Hacienda Pinzacuá: An Example of Regenerative Agriculture Amidst a Transformed Landscape in the Colombian Andes

  • Chapter
  • First Online:
Biodiversity Islands: Strategies for Conservation in Human-Dominated Environments

Part of the book series: Topics in Biodiversity and Conservation ((TOBC,volume 20))

Abstract

The central Andes of Colombia is a region of high biodiversity that has been intensely transformed, mostly by unsustainable agricultural practices, and especially by extensive cattle grazing. Whereas cattle farms are often considered ecological deserts, cattle production can be approached in a different way: by integrating more trees into the pastures, introducing better animal management practices, and restoring protective forests, so that productivity, biodiversity, and the flow of ecosystem services can be positively impacted. In this case study, we describe the agroecological transformation of Hacienda Pinzacuá, a 45-hectare farm that has become an island of regenerative agriculture amidst a highly fragmented landscape. We explain how the farm’s land use history led to the severe degradation of its once fertile soils; how key land management decisions were made and gradually implemented through trial and error; and the significant land cover changes that occurred over 20 years of transformation. We also provide data on how these changes have impacted productivity, biodiversity, and ecosystem services to illustrate how conservation and production can work synergistically to transform the land and the people. Today Pinzacuá stands out as an island of vegetation in an otherwise treeless landscape and has become a high-quality matrix that serves as habitat or refuge for a variety of taxa striving to persist in this fragmented landscape. Finally, we reflect on the challenges faced along the process, and the prospects for maintaining Pinzacuá as both an island of biodiversity and an example for other farmers seeking more resilient productive alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Given the lack of information on growth and silvicultural management for dinde, research was conducted on 12 farms of the region to develop preliminary spacing and thinning guidelines (see Montes et al. 2017). Dinde performed similar to other trees used for reforestation in the humid American tropics, with a Mean Annual Increment in Diameter at Breast Height (MAIDBH) of 2.56 cm year−1, a growth rate which is higher than it has been reported for sites in Honduras and Cuba (Cordero and Boshier 2003) but lies on the lower end of fast-growing native and exotic species in Central America. This growth rate stands overall within the range that has been reported for other native species in tropical humid regions elsewhere in Latin America (Piotto et al. 2004; Wishnie et al. 2007; van Breugel et al. 2011).

References

  • Amézquita MC, Murgueitio E, Ibrahim RB (2010) Carbon sequestration in pasture and silvopastoral systems compared with native forests in ecosystems of tropical America. In: Abberton M, Conant R, Batello C (eds) Grassland carbon sequestration: management, policy and economics: proceedings of the workshop on the role of grassland carbon sequestration in the mitigation of climate change. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Arias Giraldo LM, Camargo García JC, Cardona Trujillo H (2009) Carbono orgánico edáfico en rodales de guadua, Guadua angustifolia Kunth., Poaceae y en pasturas arborizadas en la zona cafetera de Colombia. In: Murgueitio E, Cuartas C, Naranjo J (eds) Ganadería del futuro: Investigación para el desarrollo. Cali, Fundación CIPAV, pp 246–261

    Google Scholar 

  • Aynekulu E, Suber M, Zomer R, Mboi D, Arango J, Rosenstock TS (2019) Mitigation benefits from expansion of trees on rangeland: an analytical proof of concept for Colombia. CCAFS working paper no. 295. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Wageningen. Available online at: www.ccafs.cgiar.org

  • Becerra I, Becerra M, Montes N (2017a) Dinámica de mercado: departamento de Quindío. Unidad de Planificación Rural Agropecuaria, UPRA, Bogotá

    Google Scholar 

  • Becerra I, Becerra M, Montes N (2017b) Dinámica de mercado: departamento de Caldas. Unidad de Planificación Rural Agropecuaria, UPRA, Bogotá

    Google Scholar 

  • Becerra I, Becerra M, Montes N (2017c) Dinámica de mercado: departamento de Risaralda. Unidad de Planificación Rural Agropecuaria, UPRA, Bogotá

