WaveFuse: A Unified Unsupervised Framework for Image Fusion with Discrete Wavelet Transform

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13111))

Included in the following conference series:

Abstract

We propose an unsupervised image fusion architecture for multiple application scenarios based on the combination of multi-scale discrete wavelet transform through regional energy and deep learning. To our best knowledge, this is the first time that a conventional frequency method has been combined with deep learning for feature maps fusion. The useful information of feature maps can be utilized adequately through multi-scale discrete wavelet transform in our proposed method. Compared with other state-of-the-art fusion methods, the proposed algorithm exhibits better fusion performance in both subjective and objective evaluation. Moreover, it’s worth mentioning that comparable fusion performance trained in COCO dataset can be obtained by training with a much smaller dataset with only hundreds of images chosen randomly from COCO. Hence, the training time is shortened substantially, leading to the improvement of the model’s performance both in practicality and training efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Da Cunha, A.L., Zhou, J., Do, M.N.: The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans. Image Process. 15(10), 3089–3101 (2006)

    Article  Google Scholar 

  2. Du, C., Gao, S.: Image segmentation-based multi-focus image fusion through multi-scale convolutional neural network. IEEE Access 5, 15750–15761 (2017)

    Article  Google Scholar 

  3. Goshtasby, A.A., Nikolov, S.: Image fusion: advances in the state of the art. Inform. Fus. 2(8), 114–118 (2007)

    Article  Google Scholar 

  4. Haghighat, M., Razian, M.A.: Fast-fmi: non-reference image fusion metric. In: 2014 IEEE 8th International Conference on Application of Information and Communication Technologies (AICT), pp. 1–3. IEEE (2014)

    Google Scholar 

  5. Shreyamsha Kumar, B.K.: Image fusion based on pixel significance using cross bilateral filter. Sign. Image Video Process. 9(5), 1193–1204 (2013). https://doi.org/10.1007/s11760-013-0556-9

    Article  Google Scholar 

  6. Li, H., Manjunath, B., Mitra, S.K.: Multisensor image fusion using the wavelet transform. Graph. Models Image Process. 57(3), 235–245 (1995)

    Article  Google Scholar 

  7. Li, H., Wu, X.J.: Densefuse: a fusion approach to infrared and visible images. IEEE Trans. Image Process. 28(5), 2614–2623 (2018)

    Article  MathSciNet  Google Scholar 

  8. Li, H., Wu, X.J., Durrani, T.S.: Infrared and visible image fusion with resnet and zero-phase component analysis. Infrared Phys. Technol. 102, 103039 (2019)

    Google Scholar 

  9. Li, S., Kang, X.: Fast multi-exposure image fusion with median filter and recursive filter. IEEE Trans. Consum. Electron. 58(2), 626–632 (2012)

    Article  Google Scholar 

  10. Li, S., Kang, X., Fang, L., Hu, J., Yin, H.: Pixel-level image fusion: a survey of the state of the art. Inform. Fus. 33, 100–112 (2017)

    Google Scholar 

  11. Li, S., Kwok, J.T., Wang, Y.: Combination of images with diverse focuses using the spatial frequency. Inform. Fus. 2(3), 169–176 (2001)

    Article  Google Scholar 

  12. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  13. Liu, S.: Fusion rule description (2021). https://github.com/slliuEric/WaveFuse_code

  14. Liu, Y., Chen, X., Cheng, J., Peng, H.: A medical image fusion method based on convolutional neural networks. In: 2017 20th International Conference on Information Fusion (Fusion), pp. 1–7. IEEE (2017)

    Google Scholar 

  15. Liu, Y., Chen, X., Peng, H., Wang, Z.: Multi-focus image fusion with a deep convolutional neural network. Inform. Fus. 36, 191–207 (2017)

    Article  Google Scholar 

  16. Liu, Y., Chen, X., Wang, Z., Wang, Z.J., Ward, R.K., Wang, X.: Deep learning for pixel-level image fusion: recent advances and future prospects. Inform. Fus. 42, 158–173 (2018)

    Article  Google Scholar 

  17. Liu, Y., Chen, X., Ward, R.K., Wang, Z.J.: Image fusion with convolutional sparse representation. IEEE Sign. Process. Lett. 23(12), 1882–1886 (2016)

    Article  Google Scholar 

  18. Ma, J., Yu, W., Liang, P., Li, C., Jiang, J.: Fusiongan: a generative adversarial network for infrared and visible image fusion. Inform. Fus. 48, 11–26 (2019)

    Article  Google Scholar 

  19. Ma, K., Zeng, K., Wang, Z.: Perceptual quality assessment for multi-exposure image fusion. IEEE Trans. Image Process. 24(11), 3345–3356 (2015)

    Article  MathSciNet  Google Scholar 

  20. Prabhakar, K.R., Srikar, V.S., Babu, R.V.: Deepfuse: a deep unsupervised approach for exposure fusion with extreme exposure image pairs. In: ICCV, pp. 4724–4732 (2017)

    Google Scholar 

  21. Roberts, J.W., Van Aardt, J.A., Ahmed, F.B.: Assessment of image fusion procedures using entropy, image quality, and multispectral classification. J. Appl. Remote Sens. 2(1), 023522 (2008)

    Google Scholar 

  22. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    Article  Google Scholar 

  23. Song, X., Wu, X.-J., Li, H.: MSDNet for medical image fusion. In: Zhao, Y., Barnes, N., Chen, B., Westermann, R., Kong, X., Lin, C. (eds.) ICIG 2019. LNCS, vol. 11902, pp. 278–288. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34110-7_24

    Chapter  Google Scholar 

  24. Wang, Q., Shen, Y.: Performances evaluation of image fusion techniques based on nonlinear correlation measurement. In: Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No. 04CH37510), vol. 1, pp. 472–475. IEEE (2004)

    Google Scholar 

  25. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  26. **ao-hua, S., Yang, G.S., Zhang, H.l.: Improved on the approach of image fusion based on region-energy. Journal of Projectiles, Rockets, Missiles and Guidance, vol. 4 (2006)

    Google Scholar 

  27. Xu, H., Ma, J., Jiang, J., Guo, X., Ling, H.: U2fusion: A unified unsupervised image fusion network. IEEE Transactions on Pattern Analysis and Machine Intelligence (2020)

    Google Scholar 

  28. Xydeas, C., Petrovic, V.: Objective image fusion performance measure. Electron. Lett. 36(4), 308–309 (2000)

    Article  Google Scholar 

  29. Zhang, Y., Liu, Y., Sun, P., Yan, H., Zhao, X., Zhang, L.: Ifcnn: a general image fusion framework based on convolutional neural network. Inform. Fus. 54, 99–118 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manning Wang or Zhijian Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, S., Wang, M., Song, Z. (2021). WaveFuse: A Unified Unsupervised Framework for Image Fusion with Discrete Wavelet Transform. In: Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N. (eds) Neural Information Processing. ICONIP 2021. Lecture Notes in Computer Science(), vol 13111. Springer, Cham. https://doi.org/10.1007/978-3-030-92273-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92273-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92272-6

  • Online ISBN: 978-3-030-92273-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation