Atypical Patterns of Metastases: How Do Sarcomas Metastasize?

  • Chapter
  • First Online:
Cancer Metastasis Through the Lymphovascular System

Abstract

Soft tissue sarcoma is a rare and heterogeneous group of cancers and comprises around 1% of all malignancies. This group of tumors consists of more than 60 different subtypes, each varying in biology and clinical behavior. In general, between 25% and 50% of the patients develop local or distant recurrences. However, the propensity of sarcoma to metastasize depends on many different factors, such as histological subtype, anatomical site, size, and grade. Most of the STS subtypes have a tendency to spread hematogenously with a predilection for pulmonary seeding, while lymph node metastases are rarely seen. However, there are several subtypes with deviating metastatic patterns, and in this chapter, the different atypical metastatic patterns are being described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.

    Article  PubMed  Google Scholar 

  2. Coindre J-M, et al. Predictive value of grade for metastasis development in the main histologic types of adult soft tissue sarcomas: a study of 1240 patients from the French Federation of Cancer Centers Sarcoma Group. Cancer. 2001;91(10):1914–26.

    Article  CAS  PubMed  Google Scholar 

  3. Ducimetière F, et al. Incidence of sarcoma histotypes and molecular subtypes in a prospective epidemiological study with central pathology review and molecular testing. PLoS One. 2011;6(8):e20294. https://doi.org/10.1371/journal.pone.0020294. PMID: 21826194; PMCID: PMC3149593.

  4. WHO Classification of Tumours Editorial Board. WHO classification of tumours of soft tissue and bone. 5th ed. Lyon, France: IARC Press; 2020.

    Google Scholar 

  5. Roland CL, van Houdt W, Gronchi A. The landmark series: multimodality treatment of extremity sarcoma. Ann Surg Oncol. 2020;27(10):3672–82.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gadd MA, et al. Development and treatment of pulmonary metastases in adult patients with extremity soft tissue sarcoma. Ann Surg. 1993;218(6):705–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pisters PWT, et al. Analysis of prognostic factors in 1,041 patients with localized soft tissue sarcomas of the extremities. J Clin Oncol. 1996;14(5):1679–89.

    Article  CAS  PubMed  Google Scholar 

  8. van Praag VM, et al. A prediction model for treatment decisions in high-grade extremity soft-tissue sarcomas: Personalised sarcoma care (PERSARC). Eur J Cancer. 2017;83:313–23.

    Article  PubMed  Google Scholar 

  9. Callegaro D, et al. Development and external validation of a dynamic prognostic nomogram for primary extremity soft tissue sarcoma survivors. EClinicalMedicine. 2019;17:100215.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Billingsley KG, et al. Multifactorial analysis of the survival of patients with distant metastasis arising from primary extremity sarcoma. Cancer. 1999;85(2):389–95.

    Article  CAS  PubMed  Google Scholar 

  11. Chudgar NP, et al. Is repeat pulmonary metastasectomy indicated for soft tissue sarcoma? Ann Thorac Surg. 2017;104(6):1837–45.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gladdy RA, et al. Predictors of survival and recurrence in primary leiomyosarcoma. Ann Surg Oncol. 2013;20(6):1851–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pijpe J, et al. The relation between histological, tumor-biological and clinical parameters in deep and superficial leiomyosarcoma and leiomyoma. Sarcoma. 2002;6(3):105–10. https://doi.org/10.1080/1357714021000065404. PMID: 18521340; PMCID: PMC2395483.

  14. Miyajima K, et al. Clinicopathological prognostic factors in soft tissue leiomyosarcoma: a multivariate analysis. Histopathology. 2002;40:353–9.

    Article  CAS  PubMed  Google Scholar 

  15. Wile AG, Evans HL, Romsdahl MM. Leiomyosarcoma of soft tissue: a clinicopathologic study. Cancer. 1981;48(4):1022–32.

    Article  CAS  PubMed  Google Scholar 

  16. Wang WL, et al. Sarcoma metastases to the skin: a clinicopathologic study of 65 patients. Cancer. 2012;118(11):2900–4.

    Article  PubMed  Google Scholar 

  17. Lang H, et al. Hepatic metastases from leiomyosarcoma: a single-center experience with 34 liver resections during a 15-year period. Ann Surg. 2000;231(4):500–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. DeMatteo RP, et al. Results of hepatic resection for sarcoma metastatic to liver. Ann Surg. 2001;234(4):540–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burt BM, et al. Repeated and aggressive pulmonary resections for leiomyosarcoma metastases extends survival. Ann Thorac Surg. 2011;92(4):1202–7.

    Article  PubMed  Google Scholar 

  20. Durr HR, et al. Myxoid liposarcoma: local relapse and metastatic pattern in 43 patients. BMC Cancer. 2018;18(1):304.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Smith TA, Easley KA, Goldblum JR. Myxoid/round cell liposarcoma of the extremities. A clinicopathologic study of 29 cases with particular attention to extent of round cell liposarcoma. Am J Surg Pathol. 1996;20(2):171–80.

    Article  CAS  PubMed  Google Scholar 

  22. Spillane AJ, Fisher C, Meirion Thomas J. Myxoid liposarcoma—the frequency and the natural history of nonpulmonary soft tissue metastases. Ann Surg Oncol. 1999;6(4):389–94.

    Article  CAS  PubMed  Google Scholar 

  23. Shinoda Y, et al. Prognostic factors of metastatic myxoid liposarcoma. BMC Cancer. 2020;20(1):883.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sheah K, et al. Metastatic myxoid liposarcomas: imaging and histopathologic findings. Skelet Radiol. 2008;37(3):251–8.

    Article  Google Scholar 

  25. Visgauss JD, et al. Staging and surveillance of myxoid liposarcoma: follow-up assessment and the metastatic pattern of 169 patients suggests inadequacy of current practice standards. Ann Surg Oncol. 2021;28(12):7903–11. https://doi.org/10.1245/s10434-021-10091-1. PMID: 33961173.

  26. Joensuu H, Hohenberger P, Corless CL. Gastrointestinal stromal tumour. Lancet. 2013;382(9896):973–83.

    Article  CAS  PubMed  Google Scholar 

  27. von Mehren M, Joensuu H. Gastrointestinal stromal tumors. J Clin Oncol. 2018;36(2):136–43.

    Article  Google Scholar 

  28. DeMatteo RP, et al. Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg. 2000;231(1):51–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mussi C, et al. Post-imatinib surgery in advanced/metastatic GIST: is it worthwhile in all patients? Ann Oncol. 2010;21(2):403–8.

    Article  CAS  PubMed  Google Scholar 

  30. Paoluzzi L, Maki RG. Diagnosis, prognosis, and treatment of alveolar soft-part sarcoma: a review. JAMA Oncol. 2019;5(2):254–60.

    Article  PubMed  Google Scholar 

  31. Pennacchioli E, et al. Alveolar soft part sarcoma: clinical presentation, treatment, and outcome in a series of 33 patients at a single institution. Ann Surg Oncol. 2010;17(12):3229–33.

    Article  PubMed  Google Scholar 

  32. Portera CA, et al. Alveolar soft part sarcoma: clinical course and patterns of metastasis in 70 patients treated at a single institution. Cancer. 2001;91(3):585–91.

    Article  PubMed  Google Scholar 

  33. Lieberman PH, et al. Alveolar soft-part sarcoma. A clinico-pathologic study of half a century. Cancer. 1989;63(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  34. Italiano A, Bellera C, D’Angelo S. PD1/PD-L1 targeting in advanced soft-tissue sarcomas: a pooled analysis of phase II trials. J Hematol Oncol. 2020;13(1):55. https://doi.org/10.1186/s13045-020-00891-5. PMID: 32430039; PMCID: PMC7236113.

  35. Guillou L, et al. Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group. Am J Surg Pathol. 2007;31(9):1387–402.

    Article  PubMed  Google Scholar 

  36. Folpe AL, et al. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes a clinicopathologic study of 73 cases supporting their identity and assessing the impact of high-grade area. Am J Surg Pathol. 2000;24(10):1353–60.

