Sustainable Processing Through Efficient Use of Energy and Minimizing Waste Production

  • Chapter
  • First Online:
Nonthermal Processing in Agri-Food-Bio Sciences

Part of the book series: Food Engineering Series ((FSES))

Abstract

This chapter primarily focuses on food processing and its various techniques that promise to deliver fresh-like attributes with enhanced shelf-life and rich nutritional qualities. With limited resources and minimum cost of production, non-conventional processing methods play a vital role in the advancement of food processing industries. It diminishes the waste generated by conventional methods and minimizes the processing time. Besides, it also helps in drop** the cost of production by efficient use of energy. Moreover, there is the potential to re-use agro-food by-products. Therefore, it is essential to replace the present conventional processing methods (pasteurization, sterilization, dehydration and freezing) with advanced energy-efficient techniques (Food irradiation, Pulsed electric fields, High-pressure processing, membrane processing and Supercritical fluid processing) to achieve maximum output with limited resources. The chapter re-capitulates plethora of advances in technologies with a detailed overview of the energy requirements, and their role in ensuring sustainability in food processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aganovic K, Smetana S, Grauwet T, Toepfl S, Mathys A, Van Loey A, Heinz V (2017) Pilot scale thermal and alternative pasteurization of tomato and watermelon juice: an energy comparison and life cycle assessment. J Clean Prod 141:514–525

    Article  CAS  Google Scholar 

  • Aguilera J, Simpson R, Welti-Chanes J, Aguirre D, Barbosa-Cánovas G (2011) Food engineering interfaces. Springer, New York

    Book  Google Scholar 

  • Akpinar EK (2004) Energy and exergy analyses of drying of red pepper slices in a convective type dryer. Int Comm Heat and Mass Transfer 31:1165–1176

    Article  Google Scholar 

  • Akpinar EK, Midilli A, Bicer Y (2005) Energy and exergy of potato drying process via cyclone type dryer. Energy Convers Manag 46:2530–2552

    Article  Google Scholar 

  • Akpinar EK, Midilli A, Bicer Y (2006) The first and second law analyses of thermodynamic of pumpkin drying process. J Food Eng 72:320–331

    Article  Google Scholar 

  • Aktaş M, Khanlari A, Amini A, Şevik S (2017) Performance analysis of heat pump and infrared–heat pump drying of grated carrot using energy-exergy methodology. Energy Convers Manag 132:327–338

    Article  Google Scholar 

  • Altemimi A, Aziz SN, Al-HiIphy ARS, Lakhssassi N, Watson DG, Ibrahim SA (2019) Critical review of radio-frequency (RF) heating applications in food processing. Food Qual Safety 3(2):81–91. https://doi.org/10.1093/fqsafe/fyz002

    Article  CAS  Google Scholar 

  • Arendt E, Zannini E (2013) Cereal grains for the food and beverage industries. Woodhead Pub, Oxford, UK

    Book  Google Scholar 

  • Bagheri H (2020) Application of infrared heating for roasting nuts. J Food Qual 2020:1–10. https://doi.org/10.1155/2020/8813047

    Article  Google Scholar 

  • Brown NL, Pariser E (1975) Food science in develo** countries. Science 188:589–593. https://doi.org/10.1126/science.188.4188.589

    Article  CAS  PubMed  Google Scholar 

  • Brown ZK, Fryer PJ, Norton IT, Bakalis S, Bridson RH (2008) Drying of foods using supercritical carbon dioxide—investigations with carrot. Innovative Food Emerg Technol 9:280–289

    Article  CAS  Google Scholar 

  • BudžakI S, Leko J, Jovanović K, Viszmeg J, Koški I (2019) Air source heat pump assisted drying for food applications: a mini review. Croatian J Food Sci Technol 11(1):122–130

    Article  Google Scholar 

  • Cassano A, Conidi C, Drioli E (2011) Clarification and concentration of pomegranate juice (Punica granatum L.) using membrane process. J Food Eng 107:366–373

    Article  CAS  Google Scholar 

  • Chaudhry HN, Hughes BR, Ghani SA (2012) A review of heat pipe systems for heat recovery and renewable energy applications. Renew Sust Energ Rev 16(4):2249–2259

    Article  CAS  Google Scholar 

  • Chizoba Ekezie F, Sun D, Han Z, Cheng J (2017) Microwave-assisted food processing technologies for enhancing product quality and process efficiency: a review of recent developments. Trends Food Sci Technol 67:58–69. https://doi.org/10.1016/j.tifs.2017.05.014

    Article  CAS  Google Scholar 

  • Çokgezme Ö, Sabanci S, Çevik M, Yildiz H, Icier F (2017) Performance analyses for evaporation of pomegranate juice in ohmic heating assisted vacuum system. J Food Eng 207. https://doi.org/10.1016/j.jfoodeng.2017.03.015

  • Coşkun S, Doymaz I, Tunçkal C, Erdoğan S (2017) Investigation of drying kinetics of tomato slices dried by using a closed loop heat pump dryer. Heat Mass Transf 53(6):1863–1871

    Article  Google Scholar 

  • Dincer I, Sahin AZ (2004) A new model for thermodynamic analysis of a drying process. Int J Heat Mass Transf 47:645–652

    Article  CAS  Google Scholar 

  • Dong W, Hu R, Chu Z, Zhao J, Tan L (2017) Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans. Food Chem 234:121–130

    Article  CAS  PubMed  Google Scholar 

  • Du Pisani JA (2006) Sustainable development–historical roots of the concept. Environ Sci 3:83–96. https://doi.org/10.1080/15693430600688831

    Article  Google Scholar 

  • Einstein D, Worrell E, Khrushch M (2001) Steam systems in industry: energy use and energy efficiency improvement potentials. Lawrence Berkeley National Laboratory. Paper LBNL-49081. online: http://repositories.cdlib.org/lbnl/LBNL-49081

  • Fellows P (2004) Processed foods for improved livelihoods. FAO, Rome

    Google Scholar 

  • https://www.theconsciouschallenge.org/ecologicalfootprintbibleoverview/food-and-energy; Food, May, 2019

  • Fritzson A, Berntsson T (2006) Efficient energy use in a slaughter and meat processing plant—opportunities for process integration. J Food Eng 76:594–604

    Article  Google Scholar 

  • Goh LJ, Othman MY, Mat S, Ruslan H, Sopian K (2011) Review of heat pump systems for drying application. Renew Sust Energ Rev 15(9):4788–4796

    Article  CAS  Google Scholar 

  • Heinz V, Toepfl S, Knorr D (2003) Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric fields treatment. Innovative Food Sci Emerg Technol 4(2):167–175

    Article  Google Scholar 

  • http://www.fao.org/faostat/en/#data/GN/metadata, 2019

  • Jiang H, Gu Y, Gou M, **a T, Wang S (2020) Radio frequency pasteurization and disinfestation techniques applied on low-moisture foods. Crit Rev Food Sci Nutr 60(9):1417–1430. https://doi.org/10.1080/10408398.2019.1573415

    Article  CAS  PubMed  Google Scholar 

  • **jiang Z, Yaosen W (2010) Experimental study on drying high moisture paddy by heat pump dryer with heat recovery. Int J Food Eng 6

    Google Scholar 

  • Kim E (2013) The amazing multimillion-year history of processed food. Sci Am 309:50–55. https://doi.org/10.1038/scientificamerican0913-50

    Article  PubMed  Google Scholar 

  • Knorr D, Augustin MA, Tiwari B (2020) Advancing the role of food processing for improved integration in sustainable food chains. Front Nutr 7:1–8. https://doi.org/10.3389/fnut.2020.00034

    Article  CAS  Google Scholar 

  • Kumar A, Croteau S, Kutowy O (1999) Use of membranes for energy efficient concentration of dilute steams. Appl Energy 64:107–115

    Article  CAS  Google Scholar 

  • Kuzgunkaya EH, Hepbasli A (2007) Exergetic performance assessment of a ground-source heat pump drying system. Int J Energy Res 31:760–777

    Article  Google Scholar 

  • Ladha-Sabur A, Bakalis S, Fryer PJ, Lopez-Quiroga E (2019) Map** energy consumption in food manufacturing. Trends Food Sci Technol 86:270–280. https://doi.org/10.1016/j.tifs.2019.02.034

    Article  CAS  Google Scholar 

  • Lee E (2020) A review on applications of infrared heating for food processing in comparison to other industries. https://doi.org/10.1016/B978-0-08-100596-5.22670-X

  • Li H, Zhao Z, **ouras C, Stefanidis GD, Li X, Gao X (2019) Fundamentals and applications of microwave heating to chemicals separation processes. Renew Sust Energ Rev 114:109316. https://doi.org/10.1016/j.rser.2019.109316

    Article  CAS  Google Scholar 

  • Liu Y, Zhao KZ, Jiu M, Zhang Y (2018) A heat pump system for Lentinula edodes drying and its drying property. Therm Sci 22(4):1759–1764

    Article  Google Scholar 

  • Loaharanu P (1996) Irradiation as a cold pasteurization process of food. Vet Parasitol 64:71–82

    Article  CAS  PubMed  Google Scholar 

  • Menon A, Stojceska V, Tassou SA (2020) A systematic review on the recent advances of the energy efficiency improvements in non-conventional food drying technologies. Trends Food Sci Technol 100:67–76. https://doi.org/10.1016/j.tifs.2020.03.014

    Article  CAS  Google Scholar 

  • Midilli A, Kucuk H (2003) Energy and exergy analyses of solar drying process of pistachio. Energy 28:539–556

    Article  Google Scholar 

  • Mull TE (2001) Practical guide to energy management for facilities engineers and plant managers. ASME Press, New York

    Google Scholar 

  • Nguyen LT, Choi W, Lee SH, June S (2013) Exploring the heating patterns of multiphase foods in a continuous flow, simultaneous microwave and ohmic combination heater. J Food Eng 116:65–71

    Article  Google Scholar 

  • Nikmaram N, Rosentrater KA (2019) Overview of some recent advances in improving water and energy efficiencies in food processing factories. Front Nutr 6. https://doi.org/10.3389/fnut.2019.00020

  • Okos M, Rao N, Drecher S, Rode M, & Kozak J (1998) Energy usage in the food industry. American Council for an Energy-Efficient Economy. Online: http://www.aceee.org/pubs/ie981.htm

  • Onsekizoglu P, Bahceci KS, Acar MJ (2010) Clarification and the concentration of apple juice using membrane processes: a comparative quality assessment. J Membr Sci 352:160–165

    Article  CAS  Google Scholar 

  • Ozyurt O, Comakli O, Yilmaz M, Karsli S (2004) Heat pump use in milk pasteurization: an energy analysis. Int J Energy Res 28:833–846

    Article  CAS  Google Scholar 

  • Perera CO, Rahman MS (1997) Heat pump dehumidifier drying of food. Trends Food Sci Technol 8(3):75–79

    Article  CAS  Google Scholar 

  • Pratap Singh A, Mandal R, Shojaei M, Singh A, Kowalczewski PŁ, Ligaj M, Pawlicz J, Jarzębski M (2020) Novel drying methods for sustainable upcycling of brewers’ spent grains as a plant protein source. Sustainability 12(9):3660

    Article  Google Scholar 

  • Rajendran SRCK, Mason B, Doucette AA (2021) Review of membrane separation models and technologies: processing complex food-based biomolecular fractions. Food Bioprocess Technol 14:415–428. https://doi.org/10.1007/s11947-020-02559-x

    Article  Google Scholar 

  • Ramirez CA, Blok K, Neelis M, Patel M (2006) Adding apples and oranges: the monitoring of energy efficiency in the Dutch food industry. Energy Policy 34:1720–1735

    Article  Google Scholar 

  • Singh B (2013) Biofuel crop sustainability. Wiley 9781118635643, Ames

    Book  Google Scholar 

  • Smith R (2000) State of the art in process integration. Appl Therm Eng 20:1337–1345

    Article  Google Scholar 

  • Stojceska V, Atuonwu J, Tassou SA (2019) Ohmic and conventional drying of citrus products: energy efficiency, greenhouse gas emissions and nutritional properties. Energy Procedia 161:165–173. https://doi.org/10.1016/j.egypro.2019.02.076

    Article  CAS  Google Scholar 

  • Sun DW, Wang LJ (2001) Novel refrigeration cycles, chapter 1. In: Sun DW (ed) Advances in food refrigeration. Leatherhead Publishing, UK, pp 1–69

    Google Scholar 

  • Sun J, Wang W, Yue Q (2016) Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials 9:231. https://doi.org/10.3390/ma9040231

    Article  CAS  PubMed Central  Google Scholar 

  • Tiwari BK, Norton T, Holden NM (2013) Sustainable food processing. Wiley, Chichester

    Book  Google Scholar 

  • Toepfl S, Mathys A, Heinz V, Knorr D (2006) Review: potential of high hydrostatic pressure and pulsed electric fields for energy efficiency and environmentally friendly food processing. Food Rev Intl 22:405–423

    Article  CAS  Google Scholar 

  • Vadivambal R, Jayas DS (2010) Non-uniform temperature distribution during microwave heating of food materials—a review. Food Bioprocess Technol 3:161–171. https://doi.org/10.1007/s11947-008-0136-0

    Article  Google Scholar 

  • Vaidyanathan JS, Krishnamurthy K (2020) Infrared heating for decontamination. Reference module in food science. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.22348-2

    Book  Google Scholar 

  • Venkatachalam SK, Thottipalayam Vellingri A, Selvaraj V (2020) Low-temperature drying characteristics of mint leaves in a continuous-dehumidified air drying system. J Food Process Eng 43(4):e13384

    Article  Google Scholar 

  • Walker ME, Lv Z, Masanet E (2013) Industrial steam systems and the energy-water nexus. Environ Sci Technol 47:13060–13067

    Article  CAS  PubMed  Google Scholar 

  • Wang LJ (2008) Energy efficiency and management in food processing facilities. Taylor and Francis, Boca Raton

    Book  Google Scholar 

  • Wang L (2014) Energy efficiency technologies for sustainable food processing. Energ Effic 7:791–810. https://doi.org/10.1007/s12053-014-9256-8

    Article  Google Scholar 

  • Wang Z, Huang J, Ma S, Wang X, Sun B, Wang F, Li L, Bao Q (2021) Novel heating technologies to improve fermentation efficiency and quality in wheat products: a short review. Grain Oil Sci Technol 4(2):81–87. https://doi.org/10.1016/j.gaost.2021.01.001

    Article  CAS  Google Scholar 

  • Wiktor A, Singh AP, Parniakov O, Mykhailyk V, Mandal R, Witrowa-Rajchert D (2020) PEF as an alternative tool to prevent thermolabile compound degradation during dehydration processes. In: Pulsed electric fields to obtain healthier and sustainable food for tomorrow. Academic, pp 155–202

    Chapter  Google Scholar 

  • Yang J, Bingol G, Pan Z, Brandl MT, McHugh TH, Wang H (2010) Infrared heating for dry-roasting and pasteurization of almonds. J Food Eng 101:273–280

    Article  CAS  Google Scholar 

  • Zimparov V (2002) Energy conservation through heat transfer enhancement techniques. Int J Energy Res 26:675–696

    Article  CAS  Google Scholar 

  • Zlatanović I, Komatina M, Antonijević D (2017) Experimental investigation of the efficiency of heat pump drying system with full air recirculation. J Food Process Eng 40(2):e12386

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anubhav Pratap-Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pratap-Singh, A., Noore, S., Mandal, R., Singh, A. (2022). Sustainable Processing Through Efficient Use of Energy and Minimizing Waste Production. In: ­Režek ­Jambrak, A. (eds) Nonthermal Processing in Agri-Food-Bio Sciences. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-92415-7_26

Download citation

Publish with us

Policies and ethics

Navigation