbiol 56(2):113–118. https://doi.org/10.1111/j.1550-7408.2008.00375.x

    Article  CAS  PubMed  Google Scholar 

  • ** Encephalitozoon hellem isolates by analysis of the polar tube protein gene. J Clin Microbiol 39(6):2191–2196. https://doi.org/10.1128/JCM.39.6.2191-2196.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ** Encephalitozoon cuniculi by multilocus analyses of genes with repetitive sequences. J Clin Microbiol 39(6):2248–2253. https://doi.org/10.1128/JCM.39.6.2248-2253.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Weiss LM (2005) The microsporidian polar tube: a highly specialised invasion organelle. Int J Parasitol 35(9):941–953. https://doi.org/10.1016/j.ijpara.2005.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Takvorian P, Cali A, Weiss LM (2003) Lectin binding of the major polar tube protein (PTP1) and its role in invasion. J Eukaryot Microbiol 50(S1):600–601

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Takvorian PM, Cali A, Orr G, Weiss LM (2004) Glycosylation of the major polar tube protein of Encephalitozoon hellem, a microsporidian parasite that infects humans. Infect Immun 72(11):6341–6350. https://doi.org/10.1128/IAI.72.11.6341-6350.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Takvorian P, Cali A, Wang F, Zhang H, Orr G, Weiss LM (2006) Identification of a new Spore Wall protein from Encephalitozoon cuniculi. Infect Immun 74(1):239–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D, Dang X, Peng P, Long M, Ma C, Qin JJG, Wu H, Liu T, Zhou X, Pan G (2014) NbHSWP11, a microsporidia Nosema bombycis protein, localizing in the spore wall and membranes, reduces spore adherence to host cell BME. J Parasitol 100(5):623–633

    Article  PubMed  Google Scholar 

  • Yang D, Pan L, Peng P, Dang X, Li C, Li T, Long M, Chen J, Wu Y, Du H (2017) Interaction between SWP9 and PTPs of the microsporidian Nosema bombycis and SWP9 as a scaffolding protein contributes to the polar tube tethering to spore wall. Infect Immun 85(3):e00872-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang D, Pan L, Chen Z, Du H, Luo B, Luo J, Pan G (2018) The roles of microsporidia spore wall proteins in the spore wall formation and polar tube anchorage to spore wall during development and infection processes. Exp Parasitol 187:93–100

    Article  CAS  PubMed  Google Scholar 

  • Zhu F, Shen Z, Hou J, Zhang J, Geng T, Tang X, Xu L, Guo X (2013) Identification of a protein interacting with the spore wall protein SWP26 of Nosema bombycis in a cultured BmN cell line of silkworm. Infect Genet Evol 17:38–45. https://doi.org/10.1016/j.meegid.2013.03.029

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All of the standard transmission electron microscopy (TEM) was conducted at the Rutgers Newark Electron Microscopy Facility which was funded in part by NIH grant AI091985 awarded to Dr. Ann Cali. Some of the cryo-TEM microscopy was conducted at the Albert Einstein Analytical Imaging Facility (AECOM) which is supported in part by the NCI Cancer Center Support GrantP30CA013330 and shared instrumentation grant 1S10OD016214-01A1. Additional CTEM and the focused ion beam scanning electron microscopy (FIB-SEM) were performed at the Simons Electron Microscopy Center and National Resource for Automated Molecular Microscopy located at the New York Structural Biology Center (NYSBC), supported by grants from the Simons Foundation (SF349247), NYSTAR, and the NIH National Institute of General Medical Sciences (GM103310). We also thank William Rice for his assistance with the CTEM and FIB-SEM and Ashleigh Raczkowski NYSBC. Additionally, we thank Xheni Nishku AECOM for her assistance with the segmentation and 3-D images. PMT would like to thank Dr. Ann Cali for her many discussions and insightful ideas and for sharing her bountiful knowledge on the microsporidia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis M. Weiss .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Funding

This work was supported by the National Institutes of Health/National Institute of Allergy and Infectious Diseases grants AI124753 (L.M.W.) and AI132614 (L.M.W.), the National Natural Science Foundation of China (grant no. 32000106) (B.H.), and the QILU Young Scholars Program of Shandong University (grant no. 21510082063092) (B.H.).

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, B., Takvorian, P.M., Weiss, L.M. (2022). The Function and Structure of the Microsporidia Polar Tube. In: Weiss, L.M., Reinke, A.W. (eds) Microsporidia. Experientia Supplementum, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-030-93306-7_8

Download citation

Publish with us

Policies and ethics

Navigation