Polysaccharide-Based Drug Delivery Systems

  • Living reference work entry
  • First Online:
Handbook of the Extracellular Matrix
  • 38 Accesses

Abstract

Due to the incredible diversity of polysaccharides and their natural origin, these systems are essential because they can offer compatibility and degradability in biological systems with a range of chemical and biological functions advantageous for the administration of drugs. This characteristic comprises biomacromolecule stability, enhancing the bioavailability of entrapped tiny therapeutic molecules, shielding, and delivering effective treatments by bypassing the reticuloendothelial system. The ability of polysaccharides to deliver therapeutics to target tissues through mucosal attachment and transport, as well as through chemistry, size, and receptor-mediated drug targeting, is also crucial. In this chapter, we have discussed the designing strategies and functionalization of polysaccharides that preserve and enhance the capabilities of the natural polysaccharides. Furthermore, an in-depth discussion on recent research advances in polysaccharides as drug delivery systems specifically for chitosan, alginate, dextran, and hyaluronic acid has also been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aguilera-Garrido A, del Castillo-Santaella T, Yang Y, Galisteo-González F, Gálvez-Ruiz MJ, Molina-Bolívar JA, Holgado-Terriza JA, Cabrerizo-Vílchez MÁ, Maldonado-Valderrama J. Applications of serum albumins in delivery systems: differences in interfacial behaviour and interacting abilities with polysaccharides. Adv Colloid Interf Sci. 2021;290 https://doi.org/10.1016/j.cis.2021.102365.

  • Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev. 2013;65(9) https://doi.org/10.1016/j.addr.2013.04.016.

  • An H, Lee JW, Lee HJ, Seo Y, Park H, Lee KY. Hyaluronate-alginate hybrid hydrogels modified with biomimetic peptides for controlling the chondrocyte phenotype. Carbohydr Polym. 2018;197 https://doi.org/10.1016/j.carbpol.2018.06.016.

  • Arjmandi M, Ramezani M. Mechanical and tribological assessment of silica nanoparticle-alginate-polyacrylamide nanocomposite hydrogels as a cartilage replacement. J Mech Behav Biomed Mater. 2019;95 https://doi.org/10.1016/j.jmbbm.2019.04.020.

  • Atanase LI, Desbrieres J, Riess G. Micellization of synthetic and polysaccharides-based graft copolymers in aqueous media. Progr Polym Sci. 2017;73 https://doi.org/10.1016/j.progpolymsci.2017.06.001.

  • Barrow M, Taylor A, Nieves DJ, Bogart LK, Mandal P, Collins CM, Moore LR, Chalmers JJ, Lévy R, Williams SR, Murray P, Rosseinsky MJ, Adams DJ. Tailoring the surface charge of dextran-based polymer coated SPIONs for modulated stem cell uptake and MRI contrast. Biomater Sci. 2015;3(4) https://doi.org/10.1039/c5bm00011d.

  • Besford QA, Weiss ACG, Schubert J, Ryan TM, Maitz MF, Tomanin PP, Savioli M, Werner C, Fery A, Caruso F, Cavalieri F. Protein component of oyster glycogen nanoparticles: an anchor point for functionalization. ACS Appl Mater Interfaces. 2020;12(35) https://doi.org/10.1021/acsami.0c10699.

  • Boddohi S, Moore N, Johnson PA, Kipper MJ. Polysaccharide-based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan. Biomacromolecules. 2009;10(6) https://doi.org/10.1021/bm801513e.

  • Böker A. Polymers: an interdisciplinary open access journal. Polymers. 2010;2(1) https://doi.org/10.3390/polym2010001.

  • Chen H, Fan X, Zhao Y, Zhi D, Cui S, Zhang E, Lan H, Du J, Zhang Z, Zhang S, Zhen Y. Stimuli-responsive polysaccharide enveloped liposome for targeting and penetrating delivery of survivin-shRNA into breast tumor. ACS Appl Mater Interfaces. 2020;12(19) https://doi.org/10.1021/acsami.9b22440.

  • Chi J, Jiang Z, Chen X, Peng Y, Liu W, Han B, Han B. Studies on anti-hepatocarcinoma effect, pharmacokinetics and tissue distribution of carboxymethyl chitosan based norcantharidin conjugates. Carbohydr Polym. 2019;226 https://doi.org/10.1016/j.carbpol.2019.115297.

  • Chowhan A, Giri TK. Polysaccharide as renewable responsive biopolymer for in situ gel in the delivery of drug through ocular route. Int J Biol Macromol. 2020;150 https://doi.org/10.1016/j.ijbiomac.2020.02.097.

  • Cong Z, Shi Y, Wang Y, Wang Y, Niu J, Chen N, Xue H. A novel controlled drug delivery system based on alginate hydrogel/chitosan micelle composites. Int J Biol Macromol. 2018;107(Part A) https://doi.org/10.1016/j.ijbiomac.2017.09.065.

  • Cui PF, Zhuang WR, Hu X, **ng L, Yu RY, Qiao JB, He YJ, Li F, Ling D, Jiang HL. A new strategy for hydrophobic drug delivery using a hydrophilic polymer equipped with stacking units. Chem Commun. 2018;54(59) https://doi.org/10.1039/c8cc04363a.

  • D’Ayala GG, Malinconico M, Laurienzo P. Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules. 2008;13(9) https://doi.org/10.3390/molecules13092069.

  • de Kerchove AJ, Elimelech M. Formation of polysaccharide gel layers in the presence of Ca2+ and K+ ions: measurements and mechanisms. Biomacromolecules. 2007;8(1) https://doi.org/10.1021/bm060670i.

  • Debele TA, Mekuria SL, Tsai HC. Polysaccharide based nanogels in the drug delivery system: application as the carrier of pharmaceutical agents. Mater Sci Eng C. 2016;68 https://doi.org/10.1016/j.msec.2016.05.121.

  • Diaz-Rodriguez P, Mariño C, Vázquez JA, Caeiro-Rey JR, Landin M. Targeting joint inflammation for osteoarthritis management through stimulus-sensitive hyaluronic acid based intra-articular hydrogels. Mater Sci Eng C. 2021;128 https://doi.org/10.1016/j.msec.2021.112254.

  • Ehrenfreund-Kleinman T, Domb AJ, Golenser J. Polysaccharide scaffolds prepared by crosslinking of polysaccharides with chitosan or proteins for cell growth. J Bioact Compat Polym. 2003;18(5) https://doi.org/10.1177/0883911503038234.

  • Ekladious I, Colson YL, Grinstaff MW. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat Rev Drug Discov. 2019;18(4) https://doi.org/10.1038/s41573-018-0005-0.

  • Fan M, Ma Y, Tan H, Jia Y, Zou S, Guo S, Zhao M, Huang H, Ling Z, Chen Y, Hu X. Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering. Mater Sci Eng C. 2017;71 https://doi.org/10.1016/j.msec.2016.09.068.

  • Farshbaf M, Davaran S, Zarebkohan A, Annabi N, Akbarzadeh A, Salehi R. Significant role of cationic polymers in drug delivery systems. Artif Cells Nanomed Biotechnol. 2018;46(8) https://doi.org/10.1080/21691401.2017.1395344.

  • Fathi M, Zangabad PS, Aghanejad A, Barar J, Erfan-Niya H, Omidi Y. Folate-conjugated thermosensitive O-maleoyl modified chitosan micellar nanoparticles for targeted delivery of erlotinib. Carbohydr Polym. 2017;172 https://doi.org/10.1016/j.carbpol.2017.05.007.

  • Garcia-Valdez O, Champagne P, Cunningham MF. Graft modification of natural polysaccharides via reversible deactivation radical polymerization. Progr Polym Sci. 2018;76 https://doi.org/10.1016/j.progpolymsci.2017.08.001.

  • Gonzalez-Fernandez T, Tenorio AJ, Campbell KT, Silva EA, Leach JK. Alginate-based bioinks for 3D bioprinting and fabrication of anatomically accurate bone grafts. Tissue Eng. 2021;27(Part A):17–8. https://doi.org/10.1089/ten.tea.2020.0305.

    Article  CAS  Google Scholar 

  • Gupta B, Tummalapalli M, Deopura BL, Alam MS. Functionalization of pectin by periodate oxidation. Carbohydr Polym. 2013;98(1) https://doi.org/10.1016/j.carbpol.2013.06.069.

  • Hao Y, Chen Y, **a H, Gao Q. Surface chemical functionalization of starch nanocrystals modified by 3-aminopropyl triethoxysilane. Int J Biol Macromol. 2019;126 https://doi.org/10.1016/j.ijbiomac.2018.12.200.

  • Hu Y, Li Y, Xu FJ. Versatile functionalization of polysaccharides via polymer grafts: from design to biomedical applications. Acc Chem Res. 2017a;50(2) https://doi.org/10.1021/acs.accounts.6b00477.

  • Hu X, Wang Y, Zhang L, Xu M, Dong W, Zhang J. Redox/pH dual stimuli-responsive degradable Salecan-g-SS-poly(IA-co-HEMA) hydrogel for release of doxorubicin. Carbohydr Polym. 2017b;155 https://doi.org/10.1016/j.carbpol.2016.08.077.

  • Jiang P, Jacobs KM, Ohr MP, Swindle-Reilly KE. Chitosan-polycaprolactone core-shell microparticles for sustained delivery of bevacizumab. Mol Pharm. 2020;17(7) https://doi.org/10.1021/acs.molpharmaceut.0c00260.

  • Karimi Khorrami N, Radi M, Amiri S, McClements DJ. Fabrication and characterization of alginate-based films functionalized with nanostructured lipid carriers. Int J Biol Macromol. 2021;182 https://doi.org/10.1016/j.ijbiomac.2021.03.159.

  • Karmakar S, Manna S, Kabiraj S, Jana S. Recent progress in alginate-based carriers for ocular targeting of therapeutics. Food Hydrocoll Health. 2022;2:100071. https://doi.org/10.1016/j.fhfh.2022.100071.

    Article  CAS  Google Scholar 

  • Kawano Y, Patrulea V, Sublet E, Borchard G, Iyoda T, Kageyama R, Morita A, Seino S, Yoshida H, Jordan O, Hanawa T. Wound healing promotion by hyaluronic acid: effect of molecular weight on gene expression and in vivo wound closure. Pharmaceuticals. 2021;14(4) https://doi.org/10.3390/ph14040301.

  • Lai JY, Luo LJ, Nguyen DD. Multifunctional glutathione-dependent hydrogel eye drops with enhanced drug bioavailability for glaucoma therapy. Chem Eng J. 2020;402 https://doi.org/10.1016/j.cej.2020.126190.

  • Layek B, Das S. Chitosan-based nanomaterials in drug delivery applications. Biopolym Based Nanomater Drug Deliv Biomed Appl. 2021; https://doi.org/10.1016/b978-0-12-820874-8.00001-4.

  • Li S, Li L, Guo C, Qin H, Yu X. A promising wound dressing material with excellent cytocompatibility and proangiogenesis action for wound healing: Strontium loaded Silk fibroin/Sodium alginate (SF/SA) blend films. Int J Biol Macromol. 2017;104 https://doi.org/10.1016/j.ijbiomac.2017.07.020.

  • Li Z, Fu Y, McClements DJ, Li T. Impact of alginate block type on the structure and physicochemical properties of curcumin-loaded complex biopolymer nanoparticles. LWT. 2022;162:113435. https://doi.org/10.1016/j.lwt.2022.113435.

    Article  CAS  Google Scholar 

  • Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60(15) https://doi.org/10.1016/j.addr.2008.09.001.

  • Liu H, Rong L, Wang B, **e R, Sui X, Xu H, Zhang L, Zhong Y, Mao Z. Facile fabrication of redox/pH dual stimuli responsive cellulose hydrogel. Carbohydr Polym. 2017;176 https://doi.org/10.1016/j.carbpol.2017.08.085.

  • Liu R, Zuo R, Hudalla GA. Harnessing molecular recognition for localized drug delivery. Adv Drug Deliv Rev. 2021;170 https://doi.org/10.1016/j.addr.2021.01.008.

  • Liu H, Li Y, Zhang X, Shi M, Li D, Wang Y. Chitosan-coated solid lipid nano-encapsulation improves the therapeutic antiairway inflammation effect of berberine against COPD in cigarette smoke-exposed rats. Can Respir J. 2022a;2022:8509396. https://doi.org/10.1155/2022/8509396.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Zhao Y, Shen M, Hao Y, Wu X, Yao Y, Li Y, Yang Q. Hyaluronic acid targeted and pH-responsive multifunctional nanoparticles for chemo-photothermal synergistic therapy of atherosclerosis. J Mater Chem B. 2022b;10(4) https://doi.org/10.1039/d1tb02000e.

  • Luo Y, Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol. 2014;64 https://doi.org/10.1016/j.ijbiomac.2013.12.017.

  • Mayadunne RTA, Jeffery J, Moad G, Rizzardo E. Living free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization): approaches to star polymers. Macromolecules. 2003;36(5) https://doi.org/10.1021/ma021219w.

  • Metaxa AF, Vrontaki E, Efthimiadou EK, Mavromoustakos T. Drug delivery systems based on modified polysaccharides: synthesis and characterization. Method Mol Biol. 2021;2207 https://doi.org/10.1007/978-1-0716-0920-0_12.

  • Mohammed ASA, Naveed M, Jost N. Polysaccharides; classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (a review of current applications and upcoming potentialities). J Polym Environ. 2021;29(8) https://doi.org/10.1007/s10924-021-02052-2.

  • Nayak AK, Ahmed SA, Tabish M, Hasnain MS. Natural polysaccharides in tissue engineering applications. Nat Polysacch Drug Deliv Biomed Appl. 2019; https://doi.org/10.1016/B978-0-12-817055-7.00023-6.

  • Niculescu AG, Grumezescu AM. Applications of chitosan-alginate-based nanoparticles – an up-to-date review. Nanomaterials. 2022;12(2) https://doi.org/10.3390/nano12020186.

  • Otache MA, Duru RU, Achugasim O, Abayeh OJ. Advances in the modification of starch via esterification for enhanced properties. J Polym Environ. 2021;29(5) https://doi.org/10.1007/s10924-020-02006-0.

  • Plattt VM, Szoka FC. Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm. 2008;5(4) https://doi.org/10.1021/mp800024g.

  • Potaś J, Szymańska E, Winnicka K. Challenges in develo** of chitosan – based polyelectrolyte complexes as a platform for mucosal and skin drug delivery. Eur Polym J. 2020;140 https://doi.org/10.1016/j.eurpolymj.2020.110020.

  • Pramod PS, Shah R, Jayakannan M. Dual stimuli polysaccharide nanovesicles for conjugated and physically loaded doxorubicin delivery in breast cancer cells. Nanoscale. 2015;7(15) https://doi.org/10.1039/c5nr00799b.

  • Prasher P, Sharma M, Mehta M, Satija S, Aljabali AA, Tambuwala MM, Anand K, Sharma N, Dureja H, Jha NK, Gupta G, Gulati M, Singh SK, Chellappan DK, Paudel KR, Hansbro PM, Dua K. Current-status and applications of polysaccharides in drug delivery systems. Colloids Interface Sci Commun. 2021;42 https://doi.org/10.1016/j.colcom.2021.100418.

  • Pushpamalar J, Veeramachineni AK, Owh C, Loh XJ. Biodegradable polysaccharides for controlled drug delivery. ChemPlusChem. 2016;81(6) https://doi.org/10.1002/cplu.201600112.

  • Ravi H, Kurrey N, Manabe Y, Sugawara T, Baskaran V. Polymeric chitosan-glycolipid nanocarriers for an effective delivery of marine carotenoid fucoxanthin for induction of apoptosis in human colon cancer cells (Caco-2 cells). Mater Sci Eng C. 2018;91 https://doi.org/10.1016/j.msec.2018.06.018.

  • Reddy N, Reddy R, Jiang Q. Crosslinking biopolymers for biomedical applications. Trends Biotechnol. 2015;33(6) https://doi.org/10.1016/j.tibtech.2015.03.008.

  • Ren X, He L, Tian X, Zhang P, Chen Z, Mei X. pH and folic acid dual responsive polysaccharide nanospheres used for nuclear targeted cancer chemotherapy. Colloids Surf B: Biointerfaces. 2019;178 https://doi.org/10.1016/j.colsurfb.2019.03.028.

  • Santana CP, Mansur AAP, Mansur HS, da Silva-Cunha A. Bevacizumab-conjugated quantum dots: in vitro antiangiogenic potential and biosafety in rat retina. J Ocul Pharmacol Ther. 2020;36(6) https://doi.org/10.1089/jop.2019.0108.

  • Sasaki T. Influence of anionic, neutral, and cationic polysaccharides on the in vitro digestibility of raw and gelatinized potato starch. J Sci Food Agric. 2020;100(6) https://doi.org/10.1002/jsfa.10259.

  • Saygili E, Kaya E, Ilhan-Ayisigi E, Saglam-Metiner P, Alarcin E, Kazan A, Girgic E, Kim YW, Gunes K, Eren-Ozcan GG, Akakin D, Sun JY, Yesil-Celiktas O. An alginate-poly(acrylamide) hydrogel with TGF-β3 loaded nanoparticles for cartilage repair: biodegradability, biocompatibility and protein adsorption. Int J Biol Macromol. 2021;172 https://doi.org/10.1016/j.ijbiomac.2021.01.069.

  • Schanté CE, Zuber G, Herlin C, Vandamme TF. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr Polym. 2011;85(3) https://doi.org/10.1016/j.carbpol.2011.03.019.

  • Shao L, Cao Y, Li Z, Hu W, Li S, Lu L. Dual responsive aerogel made from thermo/pH sensitive graft copolymer alginate-g-P(NIPAM-co-NHMAM) for drug controlled release. Int J Biol Macromol. 2018;114 https://doi.org/10.1016/j.ijbiomac.2018.03.166.

  • Shin TH, Kim PK, Kang S, Cheong J, Kim S, Lim Y, Shin W, Jung JY, Lah JD, Choi BW, Cheon J. High-resolution T 1 MRI via renally clearable dextran nanoparticles with an iron oxide shell. Nat Biomed Eng. 2021;5(3) https://doi.org/10.1038/s41551-021-00687-z.

  • Singh B, Kumar A. Graft and crosslinked polymerization of polysaccharide gum to form hydrogel wound dressings for drug delivery applications. Carbohydr Res. 2020;489 https://doi.org/10.1016/j.carres.2020.107949.

  • Soleimanpour M, Mirhaji SS, Jafari S, Derakhshankhah H, Mamashli F, Nedaei H, Karimi MR, Motasadizadeh H, Fatahi Y, Ghasemi A, Nezamtaheri MS, Khajezade M, Teimouri M, Goliaei B, Delattre C, Saboury AA. Designing a new alginate-fibrinogen biomaterial composite hydrogel for wound healing. Sci Rep. 2022;12(1):7213. https://doi.org/10.1038/s41598-022-11282-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomevich SO, Bychkovsky PM, Yurkshtovich TL, Golub NV, Mirchuk PY, Revtovich MY, Shmak AI. Biodegradable pH-sensitive prospidine-loaded dextran phosphate based hydrogels for local tumor therapy. Carbohydr Polym. 2019;226 https://doi.org/10.1016/j.carbpol.2019.115308.

  • Suhail M, Li XR, Liu JY, Hsieh WC, Lin YW, Wu PC. Fabrication of alginate based microgels for drug-sustained release: in-vitro and in-vivo evaluation. Int J Biol Macromol. 2021;192 https://doi.org/10.1016/j.ijbiomac.2021.10.054.

  • Synytsya A, Poučková P, Zadinová M, Troshchynska Y, Štětina J, Synytsya A, Saloň I, Král V. Hydrogels based on low-methoxyl amidated citrus pectin and flaxseed gum formulated with tripeptide glycyl-L-histidyl-L-lysine improve the healing of experimental cutting wounds in rats. Int J Biol Macromol. 2020;165 https://doi.org/10.1016/j.ijbiomac.2020.09.251.

  • Szabó L, Gerber-Lemaire S, Wandrey C. Strategies to functionalize the anionic biopolymer Na-alginate without restricting its polyelectrolyte properties. Polymers. 2020;12(4) https://doi.org/10.3390/POLYM12040919.

  • Tan C, Feng B, Zhang X, **a W, **a S. Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food Hydrocoll. 2016;52 https://doi.org/10.1016/j.foodhyd.2015.08.016.

  • Volokhova AS, Edgar KJ, Matson JB. Polysaccharide-containing block copolymers: synthesis and applications. Mater Chem Front. 2020;4(1) https://doi.org/10.1039/c9qm00481e.

  • Wang QY, Su HY, **a CC, Sun JY, Liu C, Wang ZY, Gong QY, Song B, Gao FB, Ai H, Gu ZW. Amphiphilic dextran/magnetite nanocomposites as magnetic resonance imaging probes. Chin Sci Bull. 2009;54(17) https://doi.org/10.1007/s11434-009-0255-7.

  • Wang H, Dai T, Zhou S, Huang X, Li S, Sun K, Zhou G, Dou H. Self-assembly assisted fabrication of dextran-based nanohydrogels with reduction-cleavable junctions for applications as efficient drug delivery systems. Sci Rep. 2017;7 https://doi.org/10.1038/srep40011.

  • Wen Y, Oh JK. Recent strategies to develop polysaccharide-based nanomaterials for biomedical applications. Macromol Rapid Commun. 2014;35(21) https://doi.org/10.1002/marc.201400406.

  • Wu Y, Zhang X, Li H, Deng P, Li H, He T, Rong J, Zhao J, Liu Z. A core/shell stabilized polysaccharide-based nanoparticle with intracellular environment-sensitive drug delivery for breast cancer therapy. J Mater Chem B. 2018;6(41) https://doi.org/10.1039/c8tb00633d.

  • Yadav H, Karthikeyan C. Natural polysaccharides: structural features and properties. Polysacch Carr Drug Deliv. 2019; https://doi.org/10.1016/B978-0-08-102553-6.00001-5.

  • Yang S, Tang Z, Zhang D, Deng M, Chen X. PH and redox dual-sensitive polysaccharide nanoparticles for the efficient delivery of doxorubicin. Biomater Sci. 2017;5(10) https://doi.org/10.1039/c7bm00632b.

  • Yu T, Li Y, Gu X, Li Q. Development of a hyaluronic acid-based nanocarrier incorporating doxorubicin and cisplatin as a pH-Sensitive and CD44-targeted anti-breast cancer drug delivery system. Front Pharmacol. 2020;11 https://doi.org/10.3389/fphar.2020.532457.

  • Zhang T, Wang Y, Ma X, Hou C, Lv S, Jia D, Lu Y, Xue P, Kang Y, Xu Z. A bottlebrush-architectured dextran polyprodrug as an acidity-responsive vector for enhanced chemotherapy efficiency. Biomater Sci. 2020;8(1) https://doi.org/10.1039/c9bm01692a.

  • Zhao D, Yu S, Sun B, Gao S, Guo S, Zhao K. Biomedical applications of chitosan and its derivative nanoparticles. Polymers. 2018;10(4) https://doi.org/10.3390/polym10040462.

  • Zhao X, ** L, Zhu Z, Lu H, Shi H, Zhong Q, Oliveira JM, Reis RL, Gao C, Mao Z. Conotoxin loaded dextran microgel particles alleviate effects of spinal cord injury by inhibiting neuronal excitotoxicity. Appl Mater Today. 2021;23 https://doi.org/10.1016/j.apmt.2021.101064.

  • Zheng D, Zhao J, Li Y, Zhu L, ** M, Wang L, Liu J, Lei J, Li Z. Self-assembled pH-sensitive nanoparticles based on Ganoderma lucidum polysaccharide-methotrexate conjugates for the co-delivery of anti-tumor drugs. ACS Biomater Sci Eng. 2021;7(8) https://doi.org/10.1021/acsbiomaterials.1c00663.

  • Zhong H, Gao X, Cheng C, Liu C, Wang Q, Han X. The structural characteristics of seaweed polysaccharides and their application in gel drug delivery systems. Mar Drugs. 2020;18(12) https://doi.org/10.3390/md18120658.

  • Zhou J, Tong J, Su X, Ren L. Hydrophobic starch nanocrystals preparations through crosslinking modification using citric acid. Int J Biol Macromol. 2016;91 https://doi.org/10.1016/j.ijbiomac.2016.06.082.

  • Zhu J, Li F, Wang X, Yu J, Wu D. Hyaluronic acid and polyethylene glycol hybrid hydrogel encapsulating nanogel with hemostasis and sustainable antibacterial property for wound healing. ACS Appl Mater Interfaces. 2018;10(16) https://doi.org/10.1021/acsami.7b18927.

  • Zhuang Y, Kong Y, Han K, Hao H, Shi B. A physically cross-linked self-healable double-network polymer hydrogel as a framework for nanomaterial. New J Chem. 2017;41(24) https://doi.org/10.1039/c7nj03392c.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jain, N., Kaul, S., Triveni, Nagaich, U. (2023). Polysaccharide-Based Drug Delivery Systems. In: Maia, F.R.A., Oliveira, J.M., Reis, R.L. (eds) Handbook of the Extracellular Matrix. Springer, Cham. https://doi.org/10.1007/978-3-030-92090-6_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92090-6_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92090-6

  • Online ISBN: 978-3-030-92090-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation