Main Approaches in Seriation: The Attraction Pole Case

  • Chapter
  • First Online:
Seriation in Combinatorial and Statistical Data Analysis

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

  • 186 Accesses

Abstract

As previously, the data table crosses an object set \(\mathcal {O}\) with a descriptive attribute set \(\mathcal {A}\). \(\mathcal {O}\) indexes the row set and \(\mathcal {A}\), the column set (see (2.1) and (2.2)). The objective consists of discovering a synthesis structure defined by a couple of associated total preorders (ranking with ties) on \(\mathcal {O}\) and \(\mathcal {A}\), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.L. Carlson, Quantitative Methods in Archeology Using R (Cambridge University, 2017)

    Google Scholar 

  2. F. Marcotorchino, Block seriation problems: a unified approach. Appl. Stochast. Models Data Anal. 3, 73–91 (1987)

    Google Scholar 

  3. I.-C. Lerman, Les bases de la classification automatique (Gauthier-Villars, 1970)

    Google Scholar 

  4. J.A. Hartigan, Clustering Algorithms (Wiley, 1975)

    Google Scholar 

  5. B. Ganter, R. Wille, Formal Concept Analysis (Springer, 1999)

    Google Scholar 

  6. I.C. Lerman, Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering (Springer, 2016)

    Google Scholar 

  7. J. Bertin, La Graphique et le traitement graphique de l’Information (Flammarion, 1977)

    Google Scholar 

  8. D.G. Kendall, Seriation from abundance matrices, in Mathematics in Archaeological and Historical Sciences, ed. by D.G. Kendall F.R. Hodson, P. Tautu (Chicago, Aldine-Atherton, 1971), pp. 214–252

    Google Scholar 

  9. J.B. Kruskal, Multi-dimensional scaling. Psychometrika 29, 1–27, 28–12 (1964)

    Google Scholar 

  10. J. Bertin, Traitements graphiques et mathématiques. différence fondamentale et complémentarité. Mathématiques et Sciences Humaines 80, 60–71 (1980)

    Google Scholar 

  11. I. Liiv, Seriation and matrix reordering methods: an overview. Wiley InterScience (www.interscience.wiley.com), (https://doi.org/10.1002), 70–91, Jan. 2010

  12. G. Gruvaeus, H. Wainer, Two additions to hierarchical cluster analysis. Br. J. Math. Stat. Psychol. 25, 200–206, 200-206

    Google Scholar 

  13. G. Brossier, Algorithmes d’ordonnancement des hiérarchies binaires et propriétés. Revue de Statistique Appliquée 32, 65–79 (1984)

    Google Scholar 

  14. G. Brossier, Problèmes de représentation par des arbres, Thèse de Doctorat ès Sciences. Ph.D. thesis, Université de Rennes 2, June 1986

    Google Scholar 

  15. G. Brossier, Classification hiérarchique à partir de matrices carrées non symétriques. Statistique et Analyse des Données 7, 22–40 (1982)

    Google Scholar 

  16. D. Vicari, Classification of asymmetric proximity data. J. Classif. 13, 386–420 (2014)

    Google Scholar 

  17. F. Murtagh, Data Science Foundation; Geometry and Topology of Complex Hierarchic Systems and Big Data Analytics (Chapman and Hall, 2018)

    Google Scholar 

  18. V. Elisséeff, Possibilités du scalogramme dans l’étude des bronzes chinois. Mathématiques et Sciences Humaines 11, 1–10 (1964)

    Google Scholar 

  19. V. Elisséeff, De l’application des propriétésdu scalogramme à l’étude des objets. Calcul et formalisation dans les sciences de l’homme (1968), pp. 107–120

    Google Scholar 

  20. V. Elisséeff, Donnés de classement fournies par les scalogrammes privilégiés, in Archéologie et Calculateurs, ed. by M. Borillo J.-C. Gardin (Centre National de la Recherche Scientifique, 1970), pp. 177–180

    Google Scholar 

  21. I.C. Lerman, Classification et analyse ordinale des données. Dunod and http://www.brclasssoc.org.uk/books/index.html (1981)

  22. I.C. Lerman, Analyse du phénomène de la ”sériation” à partir d’un tableau d’incidence. Mathématiques et Sciences Humaines 38, 39–57 (1972)

    Google Scholar 

  23. I.C. Lerman, H. Leredde, La méthode des pôles d’attraction, in Analyse des Données et Informatique, ed. by E. Diday et al. (IRIA, 1977), pp. 37–49

    Google Scholar 

  24. H. Leredde, La méthode des pôles d’attraction, La méthode des pôles d’agrégation. Ph.D. thesis, Université de Paris 6, Oct. 1979

    Google Scholar 

  25. S.B. Deutsch, J.J. Martin, An ordering algorithm for analysis of data arrays. Oper. Res. 19(6), 1350–1362 (1971)

    Google Scholar 

  26. S. Niermann, Optimizing the ordering of tables with evolutionary computation. Am. Stat. Assoc. 59, 41–46 (2005)

    Google Scholar 

  27. J.H. Holland, Adaptation in Natural and Artificial Systems. Ph.D. thesis, University of Michigan (1975)

    Google Scholar 

  28. D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison Wesley, 1989)

    Google Scholar 

  29. T. Vallée, M. Yildizoglu, Présentation des algorithmes génétiques et de leurs applications en économie. Revue d’ Économie Politique 711–745 (2004)

    Google Scholar 

  30. R.F. Ngouënet, Analyse Géométrique des Données de Dissimilarité par la Multidimensional Scaling : Une Approche Basée sur les Algorithmes Génétiques. Ph.D. thesis, Université de Rennes 1, Dec. 1995

    Google Scholar 

  31. J.B. Kruskal, M. Wish, Multidimensional Scaling (Sage Publications, 1984)

    Google Scholar 

  32. I.C. Lerman, R.F. Ngouenet, Algorithmes génétiques séquentiels et prallèles pour une représentation affine des proximités. Research Report 2570, IRISA-INRIA, Jan. 1995

    Google Scholar 

  33. M. Hahsler, K. Hornik, C. Buchta, Getting things in order: an introduction to the R package seriation. J. Stat. Softw. 25(3), 1–34 (2008)

    Google Scholar 

  34. G. Caraux, S. Pinloche, Permutmatrix: a graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics 21(7), 1280–1281 (2005)

    Google Scholar 

  35. J.E. Atkins, E.G. Boman, B. Hendrickson, A spectral algorithm for seriation and the consecutive ones problem. Siam J. Comput. 28(1), 297–310 (1998)

    Google Scholar 

  36. P. Arabie, L.J. Hubert, Combinatorial data analysis. Annu. Rev. Psychol. 43, 169–203 (1992)

    Google Scholar 

  37. W.S. Robinson, A method for chronologically ordering archaeological deposits. Am. Antiq. 16, 293–301 (1951)

    Google Scholar 

  38. N. Mantel, Detection of disease clustering and a generalized approach. Cancer Res. 27(2), 209–220 (1967)

    Google Scholar 

  39. M. Ouali-allah, Analyse en préordonnance des données qualitatives. Application aux données numériques et symboliques. Ph.D. thesis, Université de Rennes 1, décembre 1991

    Google Scholar 

  40. W.T. Mccormick, P.J. Schweitzer, T.W. White, Problem decomposition and data reorganization by a clustering technique. Oper. Res. 20(5), 993–1009 (1972)

    Google Scholar 

  41. M. Hahsler, C. Buchta, K. Hornik, Infrastructure for ordering objects using seriation. Technical, Package ‘Seriation’, June 1919

    Google Scholar 

  42. A. George, A. Pothen, An analysis of spectral envelope-reduction via quadratic assignment problems. SIAM J. Matrix Anal. Appl. 18, 706–732 (1997)

    Google Scholar 

  43. F. Fogel, A. d’Aspremont, M. Vojnovic, Spectral ranking using seriation. J. Mach. Learn. Res. 17, 1–43 (2016)

    Google Scholar 

  44. E. Zermelo, Die berechnunug der turnier-ergebnisse als ein maximumproblem der wahrscheinlichkeitsrechnung. Mathematishe Zeitschrift 29(1), 436–460 (1929)

    Google Scholar 

  45. M.G. Kendall, B.B. Smith, On the method of paired comparisons. Biometrika 31(3-4), 324–345 (1940)

    Google Scholar 

  46. M. Hill, Correspondence analysis: a neglected multivariate method. Appl. Stat. 23, 340–354 (1974)

    Google Scholar 

  47. J.-P. Benzécri, L’analyse des données, tome II (Dunod, 1973)

    Google Scholar 

  48. M. Greenacre, Correspondence Analysis in Practice (Chapman & Hall, 2007)

    Google Scholar 

  49. L. Lebart, J-P. Fenelon, Statistique et Informatique Appliquées (Dunod, 1973)

    Google Scholar 

  50. J-P. Benzécri, Pratique de l’Analyse des Données (Dunod, 1980)

    Google Scholar 

  51. J. de Leeuw, A horseshoe for multidimensional scaling. Department of Statistics UCLA (2008), pp. 1–21

    Google Scholar 

  52. P. Diaconis, S. Goel, S. Holmes, Horseshoes in multidimentionnal scaling and local kernel methods. Ann. Appl. Stat. 2(3), 777–807 (2008)

    Google Scholar 

  53. H.O. Lancaster, The Chi-squared Distribution (Wiley, 1969)

    Google Scholar 

  54. R.N. Shepard, The analysis of proximities: multidimensional scaling with an unknown distance function. Psychometrika 27, 219–246 (1962)

    Google Scholar 

  55. L.J. Hubert, Some applications of graph theory and related nonmetric techniques to problems of approximate seriation: the case of symmetric proximity measures. J. Math. Stat. Psychol. 27, 133–153 (1974)

    Google Scholar 

  56. D.G. Kendall, Some problems and methods in statistical archeology. World Archaeol. 1(1), 68–76 (1969)

    Google Scholar 

  57. D.G. Kendall, Incidence matrices, interval graphs and seriation in archeology. Pac. J. Math. 28(3), 565–570 (1969)

    Google Scholar 

  58. W.T. Mccormick, S.B. Deutsh, J.J. Martin, P.J. Schweitzer, Identification of data structures and relationships by matrix reordering techniques. Research Report TR P-512, Arlington, Institute for Defense Analyses (1969)

    Google Scholar 

  59. C. Ray, Distributed Database Systems (Dorling Kindersley, 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israël César Lerman .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lerman, I.C., Leredde, H. (2022). Main Approaches in Seriation: The Attraction Pole Case. In: Seriation in Combinatorial and Statistical Data Analysis. Advanced Information and Knowledge Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-92694-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92694-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92693-9

  • Online ISBN: 978-3-030-92694-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation