Assessment of Sustainability

  • Chapter
  • First Online:
Sustainable Solar Electricity

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The concept of sustainability is broadly used but lousily defined. Sustainability comprises several dimensions and it is still subject of many academic discussions. Nevertheless, less ambitious approaches enable the possibility to quantify the environmental and socio-economic impacts of any product or service. A powerful and well defined tool (regulated by ISO14040 and ISO14044 standards) is Life Cycle Assessment: its methodology and main phases (definition of functional unit and scope, life cycle inventory, impact assessment and interpretation) are explained in this chapter with a focus on the assessment of energy technologies, and including a summary of the most used Life Cycle Impact Assessment methodologies that are currently available. A broader approach towards life cycle “sustainability” assessment requires the inclusion of tools to evaluate socio-economic impacts, such as life cycle costing and total cost of ownership, levelized cost of the produced energy or product environmental footprint that are also presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the international standards described in this section, the term product includes goods and services.

  2. 2.

    The previous versions ISO 14040:1997, ISO 14041:1998, ISO 14042:2000 and ISO 14043:2000 were cancelled and replaced by the new standards.

  3. 3.

    Products and materials include raw materials, intermediate products and co-products. Secondary raw materials may include recycled materials.

  4. 4.

    OpenEI database: https://openei.org/.

References

  1. Aldersey-Williams J, Rubert T (2019) Levelised cost of energy—a theoretical justification and critical assessment. Energy Policy 124:169–179. https://doi.org/10.1016/j.enpol.2018.10.004

  2. Bare J (2002) Develo** a Consistent Decision-Making Framework by Using the U.S. EPA’s TRACI. Tech. Rep. Record ID: 62551, Systems Analysis Branch, Sustainable Technology Division, National Risk Management Research Laboratory, Environmental Protection Agency, United States

    Google Scholar 

  3. Bare J (2011) TRACI 2.0: the tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Technol Environ Policy 13(5):687–696. https://doi.org/10.1007/s10098-010-0338-9

  4. Bare JC, Hofstetter P, Pennington DW, de Haes HAU (2000) Midpoints versus endpoints: the sacrifices and benefits. Int J Life Cycle Assess 5(6):319. https://doi.org/10.1007/BF02978665

  5. Bare JC, Norris GA, Pennington DW, McKone TE (2003) TRACI-the tool for the reduction and assessment of chemical and other environmental impacts. J Ind Ecol 6(3–4):49–78. https://doi.org/10.1162/108819802766269539. Publisher: John Wiley & Sons Ltd

  6. Bielecki A, Ernst S, Skrodzka W, Wojnicki I (2020) The externalities of energy production in the context of development of clean energy generation. Environ Sci Pollut Res 27(11):11506–11530. https://doi.org/10.1007/s11356-020-07625-7

  7. Braunschweig A, Brand G, Scheidegger A, Schwank O (1998) Weighting in Ecobalances with the Ecoscarcity Method. Ecofactors 1997. Tech. Rep. Environment Series N\(^{\circ }\) 297, Swiss Federal Agency for the Environment, Forests and Landscape (SAEFL)—BUWAL Agency (now BAFU/FOEN), Bern. https://www.researchgate.net/publication/301765987_Ecobalances_Weighting_in_Ecobalances_Ecofactors_1997, https://ghgprotocol.org/Third-Party-Databases/BUWAL

  8. Brown M et al (2020) Regional Energy Deployment System (ReEDS) Model Documentation: Version 2019. Tech. Rep. NREL/TP-6A20-74111, National Renewable Energy Laboratory, Golden, Colorado, USA. https://www.nrel.gov/docs/fy20osti/74111.pdf

  9. Brundtland GH, Khalid M (1987) Report of the world commission on environment and development. “Our common future”. A/42/427, Oxford University Press. https://digitallibrary.un.org/record/139811?ln=en

  10. Campos-Guzman V, Socorro García-Cascales M, Espinosa N, Urbina A (2019) Life cycle analysis with multi-criteria decision making: a review of approaches for the sustainability evaluation of renewable energy technologies. Renew Sustain Energy Rev 104:343–366. https://doi.org/10.1016/j.rser.2019.01.031. Go to ISI://WOS:000458294500026, type: Journal Article

  11. Chwialkowska A, Bhatti WA, Glowik M (2020) The influence of cultural values on pro-environmental behavior. J Clean Prod 268:122305

    Google Scholar 

  12. Crettaz P, Pennington D, Rhomberg L, Brand K, Jolliet O (2002) Assessing human health response in life cycle assessment using ED10s and DALYs: Part 1-cancer effects. Risk Anal 22(5):931–946. https://doi.org/10.1111/1539-6924.00262. Publisher: John Wiley & Sons Ltd.

  13. Dangelico RM, Vocalelli D (2017) “Green Marketing”: an analysis of definitions, strategy steps, and tools through a systematic review of the literature. J Clean Prod 165:1263–1279. https://doi.org/10.1016/j.jclepro.2017.07.184

  14. De Schryver AM, Brakkee KW, Goedkoop MJ, Huijbregts MAJ (2009) Characterization factors for global warming in life cycle assessment based on damages to humans and ecosystems. Environ Sci Technol 43(6):1689–1695. https://doi.org/10.1021/es800456m. Publisher: American Chemical Society

  15. Di Maio F, Rem PC, Baldé K, Polder M (2017) Measuring resource efficiency and circular economy: A market value approach. Resour Conserv Recycl 122:163–171. https://doi.org/10.1016/j.resconrec.2017.02.009

  16. Estevan H, Schaefer B (2017) Life Cycle Costing. State of the art report. Tech. Rep. SPP Regions (Sustainable Public Procurement Regions) Project Consortium, 2017, ICLEI - Local Governments for Sustainability, European Secretariat. https://sppregions.eu/fileadmin/user_upload/Life_Cycle_Costing_SoA_Report.pdf

  17. EU (2013a) Building the Single Market for Green Products Facilitating better information on the environmental performance of products and organisations. Tech. Rep. COM/2013/0196, European Union

    Google Scholar 

  18. EU (2013b) Commission Recommendation of 9 April 2013 on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations. Tech. Rep. 2013/179/EU, European Union

    Google Scholar 

  19. Finkbeiner M (2014) Product environmental footprint-breakthrough or breakdown for policy implementation of life cycle assessment? Int J Life Cycle Assess 19(2):266–271. https://doi.org/10.1007/s11367-013-0678-x

  20. Frischknecht R (2010) LCI modelling approaches applied on recycling of materials in view of environmental sustainability, risk perception and eco-efficiency. Int J Life Cycle Assess 15(7):666–671. https://doi.org/10.1007/s11367-010-0201-6

  21. Frischknecht R, Stucki M (2010) Scope-dependent modelling of electricity supply in life cycle assessments. Int J Life Cycle Assess 15(8):806–816. https://doi.org/10.1007/s11367-010-0200-7

  22. Frischknecht R, Steiner R, Braunschweig A, Egli N, Hildesheimer G (2006) Swiss Ecological Scarcity Method: the new version 2006. In: Proceedings of the 7th international conference on EcoBalance. Tsukuba, Japan, p 5. https://www.researchgate.net/publication/237790160_Swiss_Ecological_Scarcity_Method_The_New_Version_2006

  23. Frischknecht R, Steiner R, Jungbluth N (2009) The Ecological Scarcity Method Eco-Factors 2006. Tech. rep., Federal Office for the Environment (FOEN), Bern, Switzerland. https://www.bafu.admin.ch/dam/bafu/en/dokumente/wirtschaft-konsum/uw-umwelt-wissen/methode_der_oekologischenknappheitoekofaktoren2006.pdf.download.pdf/the_ecological_scarcitymethodeco-factors2006.pdf

  24. Galatola M, Pant R (2014) Reply to the editorial “Product environmental footprint-breakthrough or breakdown for policy implementation of life cycle assessment?” written by Prof. Finkbeiner (Int J Life Cycle Assess 19(2):266-271). Int J Life Cycle Assess 19(6):1356–1360. https://doi.org/10.1007/s11367-014-0740-3

  25. Goedkoop M, Spriensma R (2001) The eco-indicator 99. A damage oriented method for life cycle impact assessment, methodology report, 3rd edn. Pré Sustainability. https://pre-sustainability.com/legacy/download/EI99_annexe_v3.pdf

  26. Gowdy J (2005) Toward a new welfare economics for sustainability. Ecol Econ 53(2):211–222. https://doi.org/10.1016/j.ecolecon.2004.08.007

  27. Guinée JB, Heijungs R, Huppes G, Zamagni A, Masoni P, Buonamici R, Ekvall T, Rydberg T (2011) Life cycle assessment: past, present, and future. Environ Sci Technol 45(1):90–96. https://doi.org/10.1021/es101316v

  28. Guinée (Ed) JB (2002) Handbook on life cycle assessment, eco-efficiency in industry and science, 1st edn, vol 7. Springer, Netherlands. https://doi.org/10.1007/0-306-48055-7

  29. Hartwick JM (1977) Intergenerational equity and the investing of rents from exhaustible resources. Am Econ Rev 67(5):972–974. http://www.jstor.org/stable/1828079. Publisher: American Economic Association

  30. Hauschild MZ, Potting J (2005) Spatial differentiation in life cycle impact assessment—the EDIP2003 methodology, environmental news, vol 80. Danish Ministry of the Environment. Environmental Protection Agency, Copenhagen. https://www2.mst.dk/udgiv/publications/2005/87-7614-579-4/pdf/87-7614-580-8.pdf

  31. Hauschild MZ, Wenzel H (1998) Environmental assessment of products. volume 2: scientific background, 1st edn. Springer, United States. https://www.springer.com/gp/book/9780412808104

  32. Hayashi K, Itsubo N, Inaba A (2000) Development of damage function for stratospheric ozone layer depletion. Int J Life Cycle Assess 5(5):265. https://doi.org/10.1007/BF02977578

  33. Hayashi K, Okazaki M, Itsubo N, Inaba A (2004) Development of damage function of acidification for terrestrial ecosystems based on the effect of aluminum toxicity on net primary production. Int J Life Cycle Assess 9(1):13–22. https://doi.org/10.1007/BF02978532

  34. Hayashi K, Nakagawa A, Itsubo N, Inaba A (2006) Expanded damage function of stratospheric ozone depletion to cover major endpoints regarding life cycle impact assessment (12 pp). Int J Life Cycle Assess 11(3):150–161. https://doi.org/10.1065/lca2004.11.189

  35. Hertwich EG, Pease WS, Koshland CP (1997) Evaluating the environmental impact of products and production processes: a comparison of six methods. Sci Total Environ 196(1):13–29. https://doi.org/10.1016/S0048-9697(96)05344-2

  36. Hertwich EG, Pease WS, McKone TE (1998) Environmental policy analysis: evaluating toxic impact assessment methods: what works best. Environ Sci Technol 32(5):138A-144A. https://doi.org/10.1021/es9840403. Publisher: American Chemical Society

  37. Hertwich EG, McKone TE, Pease WS (1999) Parameter uncertainty and variability in evaluative fate and exposure models. Risk Anal 19(6):1193–1204. https://doi.org/10.1023/A:1007094930671

  38. Hertwich EG, Mateles SF, Pease WS, McKone TE (2001) Human toxicity potentials for life-cycle assessment and toxics release inventory risk screening. Environ Toxicol Chem 20(4):928–939. https://doi.org/10.1002/etc.5620200431. Publisher: John Wiley & Sons Ltd

  39. Huijbregts MA, Rombouts LJA, Ragas AMJ, van de Meent D (2005) Human-toxicological effect and damage factors of carcinogenic and noncarcinogenic chemicals for life cycle impact assessment. Integr Environ Assess Manag 1(3):181–244. https://doi.org/10.1897/2004-007r.1

  40. Huijbregts MA, Struijs J, Goedkoop M, Heijungs R, Jan Hendriks A, van de Meent D (2005) Human population intake fractions and environmental fate factors of toxic pollutants in life cycle impact assessment. Chemosphere 61(10):1495–1504. https://doi.org/10.1016/j.chemosphere.2005.04.046

  41. Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira M, Hollander A, Zijp M, van Zelm R (2016) ReCiPe 2016 v1.1 : A harmonized life cycle impact assessment method at midpoint and endpoint level Report I: Characterization. Tech. Rep. RIVM report 2016-0104a, Rijksinstituut voor Volksgezondheid en Milieu RIVM. https://www.rivm.nl/bibliotheek/rapporten/2016-0104.html

  42. Huijbregts MAJ, Steinmann ZJN, Elshout PMF, Stam G, Verones F, Vieira M, Zijp M, Hollander A, van Zelm R (2017) ReCiPe 2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess 22(2):138–147. https://doi.org/10.1007/s11367-016-1246-y

  43. IEA (2019) World Energy Outlook 2018. Tech. rep., International Energy Agency. https://www.iea.org/reports/world-energy-outlook-2018

  44. IEA (2020) World Energy Model. Documentation. Tech. rep., International Energy Agency. https://www.iea.org/reports/world-energy-model

  45. ILCD (2010) ILCD Handbook: Analysis of existing Environmental Impact Assessment methodologies for use in Life Cycle Assessment. Tech. rep., Institute for Environment and Sustainability, Joint Research Centre, European Commission, European Union. https://eplca.jrc.ec.europa.eu/uploads/ILCD-Handbook-LCIA-Background-analysis-online-12March2010.pdf

  46. ILCD (2011) ILCD Handbook: Recommendations for Life Cycle Impact Assessment in the European context. Tech. Rep. JRC 61049/EUR 24571 EN, Institute for Environment and Sustainability, Joint Research Centre, European Commission, European Union. https://eplca.jrc.ec.europa.eu/uploads/ILCD-Handbook-Recommendations-for-Life-Cycle-Impact-Assessment-in-the-European-context.pdf, iSBN 978-92-79-17451-3 ISSN 1018-5593 10.278/33030

  47. International Organization for Standardization (2006a) ISO 14040:2006 Environmental management - Life cycle assessment - Principles and framework. https://www.iso.org/standard/37456.html. Technical Committee : ISO/TC 207/SC 5 Life cycle assessment ICS : 13.020.10 Environmental management 13.020.60 Product life-cycles

  48. International Organization for Standardization (2006b) ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines. https://www.iso.org/standard/38498.html. Technical Committee : ISO/TC 207/SC 5 Life cycle assessment ICS : 13.020.10 Environmental management 13.020.60 Product life-cycles

  49. International Organization for Standardization (2012) ISO/TR 14047:2012 Environmental management - Life cycle assessment - Illustrative examples on how to apply ISO 14044 to impact assessment situations. https://www.iso.org/standard/37456.html. Technical Committee : ISO/TC 207/SC 5 Life cycle assessment

  50. Itsubo N, Sakagami M, Washida T, Kokubu K, Inaba A (2004) Weighting across safeguard subjects for LCIA through the application of conjoint analysis. Int J Life Cycle Assess 9(3):196–205. https://doi.org/10.1007/BF02994194

  51. Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8(6):324. https://doi.org/10.1007/BF02978505

  52. Jolliet O, Müller-Wenk R, Bare J, Brent A, Goedkoop M, Heijungs R, Itsubo N, Peña C, Pennington D, Potting J, Rebitzer G, Stewart M, de Haes HU, Weidema B (2004) The LCIA midpoint-damage framework of the UNEP/SETAC life cycle initiative. Int J Life Cycle Assess 9(6):394. https://doi.org/10.1007/BF02979083

  53. Jolliet O, Antón A, Boulay AM, Cherubini F, Fantke P, Levasseur A, McKone TE, Michelsen O, Milà i Canals L, Motoshita M, Pfister S, Verones F, Vigon B, Frischknecht R, (2018) Global guidance on environmental life cycle impact assessment indicators: impacts of climate change, fine particulate matter formation, water consumption and land use. Int J Life Cycle Assess 23(11):2189–2207. https://doi.org/10.1007/s11367-018-1443-y

  54. Kemna R, van Elburg M, Li W, van Holsteijn R (2005) Methodology Study Eco-design of Energy-using Products (MEEUP). Final Report. Tech. rep., Van Holsteijn en Kemna BV, commisioned by DG ENTR, Unit ENTR/G/3 European Commision, Delft. https://ec.europa.eu/docsroom/documents/11846/attachments/3/translations/en/renditions/native

  55. Margni M, Jolliet O (2006) Continent-specific intake fractions and characterization factors for toxic emissions: does it make a difference? Int J Life Cycle Assess 11(1):55–63. https://doi.org/10.1065/lca2006.04.012

  56. Margni M, Gloria T, Bare J, Sepälä J, Steen B, Struijs J, Toffoletto L, Jolliet O (2008) Guidance on how to move from current practice to recommended practice in Life Cycle Impact Assessment. Tech. rep., UNEP-SETAC Life Cycle Initiative. https://www.researchgate.net/publication/235678766_Guidance_on_how_to_move_from_current_practice_to_recommended_practice_in_Life_Cycle_Impact_Assessment

  57. Müller-Wenk R (1994) The ecoscarcity method as a valuation instrument within the SETAC-framework. In: Udo of. Haes, Jensen HA, Klöpffer AA, Lindfors W, Brussels L-G (eds) Integrating impact assessment into LCA. Proceedings of the LCA symposium held at the fourth SETAC-Europe congress. Proceedings of the LCA symposium held at the fourth SETAC-Europe congress, pp 115–120

    Google Scholar 

  58. Neumayer E (2013) Weak versus strong sustainability, 4th edn. Edward Elgar Publishing, Cheltenham, UK. https://doi.org/10.4337/9781781007082, URLhttps://www.elgaronline.com/view/9781781007075.xml

  59. Norris GA (2002) Impact characterization in the tool for the reduction and assessment of chemical and other environmental impacts. J Indus Ecol6(3-4):79–101. https://doi.org/10.1162/108819802766269548. Publisher: John Wiley & Sons, Ltd

  60. Norton BG (2003) Searching for sustainability. Cambridge University Press, Cambridge

    Google Scholar 

  61. Olsen SI (2019) The long road to a circular economy. Integr Environ Assess Manag 15(4):492–493. https://doi.org/10.1002/ieam.4170. Publisher: John Wiley & Sons Ltd

  62. Parlament E, Council E (2014) Directive 2014/24/EU of the European Parliament and of the Council of 26 February 2014 on public procurement and repealing Directive 2004/18/EC. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014L0024. Document 32014L0024

  63. Payet J (2005) Assessing toxic impacts on aquatic ecosystems in LCA. Int J Life Cycle Assess 10(5):373. https://doi.org/10.1065/lca2005.09.003

  64. Pennington DW, Margni M, Ammann C, Jolliet O (2005) Multimedia fate and human intake modeling: spatial versus nonspatial insights for chemical emissions in Western Europe. Environ Sci Technol 39(4):1119–1128. https://doi.org/10.1021/es034598x. Publisher: American Chemical Society

  65. Pennington DW, Margni M, Payet J, Jolliet O (2006) Risk and regulatory hazard-based toxicological effect indicators in life-cycle assessment (LCA). Human Ecol Risk Assess Int J 12(3):450–475. https://doi.org/10.1080/10807030600561667. Publisher: Taylor & Francis

  66. Polonsky MJ (2011) Transformative green marketing: impediments and opportunities. J Bus Res 64(12):1311–1319. https://doi.org/10.1016/j.jbusres.2011.01.016

  67. Potting J, Hauschild M (1997) Part II: spatial differentiation in life-cycle assessment via the site-dependent characterisation of environmental impact from emissions. Int J Life Cycle Assess 2(4):209. https://doi.org/10.1007/BF02978417

  68. Potting J, Hauschild M (1997) Predicted environmental impact and expected occurrence of: Actual environmental impact part 1: the linear nature of environmental impact from emissions in life-cycle assessment. Int J Life Cycle Assess 2(3):171. https://doi.org/10.1007/BF02978815

  69. Potting J, Hauschild M (2005) Background for spatial differentiation in LCA impact assessment - The EDIP2003 methodology., Environmental News, vol 80. Danish Ministry of the Environment. Environmental Protection Agency, Copenhagen. https://www2.mst.dk/Udgiv/publications/2005/87-7614-581-6/pdf/87-7614-582-4.pdf. Environmental Project No. 996 2005

  70. Rosenbaum RK, Margni M, Jolliet O (2007) A flexible matrix algebra framework for the multimedia multipathway modeling of emission to impacts. Environ Int 33(5):624–634. https://doi.org/10.1016/j.envint.2007.01.004

  71. Roth IF, Ambs LL (2004) Incorporating externalities into a full cost approach to electric power generation life-cycle costing. Effic Costs Optim Simul Environ Impact Energy Syst 29(12):2125–2144. https://doi.org/10.1016/j.energy.2004.03.016

  72. Sleeswijk AW, van Oers LF, Guinée JB, Struijs J, Huijbregts MA (2008) Normalisation in product life cycle assessment: an LCA of the global and European economic systems in the year 2000. Sci Total Environ 390(1):227–240. https://doi.org/10.1016/j.scitotenv.2007.09.040

  73. Solow RM (1974) Intergenerational equity and exhaustible resources12. Rev Econ Stud 41(5):29–45. https://doi.org/10.2307/2296370

  74. Steen B (1999a) A systematic approach to environmental priority strategies in product development (EPS). Version 2000 - General system characteristics. Tech. Rep. CPM report 1999:4, Centre for Environmental Assessment of Products and Material Systems, Chalmers University of Technology, Sweden. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.552.1248&rep=rep1&type=pdf

  75. Steen B (1999b) A systematic approach to environmental priority strategies in product development (EPS). Version 2000 - Models and data of the default method. Tech. Rep. CPM report 1999:5, Centre for Environmental Assessment of Products and Material Systems, Chalmers University of Technology, Sweden. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.368.6714&rep=rep1&type=pdf

  76. Stern N (2007) The economics of climate change. Cambridge University Press, United Kingdom

    Google Scholar 

  77. Stolz P, Frischknecht R, Wyss F, de Wild-Scholten MJ (2016) PEF screening report of electricity from photovoltaic panels in the context of the EU Product Environmental Footprint Category Rules (PEFCR) Pilots. Tech. rep., Treeze Ltd., Switzerland and SmartGreenScans, Netherlands. http://pvthin.org/wp-content/uploads/2020/05/174_PEFCR_PV_LCA-screening-report_v2.0.pdf

  78. Struijs J, van Dijk A, Slaper H, van Wijnen HJ, Velders GJM, Chaplin G, Huijbregts MAJ (2010) Spatial- and time-explicit human damage modeling of ozone depleting substances in life cycle impact assessment. Environ Sci Technol 44(1):204–209. https://doi.org/10.1021/es9017865. Publisher: American Chemical Society

  79. Swarr TE, Hunkeler D, Klöpffer W, Pesonen HL, Ciroth A, Brent AC, Pagan R (2011) Environmental life-cycle costing: a code of practice. Int J Life Cycle Assess 16(5):389–391. https://doi.org/10.1007/s11367-011-0287-5

  80. Toffoletto L, Bulle C, Godin J, Reid C, Deschênes L (2007) LUCAS—A New LCIA method used for a canadian-specific context. Int J Life Cycle Assess 12(2):93–102. https://doi.org/10.1065/lca2005.12.242

  81. UNEP, Setac, Initiative LC, (2016) Global Guidance for Life Cycle Impact Assessment Indicators (Volume 1). Tech. rep, United Nations Environment Programme

    Google Scholar 

  82. UNEP, Setac, Initiative LC, (2019) Global Guidance for Life Cycle Impact Assessment Indicators (Volume 2). Tech. rep, United Nations Environment Programme

    Google Scholar 

  83. United Nations Environment Programme (2017) Global review of sustainable public procurement 2017. Tech. Rep. Job No: DTI/2113/PA, United Nations Environment Programme. https://wedocs.unep.org/bitstream/handle/20.500.11822/20919/GlobalReview_Sust_Procurement.pdf?sequence=1&isAllowed=y, iSBN 978-92-807-3658-8

  84. United Nations Organization (1992) Report of the united nations conference on environment and development (Earth’s Summit), vol A/CONF.151/26/Rev.l (Vol. I), united nations publication, sales no. e.73.ii.a.14 edn. Rio de Janeiro (Brazil). https://documents-dds-ny.un.org/doc/UNDOC/GEN/N92/836/55/PDF/N9283655.pdf?OpenElement

  85. Wade A, Stolz P, Frischknecht R, Heath G, Sinha P (2018) The Product Environmental Footprint (PEF) of photovoltaic modules-Lessons learned from the environmental footprint pilot phase on the way to a single market for green products in the European Union. Progress Photovoltaics: Res Appl 26(8):553–564. https://doi.org/10.1002/pip.2956. Publisher: John Wiley & Sons Ltd

  86. Wenzel H, Hauschild MZ, Alting L (1997) Environmental assessment of products. Vol 1—Methodology, tools and case studies in product development, 1st edn. Springer US. https://www.springer.com/gp/book/9780412808005

  87. Zamagni A, Pesonen HL, Swarr T (2013) From LCA to life cycle sustainability assessment: concept, practice and future directions. Int J Life Cycle Assess 18(9):1637–1641. https://doi.org/10.1007/s11367-013-0648-3

  88. van Zelm R, Huijbregts MA, Harbers JV, Wintersen A, Struijs J, Posthuma L, van de Meent D (2007) Uncertainty in msPAF-based ecotoxicological effect factors for freshwater ecosystems in life cycle impact assessment. Integr Environ Assess Manag 3(2):203–210. https://doi.org/10.1897/IEAM_2006-013.1. Publisher: John Wiley & Sons Ltd

  89. van Zelm R, Huijbregts MAJ, van Jaarsveld HA, Reinds GJ, de Zwart D, Struijs J, van de Meent D (2007) Time horizon dependent characterization factors for acidification in life-cycle assessment based on forest plant species occurrence in Europe. Environ Sci Technol 41(3):922–927. https://doi.org/10.1021/es061433q. Publisher: American Chemical Society

  90. van Zelm R, Huijbregts MA, den Hollander HA, van Jaarsveld HA, Sauter FJ, Struijs J, van Wijnen HJ, van de Meent D (2008) European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmos Environ 42(3):441–453. https://doi.org/10.1016/j.atmosenv.2007.09.072

  91. van Zelm R, Huijbregts MAJ, Posthuma L, Wintersen A, van de Meent D (2009) Pesticide ecotoxicological effect factors and their uncertainties for freshwater ecosystems. Int J Life Cycle Assess 14(1):43–51. https://doi.org/10.1007/s11367-008-0037-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Urbina .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Urbina, A. (2022). Assessment of Sustainability. In: Sustainable Solar Electricity. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-91771-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91771-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91770-8

  • Online ISBN: 978-3-030-91771-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation