Advances in Nanoencapsulated Phytomedicines (Phytochemicals and Their Extracts) for the Treatment of Obesity, Diabetes, and Their Associated Complications

  • Chapter
  • First Online:
Natural Products in Obesity and Diabetes
  • 605 Accesses

Abstract

In traditional medicine of different countries, several herbal formulations are prescribed for the treatment of obesity, diabetes, and its associated complications including cardiovascular diseases, diabetic nephropathy, diabetic retinopathy, and diabetic neuropathy. In the prescribed herbal formulations, a variety of antioxidant phytochemicals have been found to reduce fat mass and body weight by suppressing adipogenesis and lipid accumulation; increasing lipolysis, thermogenesis, and energy expenditure via fatty acid oxidation; and reducing oxidative stress and inflammation in major metabolic tissues, such as the adipose tissue, skeletal muscle, and liver of obese humans and rodents. In addition, these phytochemicals reduce hyperglycemia in diabetic humans and rodents through improvement of glucose uptake from the plasma, glycogen synthesis in the liver and skeletal muscle, suppression of hepatic glucose production, and enhanced insulin secretion from pancreatic beta cells and insulin action in major metabolic tissues. Usually, these herbal medicines are prescribed at high doses for long-term consumption for the amelioration of these metabolic disorders because of low efficacy, poor aqueous solubility, stability, bioavailability, and target specificity of the phytochemicals present in herbal medicines. Long-term use of herbal medicines at high doses results in unpleasant adverse effects and toxicity in patients. All these factors have restricted the clinical applications of these herbal medicines. To overcome the problems of phytochemicals in clinical applications, these phytochemicals and plant extracts have been encapsulated into biocompatible and biodegradable nanoparticles/nanocarriers to increase their solubility and stability, enhance their bioavailability, protect them from metabolic degradation in the body, prolong their systemic circulation time, and thereby enhance their anti-obesity and antidiabetic efficacy at relatively lower doses compared to free phytochemicals and plant extracts. In this context, the existing research findings on the efficacy of some phytochemicals and plant extracts in nanoencapsulated forms in combating obesity, diabetes, and its comorbidities are summarized in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahangarpour A, Oroojan AA, Khorsandi L et al (2018) Solid lipid nanoparticles of myricitrin have antioxidant and antidiabetic effects on streptozotocin-nicotinamide-induced diabetic model and myotube cell of male mouse. Oxid Med Cell Longev 2018:7496936

    Article  PubMed  PubMed Central  Google Scholar 

  • Alamoudi EF, Khalil WKB, Ghaly IS et al (2014) Nanoparticles from Costus speciosus extract improves the antidiabetic and antilipidemic effects against STZ-induced diabetes mellitus in albino rats. Int J Pharm Rev Res 29:279–285

    Google Scholar 

  • Ali HA, Almaghrabi OA, Afifi ME (2014) Molecular mechanisms of anti-hyperglycemic effects of Costus specious extract in streptozotocin-induced diabetic rats. Saudi Med J 35:1501–1506

    PubMed  PubMed Central  Google Scholar 

  • Anton N, Vandamme TF (2011) Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res 28:978–985

    Article  CAS  PubMed  Google Scholar 

  • Barwal I, Sood A, Sharma M et al (2013) Development of stevioside pluronic-F-68 copolymer base PLA-nanoparticles as an antidiabetic nanomedicine. Colloids Surf B Biointerfaces 101:510–516

    Article  CAS  PubMed  Google Scholar 

  • Beloqui A, Solinis MA, Rodriguez-Gascon A et al (2016) Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanotechnol Biol Med 12:143–161

    Article  CAS  Google Scholar 

  • Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulboaca AE, Boarescu PM, Porfire AS et al (2020) The effect of nano-epigallocatechin- gallate on oxidative stress and matrix metalloproteinases in experimental diabetes mellitus. Antioxidants 9:172