    Google Scholar 

  • Broom DM, Galindo FM, Murgueitio E (2013) Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc R Soc Biol Sci 280:2013–2025

    Google Scholar 

  • Calle A (2008) What makes an early adopter? Transforming landscapes one farmer at a time. Trop Resour 27:7–14

    Google Scholar 

  • Calle A (2020) Can short-term payments for ecosystem services deliver long-term tree cover change? Ecosyst Serv 42(C). https://doi.org/10.1016/j.ecoser.2020.101084

  • Calle A, Holl KD (2019) Riparian forest recovery following a decade of cattle exclusion in the Colombian Andes. For Ecol Manage 52(August):10.1016/j.foreco.2019.117563

    Google Scholar 

  • Calle Z, Méndez LE (2017) Assessment of the regenerating woody vegetation in Pinzacua. Unpublished data

    Google Scholar 

  • Calle Z, Piedrahita L (2007) ¿Cómo diseñar estrategias para el manejo de plantas de interés para la conservación en paisajes ganaderos? Agroforestería en las Américas 45:117–122

    Google Scholar 

  • Calle Z, Murgueitio E, Chará J, Molina CH, Zuluaga AF, Calle A (2013) A strategy for scaling-up intensive silvopastoral systems in Colombia. J Sustain For 32(7):677–693

    Article  Google Scholar 

  • Calle Z, Molina C CH, Molina D CH, Molina D EJ, Molina E JJ, Murgueitio C B, Murgueitio C A, Murgueitio R E (2022) A highly productive biodiversity island within a monoculture landscape: El Hatico nature reserve (Valle del Cauca, Colombia). In: Montagnini F (ed) Biodiversity islands: strategies for conservation in human-dominated environments. Topics in Biodiversity and Conservation, Springer, Cham, pp 279–304

    Google Scholar 

  • Camargo JC, Cardona GA (2005) Análisis de fragmentos de bosque y guaduales. In: Consultancy report – regional integrated silvopastoral approaches to ecosystem management project. The World Bank, GEF, CIPAV, p 38

    Google Scholar 

  • Chará J, Reyes E, Peri P, Otte J, Arce E, Schneider F (2019) Silvopastoral systems and their contribution to improved resource use and sustainable development goals: Evidence from Latin America. FAO, CIPAV and Agri Benchmark, Cali. Retrieved from http://www.livestockdialogue.org/fileadmin/templates/res_livestock/docs/2018_Ulaanbataar/Silvopastoral_Systems_and_their_contribution_to_improved_resource_use_and_SDG.pdf

  • Chazdon RL, Harvey C, Komar O, Griffith DM, Ferguson BG, Martínez-Ramos M, Morales H, Nigh R, Soto-Pinto L, van Bruegel M, Philpott S (2009) Beyond reserves: a research agenda for conserving biodiversity in human-modified tropical landscapes. Biotropica 4:142–153

    Article  Google Scholar 

  • Chízmar Fernández C (2009) Plantas comestibles de Centroamérica. Instituto Nacional de Biodiversidad – INBio. Santo Domingo de Heredia, Costa Rica

    Google Scholar 

  • Cioffi G, Morales-Escobar L, Braca A, De Tommasi N (2003) Antioxidant chalcone glycosides and flavanones from Maclura (Chlorophora) tinctoria. J Nat Prod 66:1061–1064

    Article  CAS  PubMed  Google Scholar 

  • Comisión Conjunta (2008) Plan de Ordenación y Manejo Cuenca Hidrográfica (POMCH) del Rio La Vieja. Corporación Autonóma Regional del Quindío, Corporación Autonóma Regional de Risaralda, Corporación Autonóma Regional del Valle del Cauca, Cali

    Google Scholar 

  • Cordero J, Boshier DH (2003) Descripción de Especies: Maclura tinctoria. In: Cordero J, Boshier DH (eds) Arboles de Centroamérica: un manual para extensionistas. Oxford Forestry Institute (OFI, Oxford University, Oxford, UK) and Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Turrialba, pp 690–697

    Google Scholar 

  • DANE (2014) Tercer Censo Nacional Agropecuario 2014 Tercer CNA. Departamento Administrativo Nacional de Estadística, Gobierno Nacional, Bogotá DC

    Google Scholar 

  • Davis ALV, Scholtz CH, Dooley PW, Bham N, Kryger U (2004) Scarabaeine dung beetles as indicators of biodiversity, habitat transformation and pest control chemicals in agro-ecosystems. S Afr J Sci 100:415–424

    Google Scholar 

  • De Beenhouwer M, Aerts R, Honnay O (2013) A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agric Ecosyst Environ 175:1–7

    Article  Google Scholar 

  • Delgado M, Pérez C (2018) Proyecciones de actividad económica regional 2017-2021. Fedesarrollo, Bogotá

    Google Scholar 

  • Espinal S (1977) Zonas de Vida y Formaciones Vegetales de Colombia, vol. XIII, no. 11. Instituto Geográfico Agustín Codazzi–IGAC, Bogotá

    Google Scholar 

  • Etter A (1998) General ecosystem Map of Colombia (1:1,500,000). Instituto Alexander von Humboldt, Bogotá

    Google Scholar 

  • FAO (2006) Informe Pecuario. Subdirección de Políticas y Apoyo en Materia de Publicación Electrónica. FAO, Rome

    Google Scholar 

  • Gaba S, Bretagnolle F, Rigaud T, Philippot L (2014) Managing biotic interactions for ecological intensification of agroecosystems. Front Ecol Evol 2. https://doi.org/10.3389/fevo.2014.00029

  • Giraldo C, Escobar F, Chará JD, Calle Z (2011) The adoption of silvopastoral systems promotes the recovery of ecological processes regulated by dung beetles in the Colombian Andes. Insect Conserv Divers 4:115–122. https://doi.org/10.1111/j.1752-4598.2010.00112.x

    Article  Google Scholar 

  • Giraldo C, Hernández M, Giraldo AM, Calle A, Mendivil J, Quevedo C, Velásquez A, Perdomo A, Castaño K, Giraldo NV, Chará J (2019) Resultados de monitoreo de biodiversidad – Finca de Referencia Pinzacuá. Proyecto Ganadería Colombiana Sostenible. CIPAV, Cali

    Google Scholar 

  • Griscom BW, Adams J, Ellis PW, Houghton RA, Lomax G, Miteva DA, Schlesinger WH, Shoch D, Siikamäki JV et al (2017) Natural climate solutions. Proc Natl Acad Sci 114(44):11645–11650. https://doi.org/10.1073/pnas.1710465114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey CA, Villanueva C, Esquivel H, Gómez R, Ibrahim M, López M, Martinez J, Muñoz D, Restrepo C, Saénz JC, Villacís J, Sinclair FL (2011) Conservation value of dispersed tree cover threatened by pasture management. For Ecol Manag 261(10):1664–1674. https://doi.org/10.1016/j.foreco.2010.11.004

    Article  Google Scholar 

  • Holmann F, Rivas L, Carulla J, Rivera B, Giraldo LA, Guzman S, Martinez M, Medina A, Farrow A (2003) Evolution of milk production systems in tropical latin america and its interrelationship with markets: an analysis of the Colombian case (online). Livest Res Rural Dev 15(9) Available at: http://www.lrrd.org/lrrd15/9/holm159.htm

  • Ibrahim M, Chacón M, Cuartas C, Naranjo J, Ponce G, Vega P, Casasola F, Rojas J (2007) Carbon storage in soil and biomass in land use systems of ranchlands of Colombia, Costa Rica and Nicaragua. Agroforestería en las Américas 45:27–36

    Google Scholar 

  • IUCN Commission on Ecosystem Management (2020) Nature based solutions. Retrieved from https://www.iucn.org/commissions/commission-ecosystem-management/our-work/nature-based-solutions on May 24, 2020

  • Kattan GH, Alvarez-López H (1996) Preservation and management of biodiversity in fragmented landscapes in the Colombian Andes. In: Schelhas J, Greenberg R (eds) Forest patches in tropical landscapes. Island Press, Washington, D. C

    Google Scholar 

  • Kattan GH, Franco P, Rojas V (2004) Biological diversification in a complex region: a spatial analysis of faunistic diversity and biogeography of the Andes of Colombia. J Biogeogr 31:1829–1839

    Article  Google Scholar 

  • Kremen C, Merenlender AM (2018) Landscapes that work for biodiversity and people. Science 362(6412):eaau6020

    Article  PubMed  CAS  Google Scholar 

  • La Patria (2019) Las cuentas del turismo en el Eje Cafetero. Monday, April 15, 2019. Retrieved from https://www.lapatria.com/economia/las-cuentas-del-turismo-en-el-eje-cafetero-435307 on February 25, 2020

  • López Murillo E (2015) El valor del suelo. Columna de opinión La Cronica del Quindío. Retrieved on June 1, 2020 from https://www.cronicadelquindio.com/noticia-noticia_opinion-titulo-el-valor-del-suelo-cronica-del-quindio-op-11685

  • Maas B, Clough Y, Tscharntke T (2013) Bats and birds increase crop yield in tropical agroforestry landscapes. Ecol Lett 16:1480–1487

    Article  PubMed  Google Scholar 

  • Martins MM, Setz EZF (2000) Diet of buffy tufted-eared marmosets (Callithrix aurita) in a forest fragment in southeastern Brazil. Int J Primatol 21:467–476

    Article  Google Scholar 

  • Mejía Cubillos J (2013) Perfil económico del Eje Cafetero. Análisis con miras a la competitividad territorial. Adaptación del informe final de la consultoría “Competitividad territorial de la Ecorregión Eje Cafetero. Análisis desde el perfil económico del Eje Cafetero como aporte a la línea de base de la Agenda de Desarrollo Sostenible” realizada para Universidad Tecnológica de Pereira. MPRA Paper No. 43873. Retrieved on June 1, 2020 from https://mpra.ub.uni-muenchen.de/43873/

  • Mendenhall C, Karp D, Meyer C, Hadly E, Daily G (2014) Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509:213–217. https://doi.org/10.1038/nature13139

    Article  CAS  PubMed  Google Scholar 

  • Mesa Arboleda HF (2009) Balance de gases de efecto invernadero en un modelo de producción de ganadería doble propósito con alternativas silvopastoriles en Yaracuy, Venezuela. MS thesis. CATIE, Turrialba, 225 p

    Google Scholar 

  • Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C (2011) Global biodiversity conservation: the critical role of hotspots. In: Zachos FE, Habel JC (eds) Biodiversity hotspots. Springer, London, pp 3–22

    Chapter  Google Scholar 

  • Moebius-Clune BN, Moebius-Clune DJ, Gugino BK, Idowu OJ, Schindelbeck RR, Ristow AJ, van Es HM, Thies JE, Shayler HA, McBride MB, Kurtz KSM, Wolfe DW, Abawi GS (2016) Comprehensive assessment of soil health – the Cornell framework, Edition 3.2. Cornell University, Ithaca

    Google Scholar 

  • Montagnini F, Ibrahim M, Murgueitio E (2013) Silvopastoral systems and climate change mitigation in Latin America. Bois et forêts des Tropiques 316:3–16

    Article  Google Scholar 

  • Montes-Londoño (2019) Monitoring of species richness of butterfly in Pinzacua through Visual Encounterying surveying. Unpublished data

    Google Scholar 

  • Montes Londoño I, Rodríguez Susa MS (2011) Evaluación de la capacidad de autodepuración de una quebrada con bosque de guadua ribereño en la cuenca del Río La Vieja. Undergraduate thesis. Universidad de Los Andes, Bogotá

    Google Scholar 

  • Montes-Londoño I, Montagnini F, Ashton MS (2017) Allometric relationships and reforestation guidelines for Maclura tinctoria, an important multi-purpose timber tree of Latin America. New For. https://doi.org/10.1007/s11056-017-9617-1

  • Murgueitio E, Calle Z, Uribe F, Calle A, Solorio B (2011) Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For Ecol Manag 261(10):1654–1663

    Article  Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. Adv Agron 108:237–307

    Article  CAS  Google Scholar 

  • Naranjo JF, Cuartas CA, Murgueitio E, Chará J, Barahona R (2012) Balance de gases de efecto invernadero en sistemas silvopastoriles intensivos con Leucaena leucocephala en Colombia. Livestock research for rural development, 24, Article #150. Retrieved May 31, 2020 from http://www.lrrd.org/lrrd24/8/nara24150.htm

  • Pagiola S, Ríos AR (2013) Evaluation of the impact of payments for environmental services on land use change in Quindío, Colombia. PES learning papers. World Bank, Washington DC

    Google Scholar 

  • Pagiola S, Honey-Rosés J, Freire-González J (2020) Assessing the permanence of land-use change induced by payments for environmental services: evidence from Nicaragua. Trop Conserv Sci 13:1940082920922676

    Article  Google Scholar 

  • Perfecto I, Vandermeer J (2010) The agricultural matrix as alternative to the land sparing/agriculture intensification model. PNAS 107:5786–5791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters VE, Greenberg R (2013) Fruit supplementation affects birds but not arthropod predation by birds in Costa Rican agroforestry systems. Biotropica 45:102–110

    Article  Google Scholar 

  • Pezo D, Ibrahim M (1998) Sistemas Silvopastoriles. Materiales de Enseñanza no. 44/CATIE CATIE-GTZ Turrialba, 276 pp

    Google Scholar 

  • Philpott SM, Bichier P (2012) Effects of shade tree removal on birds in coffee agroecosystems in Chiapas, Mexico. Agric Ecosyst Environ 149:171–180

    Article  Google Scholar 

  • Piotto D, Montagnini F, Kanninen M, Ugalde L, Viquez E (2004) Forest plantations in Costa Rica and Nicaragua: performance of species and preferences of farmers. J Sustain For 18(4):59–77

    Article  Google Scholar 

  • Poch TJ, Simonetti JA (2013) Ecosystem services in human-dominated landscapes: insectivory in agroforestry systems. Agrofor Syst 87:871–879

    Article  Google Scholar 

  • Prevedello JA, Almeida-Gomes M, Lindenmayer DB (2018) The importance of scattered trees for biodiversity conservation: a global meta-analysis. J Appl Ecol 55:205–214

    Article  Google Scholar 

  • Rangel A (1949) Maderas industriales de Colombia Caribb For 10(3):161–162

    Google Scholar 

  • Reyes E, Bellagamba A, Molina JJ, Izquierdo L, Deblitz C, Chará J, Mitchell L, Romanowicz B, Gómez M, Murgueitio E (2017) Measuring sustainability on cattle ranches. Working paper on Silvopastoral Systems. Agribenchmark, CIPAV, Fedegan, World Animal Protection. Retrieved from http://www.cipav.org.co/pdf/ReportSPS6-Colombiancasestudies.pdf

  • Rivers MC, Barstow M, Mark J (2017) Maclura tinctoria. The IUCN red list of threatened species 2017: e.T61886731A61886745. Retrieved from https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T61886731A61886745.en. Feb 29, 2020

  • Rodríguez N, Armenteras D, Morales M, Romero M (2004) Ecosistemas de los Andes Colombianos. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá

    Google Scholar 

  • Roig JT (1974) Plantas medicinales, aromáticas o venenosas de Cuba. Ed Ciencia y Técnica, Instituto del Libro. La Habana, Cuba

    Google Scholar 

  • Sadeghian S, Murgueitio E, Mejía C, Rivera JM (2001) Ordenamiento ambiental y reglamentación del uso y manejo del suelo en la zona cafetera. En: Suelos del eje cafetero. Universidad Tecnológica de Pereira, GTZ, Fondo Editorial del Departamento de Risaralda, Pereira, pp 96–108

    Google Scholar 

  • Sánchez Gómez EL, Camargo García JC (2015) Diversidad de avifauna en paisajes rurales de la cuenca del río La Vieja, Eje Cafetero de Colombia. Recursos Naturales y Ambiente:83–89

    Google Scholar 

  • Somarriba E (1997) Pastoreo bajo plantaciones forestales. Agroforestería en las Américas 4:26–28

    Google Scholar 

  • Suárez A, Williams-Linera G, Trejo C, Valdez-Hernández JI, Cetina-Alcala VM, Vibrans H (2012) Local knowledge helps select species for forest restoration in a tropical dry forest of central Veracruz, Mexico. Agrofor Syst 85:35–55

    Article  Google Scholar 

  • Toro Zuluaga G (2005) Eje Cafetero colombiano: compleja historia de caficultura, violencia y desplazamiento. Documento preparado para el Congreso 2004 de la Asociación de Estudios Latinoamericanos (LASA), Las Vegas, Nevada, octubre 7-9, 2004. Revista de Ciencias Humanas UTP 35: 127–149

    Google Scholar 

  • Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59

    Article  Google Scholar 

  • Unidad de Planificación Rural Agropecuaria, UPRA (2019a) Gestión de información agropecuaria y planificación del desarrollo agropecuario: Qundío. Retrieved on June 1, 2020 from https://drive.google.com/file/d/1Wnmc5v8CGRi0q0-Hz65bAqIV_4yjZL0V/view

  • Unidad de Planificación Rural Agropecuaria, UPRA (2019b) Gestión de información agropecuaria y planificación del desarrollo agropecuario: Caldas. Retrieved on June 1, 2020 from https://drive.google.com/file/d/11013KahlDDAN628zQrY6lR0OcQBvQaD9/view

  • Unidad de Planificación Rural Agropecuaria, UPRA (2019c) Gestión de información agropecuaria y planificación del desarrollo agropecuario: Risaralda. Retrieved on June 1, 2020 from https://drive.google.com/file/d/1cgTexaHDDyXOrl8QhhLeH4bjx3aackm4/view

  • United Nations Development Programme (UNDP) (2004) Informe Regional de Desarrollo Humano. PNUD, Manizáles

    Google Scholar 

  • van Breugel M, Hall JS, Craven DJ, Gregoire TG, Park A, Dent DH, Wishnie MH, Mariscal E, Deago J, Ibarra D, Cedeño N, Ashton MS (2011) Early growth and survival of 49 tropical tree species across four sites differing in soil fertility and rainfall. For Ecol Manag 261:1580–1589

    Article  Google Scholar 

  • Vílchez S, Harvey C, Sáenz JC, Casanoves F, Carvajal JP, Villalobos JG, Hernandez B, Medina A, Montero J, Merlo D, Sinclair FL (2013) Consistency in bird use of tree cover across tropical agricultural landscapes. Ecol Appl 24:158–168

    Google Scholar 

  • Wishnie MH, Dent DH, Mariscal E, Deago J, Cedeño N, Ibarra D, Condit R, Ashton MS (2007) Performance of 24 tropical tree species in relation to reforestation strategies in Panama. For Ecol Manag 243:39–49

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montes-Londoño, I., Calle, A., Montes, O., Montes, A. (2022). Hacienda Pinzacuá: An Example of Regenerative Agriculture Amidst a Transformed Landscape in the Colombian Andes. In: Montagnini, F. (eds) Biodiversity Islands: Strategies for Conservation in Human-Dominated Environments. Topics in Biodiversity and Conservation, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-92234-4_12

Download citation

Publish with us

Policies and ethics

Navigation