    Article  CAS  PubMed  Google Scholar 

  37. Evans HL. Low-grade fibromyxoid sarcoma: a clinicopathologic study of 33 cases with long-term follow-up. Am J Surg Pathol. 2011;35(10):1450–62.

    Article  PubMed  Google Scholar 

  38. Chamberlain F, et al. Low-grade fibromyxoid sarcoma: treatment outcomes and efficacy of chemotherapy. In Vivo. 2020;34(1):239–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fong Y, et al. Lymph node metastasis from soft tissue sarcoma in adults. Analysis of data from a prospective database of 1772 sarcoma patients. Ann Surg. 1993;217(1):72–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Daigeler A, et al. Lymph node metastases in soft tissue sarcomas - a single center analysis of 1,597 patients. Langenbeck’s Arch Surg. 2009;394(2):321–9.

    Article  CAS  Google Scholar 

  41. Behranwala KA, et al. Prognosis of lymph node metastasis in soft tissue sarcoma. Ann Surg Oncol. 2004;11(7):714–9.

    Article  PubMed  Google Scholar 

  42. Mazeron JJ, Suit HD. Lymph nodes as sites of metastases from sarcomas of soft tissue. Cancer. 1987;60(8):1800–8.

    Article  CAS  PubMed  Google Scholar 

  43. Ecker BL, et al. Implications of lymph node evaluation in the management of resectable soft tissue sarcoma. Ann Surg Oncol. 2017;24(2):425–33.

    Article  PubMed  Google Scholar 

  44. Keung EZ, et al. Defining the incidence and clinical significance of lymph node metastasis in soft tissue sarcoma. Eur J Surg Oncol. 2018;44(1):170–7.

    Article  PubMed  Google Scholar 

  45. Basile G, et al. Curability of patients with lymph node metastases from extremity soft-tissue sarcoma. Cancer. 2020;126(23):5098–108.

    Article  PubMed  Google Scholar 

  46. Sherman KL, et al. Examination of national lymph node evaluation practices for adult extremity soft tissue sarcoma. J Surg Oncol. 2014;110(6):682–8.

    Article  PubMed  Google Scholar 

  47. Johannesmeyer D, et al. The impact of lymph node disease in extremity soft-tissue sarcomas: a population-based analysis. Am J Surg. 2013;206(3):289–95.

    Article  PubMed  Google Scholar 

  48. Sawamura C, et al. Lymphadenectomy and histologic subtype affect overall survival of soft tissue sarcoma patients with nodal metastases. Clin Orthop Relat Res. 2013;471(3):926–31.

    Article  PubMed  Google Scholar 

  49. Blazer DG, Sabel MS, Sondak VK. Is there a role for sentinel lymph node biopsy in the management of sarcoma? Surg Oncol. 2003;12(3):201–6.

    Article  PubMed  Google Scholar 

  50. Skinner KA, Eilber FR. Soft tissue sarcoma nodal metastases: biologic significance and therapeutic considerations. Surg Oncol Clin N Am. 1996;5(1):121–7.

    Article  CAS  PubMed  Google Scholar 

  51. Cates JMM. The AJCC 8th edition staging system for soft tissue sarcoma of the extremities or trunk: a cohort study of the SEER database. J Natl Compr Canc Netw. 2018;16(2):144–52.

    Article  PubMed  Google Scholar 

  52. Fisher SB, et al. Comparative performance of the 7th and 8th editions of the american joint committee on cancer staging systems for soft tissue sarcoma of the trunk and extremities. Ann Surg Oncol. 2018;25(5):1126–32.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ashamalla M, et al. Challenging AJCC 8 staging for soft tissue sarcoma using the NCDB. Int J Radiat Oncol Biol Phys. 2019;105(2):338–45.

    Article  PubMed  Google Scholar 

  54. Andreou D, et al. Sentinel node biopsy in soft tissue sarcoma subtypes with a high pro- pensity for regional lymphatic spread-results of a large prospective trial. Ann Oncol. 2013;24(5):1400–5.

    Article  CAS  PubMed  Google Scholar 

  55. Network, N.C.C. Soft Tissue Sarcoma. 2016; Available from: https://www.nccn.org/professionals/physician_gls/pdf/sarcoma.pdf.