    Article  CAS  PubMed Central  Google Scholar 

  • Chang CY, Wang MC, Miyagawa T et al (2017) Preparation of arginine-glycine-aspartic acid-modified biopolymeric nanoparticles containing epigallocatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization. Int J Nanomed 12:279–294

    Article  CAS  Google Scholar 

  • Das S, Roy P, Pal R et al (2014) Engineered silybin nanoparticles educe efficient control in experimental diabetes. PLoS One 9:e101818

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng W, Wang H, Wu B et al (2019) Selenium-layered nanoparticles serving for oral delivery of phytomedicines with hypoglycaemic activity to synergistically potentiate the antidiabetic effect. Acta Pharm Sin B 9:74–86

    Article  PubMed  Google Scholar 

  • Dewanjee S, Chakraborty P, Mukherjee B et al (2020) Plant-based antidiabetic nanoformulations: the emerging paradigm for effective therapy. Int J Mol Sci 21:2217

    Article  CAS  PubMed Central  Google Scholar 

  • Duan Y, Dhar A, Patel C et al (2020) A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv 10:26777–26791

    Article  CAS  Google Scholar 

  • El-far YM, Zakaria MM, Gabr MM et al (2017) Nanoformulated natural therapeutics for management of streptozotocin- induced diabetes: potential use of curcumin nanoformulation. Nanomedicine 12:1689–1711

    Article  CAS  PubMed  Google Scholar 

  • El-Naggar ME, Al-Joufi F, Anwar M et al (2019) Curcumin-loaded PLA-PEG copolymer nanoparticles for treatment of liver inflammation in streptozotocin-induced diabetic rats. Colloids Surf B Biointerfaces 177:389–398

    Article  CAS  PubMed  Google Scholar 

  • Goktas Z, Zu Y, Abbasi M et al (2020) Recent advances in nanoencapsulation of phytochemicals to combat obesity and its comorbidities. J Agric Food Chem 68:8119–8131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo HH, Feng CL, Zhang WX et al (2019) Liver-target nanotechnology facilitates berberine to ameliorate cardio-metabolic diseases. Nat Commun 10:1981

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong Z, Xu Y, Yin JF et al (2014) Improving the effectiveness of (-)-epigallocatechin gallate (EGCG) against rabbit atherosclerosis by EGCG-loaded nanoparticles prepared from chitosan and polyaspartic acid. J Agric Food Chem 62:12603–12609

    Article  CAS  PubMed  Google Scholar 

  • Hussein J, Attia MF, El Bana M et al (2019a) Solid state synthesis of docosahexaenoic acid-loaded zinc oxide nanoparticle as a potential antidiabetic agent in rats. Int J Biol Macromol 140:1305–1314

    Article  CAS  PubMed  Google Scholar 

  • Hussein JS, Rasheed W, Ramzy T et al (2019b) Synthesis of docosahexaenoic acid-loaded silver nanoparticles for improving endothelial dysfunctions. Hum Exp Toxicol 38:962–973

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal M, Dudhe R, Sharma PK (2015) Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 5:123–127

    Article  PubMed  Google Scholar 

  • Jia T, Rao J, Zou L et al (2017) Nanoparticle-encapsulated curcumin inhibits diabetic neuropathic pain involving the P2Y12 receptor in the dorsal root ganglia. Front Neurosci 11:755

    Article  PubMed  Google Scholar 

  • Kim JY, Lee MS, Jung S et al (2014) Anti-obesity efficacy of nanoemulsion oleoresin capsicum in obese rats fed a high-fat diet. Int J Nanomed 9:301–310

    Article  Google Scholar 

  • Langle A, Gonzalez-Coronel MA, Carmona-Gutierrez G et al (2015) Stevia rebaudiana loaded titanium oxide nanomaterials as an antidiabetic agent in rats. Rev Bras Farmacogn 25:145–151

    Article  CAS  Google Scholar 

  • Lee MS, Jung S, Shin Y et al (2017) Lipolytic efficacy of alginate double-layer nanoemulsion containing oleoresin capsicum in differentiated 3T3-L1 adipocytes. Food Nutr Res 61(1):1339553

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Sheng X, Zhao S et al (2017) Nanoparticle-encapsulated emodin decreases diabetic neuropathic pain probably via a mechanism involving P2X3 receptor in the dorsal root ganglia. Purinergic Signal 13:559–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maity S, Mukhopadhyay P, Kundu PP et al (2017) Alginate-coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals—an in vitro and in vivo approach. Carbohydr Polym 170:124–132

    Article  CAS  PubMed  Google Scholar 

  • Mohseni R, Arabsadeghabadi Z, Ziamajidi N et al (2019) Oral administration of resveratrol-loaded solid lipid nanoparticle improves insulin resistance through targeting expression of SNARE proteins in adipose and muscle tissue in rats with type 2 diabetes. Nanoscale Res Lett 14:227

    Article  PubMed  PubMed Central  Google Scholar 

  • Mozafari MR (2010) Nanoliposomes: preparation and analysis. In: Weissig V (ed) Methods in molecular biology, vol 605. Springer, pp 29–50

    Google Scholar 

  • Mukhopadhyay P, Maity S, Mandal S et al (2018) Preparation, characterization and in vitro evaluation of pH sensitive, safe-quercetin-succinylated chitosan-alginate core-shell-corona nanoparticles for diabetes treatment. Carbohydr Polym 182:42–51

    Article  CAS  PubMed  Google Scholar 

  • Panwar R, Raghuwanshi N, Srivastava AK et al (2018) In vitro-sustained release of nanoencapsulated ferulic acid and its impact in induced diabetes. Mater Sci Eng C 92:381–392

    Article  CAS  Google Scholar 

  • Peng Y, Meng Q, Zhou J et al (2018) Nanoemulsion delivery system of tea polyphenols enhanced the bioavailability of catechins in rats. Food Chem 242:527–532

    Article  CAS  PubMed  Google Scholar 

  • Rani R, Dahiya S, Dhingra D et al (2017) Evaluation of anti-diabetic activity of glycyrrhizin-loaded nanoparticles in nicotinamide-streptozotocin-induced diabetic rats. Eur J Pharm Sci 106:220–230

    Article  CAS  PubMed  Google Scholar 

  • Rani R, Dahiya S, Dhingra D et al (2018) Improvement of anti-hyperglycemic activity of nano-thymoquinone in rat model of type 2 diabetes. Chem Biol Interact 295:119–132

    Article  CAS  PubMed  Google Scholar 

  • Reis CP, Neufeld RJ, Ribeiro AJ et al (2006) Nanocapsulation 1: methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine (Lond) 2:8–21

    Article  CAS  Google Scholar 

  • Reza Mozafari M, Johnson C, Hatziantoniou S et al (2008) Nanoliposomes and their applications in food nanotechnology. J Liposome Res 18:309–327

    Article  CAS  PubMed  Google Scholar 

  • Sharma PK, Saxena P, Jaswanth A et al (2017) Anti-diabetic activity of lycopene niosomes: experimental observation. J Pharm Drug Devel 4:103

    Google Scholar 

  • Shi F, Wei Z, Zhao Y et al (2016) Nanostructured lipid carriers loaded with baicalin: an efficient carrier for enhanced antidiabetic effects. Pharmacogn Mag 12:198–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh J, Mittal P, Bonde GV et al (2018) Design, optimization, characterization and in vivo evaluation of quercetin enveloped Soluplus®/P407 micelles in diabetes treatment. Artif Cells Nanomed Biotechnol 46:5546–5555

    Google Scholar 

  • Sun M, Nic S, Pan X et al (2014) Quercetin- nanostructured lipid carriers: characteristics and anti-breast cancer activities in vitro. Colloids Surf B Biointerfaces 113:15–24

    Article  CAS  PubMed  Google Scholar 

  • Sur S, Rathore A, Dave V et al (2019) Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano Struct Nano Objects 20:100397

    Article  CAS  Google Scholar 

  • Tong F, Liu S, Yan B et al (2017) Quercetin nanoparticle complex attenuated diabetic nephropathy via regulating the expression level of ICAM 1 on endothelium. Int J Nanomed 12:7799–7813

    Article  CAS  Google Scholar 

  • Tong F, Chai R, Jiang H et al (2018) In vitro/vivo drug release and anti-diabetic cardiomyopathy properties of curcumin/PBLG-PEG-PBLG nanoparticles. Int J Nanomed 13:1945–1962

    Article  CAS  Google Scholar 

  • Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16

    Article  CAS  PubMed  Google Scholar 

  • Wan S, Zhang L, Quan Y et al (2018) Resveratrol-loaded PLGA nanoparticles: enhanced stability, solubility and bioactivity of resveratrol for non-alcoholic fatty liver disease therapy. R Soc Open Sci 5:181457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Wang N, Song H et al (2011) Preparation of an anhydrous reverse micelle delivery system to enhance oral bioavailability and anti-diabetic efficacy of berberine. Eur J Pharm Sci 44:127–135

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Nie S, Sun M et al (2014) Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J Nutr Biochem 25:363–376

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wu J, Zhou Q et al (2015) Berberine nanosuspension enhances hypoglycaemic efficacy on streptozotocin induced diabetic C57BL/6 mice. Evid Based Complement Alternat Med 2015:239749

    PubMed  PubMed Central  Google Scholar 

  • Wang J, Tan J, Luo J et al (2017a) Enhancement of scutellarin oral delivery efficacy by vitamin B-12-modified amphiphilic chitosan derivatives to treat type II diabetes induced- retinopathy. J Nanobiotechnol 15:18

    Article  Google Scholar 

  • Wang Y, Wang S, Firempong CK et al (2017b) Enhanced solubility and bioavailability of naringenin via liposomal nanoformulation: preparation and in vitro and in vivo evaluations. AAPS PharmSciTech 18:586–594

    Article  PubMed  Google Scholar 

  • Wang G, Li Q, Chen D et al (2019) Kidney-targeted rhein-loaded liponanoparticles for diabetic nephropathy via size control and enhancement of renal cellular uptake. Theranostics 9:6191–6208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue M, Yang MX, Zhang WX et al (2013) Characterization, pharmacokinetics, and hypoglycaemic effect of berberine loaded solid lipid nanoparticles. Int J Nanomed 8:4677–4687

    Article  Google Scholar 

  • Zhang J, Nie S, Martinez-Zaguilan R, Sennoune SR et al (2016a) Formulation, characteristics and anti-atherogenic bioactivities of CD36- targeted epigallocatechin gallate (EGCG)- loaded nanoparticles. J Nutr Biochem 30:14–23

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li Z, Zhang K et al (2016b) Ethyl oleate containing nanostructured lipid carriers improve oral bioavailability of trans-ferulic acid as compared with conventional solid lipid nanoparticles. Int J Pharm 511:57–64

    Article  CAS  PubMed  Google Scholar 

  • Zu Y, Overby H, Ren G et al (2018) Resveratrol liposomes and lipid nanocarriers: comparison of characteristics and inducing browning of white adipocytes. Colloids Surf B 164:414–423

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dinda, B., Dinda, S. (2022). Advances in Nanoencapsulated Phytomedicines (Phytochemicals and Their Extracts) for the Treatment of Obesity, Diabetes, and Their Associated Complications. In: Dinda, B. (eds) Natural Products in Obesity and Diabetes. Springer, Cham. https://doi.org/10.1007/978-3-030-92196-5_7

Download citation

Publish with us

Policies and ethics

Navigation