  56. Gaballah AH, et al. Angiosarcoma: clinical and imaging features from head to toe. Br J Radiol. 2017;90(1075):20170039.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Young RJ, et al. Angiosarcoma. Lancet Oncol. 2010;11(10):983–91.

    Article  PubMed  Google Scholar 

  58. Kang Y, et al. Regional lymph node metastasis of scalp angiosarcoma: a detailed clinical observation study of 40 cases. Ann Surg Oncol. 2020;27(8):3018–27.

    Article  PubMed  Google Scholar 

  59. Torres KE, et al. Long-term outcomes in patients with radiation-associated angiosarcomas of the breast following surgery and radiotherapy for breast cancer. Ann Surg Oncol. 2013;20(4):1267–74.

    Article  PubMed  Google Scholar 

  60. Touati N, et al. European organisation for research and treatment of cancer soft tissue and bone sarcoma group experience with advanced/metastatic epithelioid sarcoma patients treated in prospective trials: clinical profile and response to systemic therapy. Clin Oncol. 2018;30(7):448–54.

    Article  CAS  Google Scholar 

  61. Bianchi G, et al. Clear cell sarcoma of soft tissue: a retrospective review and analysis of 31 cases treated at Istituto Ortopedico Rizzoli. Eur J Surg Oncol. 2014;40(5):505–10. https://doi.org/10.1016/j.ejso.2014.01.016.

  62. Sanfilippo R, et al. Myxofibrosarcoma: prognostic factors and survival in a series of patients treated at a single institution. Ann Surg Oncol. 2011;18(3):720–5.

    Article  PubMed  Google Scholar 

  63. Wagner LM, et al. Detection of lymph node metastases in pediatric and adolescent/young adult sarcoma: Sentinel lymph node biopsy versus fludeoxyglucose positron emission tomography imaging-A prospective trial. Cancer. 2017;123(1):155–60.

    Article  CAS  PubMed  Google Scholar 

  64. Nakano K, Takahashi S. Translocation-related sarcomas. Int J Mol Sci. 2018;19(12):3784.

    Article  PubMed Central  CAS  Google Scholar 

  65. Rodeberg DA, et al. Prognostic significance and tumor biology of regional lymph node disease in patients with rhabdomyosarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 2011;29(10):1304–11.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Meza JL, et al. Analysis of prognostic factors in patients with nonmetastatic rhabdomyosarcoma treated on Intergroup Rhabdomyosarcoma Studies III and IV: the Children’s Oncology Group. J Clin Oncol. 2006;24(24):3844–51.

    Article  PubMed  Google Scholar 

  67. Ashamalla M, et al. Clinical presentation and patterns of care in SCARE Soft Tissue Sarcoma. Int J Radiat Oncol Biol Phys. 2017;99(2S):E749.

    Article  Google Scholar 

  68. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168(4):670–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fidler IJ. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst. 1970;45(4):773–82.

    CAS  PubMed  Google Scholar 

  70. Tang YJ, et al. Tracing tumor evolution in sarcoma reveals clonal origin of advanced metastasis. Cell Rep. 2019;28(1):2837–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gao Y, et al. Metastasis organotropism: redefining the congenial soil. Dev Cell. 2019;49(3):375–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1889;133(3421):571–3.

    Article  Google Scholar 

  73. Weiss L. Comments on hematogenous metastatic patterns in humans as revealed by autopsy. Clin Exp Metastasis. 1992;10(3):191–9.

    Article  CAS  PubMed  Google Scholar 

  74. Brizel DM, et al. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res. 1996;56(5):941–3.

    CAS  PubMed  Google Scholar 

  75. Lewis DM, et al. Intratumoral oxygen gradients mediate sarcoma cell invasion. Proc Natl Acad Sci U S A. 2016;133(33):9292–7.

    Article  CAS  Google Scholar 

  76. Francis P, et al. Diagnostic and prognostic gene expression signatures in 177 soft tissue sarcomas: hypoxia-induced transcription profile signifies metastatic potential. BMC Genomics. 2007;8(1):73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Masoud GN, Li W. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 2015;5(5):378–89.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Du H, et al. PLOD2 in cancer research. Biomed Pharmacother. 2017;90:670–6.

    Article  CAS  PubMed  Google Scholar 

  79. Eisinger-Mathason TSK, et al. Hypoxia-dependent modification of collagen networks promotes sarcoma metastasis. Cancer Discov. 2013;3(10):1190–205.

    Article  CAS  PubMed  Google Scholar 

  80. Lewis DM, et al. A feedback loop between hypoxia and matrix stress relaxation increases oxygen-axis migration and metastasis in sarcoma. Cancer Res. 2019;79(8):1981–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Estourgie SH, Nielsen GP, Ott MJ. Metastatic patterns of extremity myxoid liposarcoma and their outcome. J Surg Oncol. 2002;80(2):89–93.

    Article  PubMed  Google Scholar 

  82. Asano N, et al. Metastatic patterns of myxoid/round cell liposarcoma: a review of a 25-year experience. Sarcoma. 2012;2020:1–6.

    Article  Google Scholar 

  83. Lee ATJ, et al. Clinical and molecular spectrum of liposarcoma. J Clin Oncol. 2018;36(2):151–9.

    Article  CAS  PubMed  Google Scholar 

  84. Crozat A, et al. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature. 1993;363(3430):640–4.

    Article  CAS  PubMed  Google Scholar 

  85. Patil N, et al. A mechanistic study on the metastasis inducing function of FUS-CHOP fusion protein in liposarcoma. Int J Cancer. 2014;134(12):2808–19.

    Article  CAS  PubMed  Google Scholar 

  86. Tornin J, et al. FUS-CHOP promotes invasion in myxoid liposarcoma through a SRC/FAK/RHO/ROCK-dependent pathway. Neoplasia. 2018;20(1):44–56.

    Article  CAS  PubMed  Google Scholar 

  87. Peng C, et al. SHCBP1 promotes synovial sarcoma cell metastasis via targeting TGF-β1/Smad signaling pathway and is associated with poor prognosis. J Exp Clin Cancer Res. 2017;36(1):141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Xu X-Z, et al. MiR-9 promotes synovial sarcoma cell migration and invasion by directly targeting CDH1. Int J Biochem Cell Biol. 2019;112:61–71.

    Article  CAS  PubMed  Google Scholar 

  89. Qi Y, et al. Transforming growth factor-β1 signaling promotes epithelial-mesenchymal transition-like phenomena, cell motility, and cell invasion in synovial sarcoma cells. PLoS One. 2017;12(8):e0182680.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69–84.

    Article  CAS  PubMed  Google Scholar 

  91. Olsen SH, Thomas DG, Lucas DR. Cluster analysis of immunohistochemical profiles in synovial sarcoma, malignant peripheral nerve sheath tumor, and Ewing sarcoma. Mod Pathol. 2006;19(5):659–68.

    Article  CAS  PubMed  Google Scholar 

  92. Sato H, et al. Expression of cadherins and their undercoat proteins (alpha-, beta-, and gamma-catenins and p120) and accumulation of beta-catenin with no gene mutations in synovial sarcoma. Virchows Arch. 2001;438(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  93. Qi Y, et al. The correlation between morphology and the expression of TGF-β signaling pathway proteins and epithelial-mesenchymal transition-related proteins in synovial sarcomas. Int J Clin Exp Pathol. 2013;6(12):2787–99.

    PubMed  PubMed Central  Google Scholar 

  94. Saito T, et al. Prognostic value of the preserved expression of the E-cadherin and catenin families of adhesion molecules and of beta-catenin mutations in synovial sarcoma. J Pathol. 2000;192(3):342–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winan J. van Houdt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van der Laan, P., Tirotta, F., Pankova, V., Ford, S., Huang, P., van Houdt, W.J. (2022). Atypical Patterns of Metastases: How Do Sarcomas Metastasize?. In: Leong, S.P., Nathanson, S.D., Zager, J.S. (eds) Cancer Metastasis Through the Lymphovascular System. Springer, Cham. https://doi.org/10.1007/978-3-030-93084-4_60

Download citation

Publish with us

Policies and ethics

Navigation