Energy Recovery from Fat, Oil and Grease (FOG)

  • Chapter
  • First Online:
Waste-to-Energy

Abstract

The high percentage of fats, oils and grease (FOG) in wastewater discharges from kitchen waste streams is increasing rapidly due to the increasing demand for food and modern lifestyle. Direct discharge of FOG into sewer system results in many environmental and technical problems. It is energy-rich waste, while effective management is required to recover its energy. FOG collection from wastewater lines prior to discharge into the sewer networks is essential, and further conversion into biofuel could generate additional revenue. Therefore, recent research is focusing on different routes of FOG conversion into usable biofuel. Deep energetic and environmental analysis of FOG conversion into bioenergy concluded that FOG conversion is a very promising route for various biofuel production. This chapter presents an overview of engineered challenges related to various technologies used for energy recovery from FOG wastes and biofuel production. The different routes of biofuels production (e.g., biohydrogen, biomethane and biodiesel) through new integrated routes for sustainable biofuel industry are evaluated. Herein, this chapter provides a successive high throughput of the full conversion of FOG wastes into biofuel toward a zero-waste system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abomohra A, Eladel H, El-Esawi M, Wang S, Wang Q, He Z, Feng Y, Shang H, Hanelt D (2018) Effect of lipid-free microalgal biomass and waste glycerol on growth and lipid production of Scenedesmus obliquus: innovative waste recycling for extraordinary lipid production. Bioresour Technol 249:992–999

    Article  CAS  Google Scholar 

  • Abomohra AE-F, Almutairi AW (2020) A close-loop integrated approach for microalgae cultivation and efficient utilization of agar-free seaweed residues for enhanced biofuel recovery. Bioresour Technol, 124027

    Google Scholar 

  • Abomohra AE-F, Elsayed M, Esakkimuthu S, El-Sheekh M, Hanelt D (2020) Potential of fat, oil and grease (FOG) for biodiesel production: a critical review on the recent progress and future perspectives. Prog. Energy Combust. Sci. 81:100868

    Google Scholar 

  • Agabo-García C, Solera R, Pérez M (2020) First approaches to valorizate fat, oil and grease (FOG) as anaerobic co-substrate with slaughterhouse wastewater: biomethane potential, settling capacity and microbial dynamics. Chemosphere 259:127474. https://doi.org/10.1016/j.chemosphere.2020.127474

    Article  CAS  Google Scholar 

  • Ahmad A, Ghufran R, Wahid ZA (2011) Bioenergy from anaerobic degradation of lipids in palm oil mill effluent. Rev Environ Sci Biotechnol 10:353–376. https://doi.org/10.1007/s11157-011-9253-8

    Article  CAS  Google Scholar 

  • Ali M, Danial A, Tawfik A (2017) Self-dark fermentation of lipids rich wastewater for 2-biofuels (H2 and Et-OH) production. Process Saf Environ Prot 109:257–267. https://doi.org/10.1016/j.psep.2017.04.007

    Article  CAS  Google Scholar 

  • Alqaralleh RM, Kennedy K, Delatolla R (2019) Microwave vs. alkaline-microwave pretreatment for enhancing thickened waste activated sludge and fat, oil, and grease solubilization, degradation and biogas production. J Environ Manage 233:378–392. https://doi.org/10.1016/j.jenvman.2018.12.046

    Article  CAS  Google Scholar 

  • Alqaralleh RM, Kennedy K, Delatolla R (2018) Improving biogas production from anaerobic co-digestion of Thickened Waste Activated Sludge (TWAS) and fat, oil and grease (FOG) using a dual-stage hyper-thermophilic/thermophilic semi-continuous reactor. J Environ Manage 217:416–428

    Article  CAS  Google Scholar 

  • Alqaralleh RM, Kennedy K, Delatolla R, Sartaj M (2016) Thermophilic and hyper-thermophilic co-digestion of waste activated sludge and fat, oil and grease: evaluating and modeling methane production. J Environ Manage 183:551–561. https://doi.org/10.1016/j.jenvman.2016.09.003

    Article  CAS  Google Scholar 

  • Alves MM, Mota Vieira JA, Alvares Pereira RM, Pereira MA, Mota M (2001) Effect of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part I: Biofilm growth and activity. Water Res 35:255–263. https://doi.org/10.1016/S0043-1354(00)00241-4

    Article  CAS  Google Scholar 

  • Alves MM, Pereira MA, Sousa DZ, Cavaleiro AJ, Picavet M, Smidt H, Stams AJM (2009) Waste lipids to energy: how to optimize methane production from long-chain fatty acids (LCFA). Microb Biotechnol 2:538–550. https://doi.org/10.1111/j.1751-7915.2009.00100.x

    Article  CAS  Google Scholar 

  • Anderson BE (2014) Tech topics glycerolysis for lowering free fatty acid levels. Superior Process Technol: Render Mag, 34–35

    Google Scholar 

  • Angelidaki I, Ahring BK (1995) Establishment and characterization of an anaerobic thermophilic (55 ℃) enrichment culture degrading long-chain fatty acids. Appl Environ Microbiol 61:2442–2445

    Article  CAS  Google Scholar 

  • Arora AS, Nawaz A, Qyyum MA, Ismail S, Aslam M, Tawfik A, Yun CM, Lee M (2021) Energy saving anammox technology-based nitrogen removal and bioenergy recovery from wastewater: inhibition mechanisms, state-of-the-art control strategies, and prospects. Renew Sustain Energy Rev 135.https://doi.org/10.1016/j.rser.2020.110126

  • Badoei-dalfard A, Malekabadi S, Karami Z, Sargazi G (2019) Magnetic cross-linked enzyme aggregates of Km12 lipase: a stable nanobiocatalyst for biodiesel synthesis from waste cooking oil. Renew Energy 141:874–882

    Article  CAS  Google Scholar 

  • Battimelli A, Torrijos M, Moletta R, Delgenès JP (2010) Slaughterhouse fatty waste saponification to increase biogas yield. Bioresour Technol 101:3388–3393. https://doi.org/10.1016/j.biortech.2009.12.043

    Article  CAS  Google Scholar 

  • Canakci M (2007) The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour Technol 98:183–190. https://doi.org/10.1016/j.biortech.2005.11.022

    Article  CAS  Google Scholar 

  • Canakci M, Van Gerpen J (1999) Biodiesel production viaacid catalysis. Trans ASAE 42:1203

    Article  CAS  Google Scholar 

  • Charuwat P, Boardman G, Bott C, Novak JT (2018) Thermal degradation of long chain fatty acids. Water Environ Res 90:278–287

    Google Scholar 

  • Cirne DG, Paloumet X, Björnsson L, Alves MM, Mattiasson B (2007) Anaerobic digestion of lipid-rich waste-Effects of lipid concentration. Renew Energy 32:965–975. https://doi.org/10.1016/j.renene.2006.04.003

    Article  CAS  Google Scholar 

  • Costa ET, Almeida MF, Dias JM, Matos A (2015) Glycerolysis of two high free fatty acid waste materials for biodiesel production. In: WASTES 2015—Solutions, treatments and opportunities: selected papers from the 3rd edition of the international conference on wastes: solutions, treatments and opportunities, Viana Do Castelo, Portugal, 14–16 Sept 2015. CRC Press, p 55

    Google Scholar 

  • Deaver JA, Diviesti KI, Soni MN, Campbell BJ, Finneran KT, Popat SC (2020) Palmitic acid accumulation limits methane production in anaerobic co-digestion of fats, oils and grease with municipal wastewater sludge. Chem Eng J 396:125235. https://doi.org/10.1016/j.cej.2020.125235

    Article  CAS  Google Scholar 

  • Del Mundo DMN, Sutheerawattananonda M (2017) Influence of fat and oil type on the yield, physico-chemical properties, and microstructure of fat, oil, and grease (FOG) deposits. Water Res 124:308–319

    Article  Google Scholar 

  • Eladel H, Abomohra AE-F, Battah M, Mohmmed S, Radwan A, Abdelrahim H (2019) Evaluation of Chlorella sorokiniana isolated from local municipal wastewater for dual application in nutrient removal and biodiesel production. Bioprocess Biosyst Eng 42:425–433

    Article  CAS  Google Scholar 

  • Elreedy A, Tawfik A, Kubota K, Shimada Y, Harada H (2015) Hythane (H2 + CH4) production from petrochemical wastewater containing mono-ethylene glycol via stepped anaerobic baffled reactor. Int Biodeterior Biodegradation 105:252–261. https://doi.org/10.1016/j.ibiod.2015.09.015

    Article  CAS  Google Scholar 

  • Elsayed M, Abomohra AEF, Ai P, ** K, Fan Q, Zhang Y (2019) Acetogenesis and methanogenesis liquid digestates for pretreatment of rice straw: a holistic approach for efficient biomethane production and nutrient recycling. Energy Convers Manag 195:447–456. https://doi.org/10.1016/j.enconman.2019.05.011

    Article  CAS  Google Scholar 

  • Elsayed M, Ran Y, Ai P, Azab M, Mansour A, ** K, Zhang Y, Abomohra AE-F (2020) Innovative integrated approach of biofuel production from agricultural wastes by anaerobic digestion and black soldier fly larvae. J Clean Prod 263:121495. https://doi.org/10.1016/j.jclepro.2020.121495

    Article  CAS  Google Scholar 

  • Elsheikh MA, Saleh HI, Rashwan IM, El-samadoni MM (2013) Hydraulic modelling of water supply distribution for improving its quantity and quality. Sustain Environ Resour 23:403–411

    Google Scholar 

  • Farghaly A, Elsamadony M, Ookawara S, Tawfik A (2017) Bioethanol production from paperboard mill sludge using acid-catalyzed bio-derived choline acetate ionic liquid pretreatment followed by fermentation process. Energy Convers Manag 145.https://doi.org/10.1016/j.enconman.2017.05.004

  • Felizardo P, Machado J, Vergueiro D, Correia MJN, Pereira J (2011) Study on the glycerolysis reaction of high free fatty acid oils for use as biodiesel feedstock Fatty acid. Fuel Process Technol 92:1225–1229. https://doi.org/10.1016/j.fuproc.2011.01.020

    Article  CAS  Google Scholar 

  • Fountoulakis MS, Drakopoulou S, Terzakis S, Georgaki E, Manios T (2008) Potential for methane production from typical Mediterranean agro-industrial by-products. Biomass Bioenerg 32:155–161. https://doi.org/10.1016/j.biombioe.2007.09.002

    Article  CAS  Google Scholar 

  • Gardy J, Hassanpour A, Lai X, Ahmed MH (2016) Synthesis of Ti(SO4)O solid acid nano-catalyst and its application for biodiesel production from used cooking oil. Appl Catal A Gen 527:81–95. https://doi.org/10.1016/j.apcata.2016.08.031

    Article  CAS  Google Scholar 

  • Ghoreishi SM, Moein P (2013) Biodiesel synthesis from waste vegetable oil via transesterification reaction in supercritical methanol. J Supercrit Fluids 76:24–31. https://doi.org/10.1016/j.supflu.2013.01.011

    Article  CAS  Google Scholar 

  • Gross MA, Jensen JL, Gracz HS, Dancer J, Keener KM (2017) Evaluation of physical and chemical properties and their interactions in fat, oil, and grease (FOG) deposits. Water Res 123:173–182. https://doi.org/10.1016/j.watres.2017.06.072

    Article  CAS  Google Scholar 

  • Grosser A, Neczaj E (2016) Enhancement of biogas production from sewage sludge by addition of grease trap sludge. Energy Convers Manag 125:301–308. https://doi.org/10.1016/j.enconman.2016.05.089

    Article  CAS  Google Scholar 

  • Hagos K, Zong J, Li D, Liu C, Lu X (2017) Anaerobic co-digestion process for biogas production: progress, challenges and perspectives. Renew Sustain Energy Rev 76:1485–1496

    Article  CAS  Google Scholar 

  • Hanaki K, Matsuo T, Nagase M (1981) Mechanism of inhibition caused by long-chain fatty acids in anaerobic digestion process. Biotechnol Bioeng 23:1591–1610. https://doi.org/10.1002/bit.260230717

    Article  CAS  Google Scholar 

  • Hao J, de los Reyes FL, He X (2020) Fat, oil, and grease (FOG) deposits yield higher methane than FOG in anaerobic co-digestion with waste activated sludge. J Environ Manage 268:110708. https://doi.org/10.1016/j.jenvman.2020.110708

  • Hasuntree P, Toomthong V, Yoschoch S, Thawornchaisit U (2011) The potential of restaurant trap grease as biodiesel feedstock. Songklanakarin J Sci Technol 33:525–530

    CAS  Google Scholar 

  • He X, de los Reyes FL, Ducoste JJ (2017) A critical review of fat, oil, and grease (FOG) in sewer collection systems: challenges and control. Crit Rev Environ Sci Technol 47:1191–1217.https://doi.org/10.1080/10643389.2017.1382282

  • He X, de los Reyes FL, Leming ML, Dean LO, Lappi SE, Ducoste JJ (2013) Mechanisms of fat, oil and grease (FOG) deposit formation in sewer lines. Water Res 47:4451–4459.https://doi.org/10.1016/j.watres.2013.05.002

  • He X, Iasmin M, Dean LO, Lappi SE, Ducoste JJ, de los Reyes FL (2011) Evidence for Fat, oil, and grease (FOG) deposit formation mechanisms in sewer lines. Environ Sci Technol 45:4385–4391.https://doi.org/10.1021/es2001997

  • Husain IAF, Alkhatib F, Jammi MS (2014) Problems, control, and treatment of fat, oil, and grease (FOG): a review. J Oleo Sci. https://doi.org/10.5650/jos.ess13182

  • Jeganathan J, Nakhla G, Bassi A (2006) Long-term performance of high-rate anaerobic reactors for the treatment of oily wastewater. Environ Sci Technol 40:6466–6472

    Article  CAS  Google Scholar 

  • Kabouris JC, Tezel U, Pavlostathis SG, Engelmann M, Dulaney J, Gillette RA, Todd AC (2009) Methane recovery from the anaerobic codigestion of municipal sludge and FOG. Bioresour Technol 100:3701–3705. https://doi.org/10.1016/j.biortech.2009.02.024

    Article  CAS  Google Scholar 

  • Kabouris JC, Tezel U, Pavlostathis SG, Engelmann M, Todd AC, Gillette RA (2008) The anaerobic biodegradability of municipal sludge and fat, oil, and grease at mesophilic conditions. Water Environ Res 80:212–221. https://doi.org/10.2175/106143007x220699

    Article  CAS  Google Scholar 

  • Kim S-H, Shin H-S (2010) Enhanced lipid degradation in an upflow anaerobic sludge blanket reactor by integration with an acidogenic reactor. Water Environ Res 82:267–272. https://doi.org/10.2175/106143009x442899

    Article  CAS  Google Scholar 

  • Kobayashi T, Kuramochi H, Maeda K, Tsuji T, Xu K (2014) Dual-fuel production from restaurant grease trap waste: bio-fuel oil extraction and anaerobic methane production from the post-extracted residue. Bioresour Technol 169:134–142

    Article  CAS  Google Scholar 

  • Kurade MB, Saha S, Salama ES, Patil SM, Govindwar SP, Jeon BH (2019) Acetoclastic methanogenesis led by Methanosarcina in anaerobic co-digestion of fats, oil and grease for enhanced production of methane. Bioresour Technol 272:351–359. https://doi.org/10.1016/j.biortech.2018.10.047

    Article  CAS  Google Scholar 

  • Li C, Champagne P, Anderson BC (2013) Biogas production performance of mesophilic and thermophilic anaerobic co-digestion with fat, oil, and grease in semi-continuous flow digesters: effects of temperature, hydraulic retention time, and organic loading rate. Environ Technol (United Kingdom) 34:2125–2133. https://doi.org/10.1080/09593330.2013.824010

    Article  CAS  Google Scholar 

  • Long JH, Aziz TN, Francis L III, Ducoste JJ (2012) Anaerobic co-digestion of fat, oil, and grease (FOG): a review of gas production and process limitations. Process Saf Environ Prot 90:231–245

    Article  CAS  Google Scholar 

  • Mostafa A, Elsamadony M, El-Dissouky A, Elhusseiny A, Tawfik A (2017) Biological H2 potential harvested from complex gelatinaceous wastewater via attached versus suspended growth culture anaerobes. Bioresour Technol 231.https://doi.org/10.1016/j.biortech.2017.01.062

  • Mahmoud N, Zeeman G, Gijzen H, Lettinga G (2004) Anaerobic stabilization and conversion of biopolymers in primary sludge. Effect of temperature and sludge residence time. Water Res 38:983–991

    Google Scholar 

  • Palatsi J, Laureni M, Andrés MV, Flotats X, Nielsen HB, Angelidaki I (2009) Strategies for recovering inhibition caused by long chain fatty acids on anaerobic thermophilic biogas reactors. Bioresour Technol 100:4588–4596

    Article  CAS  Google Scholar 

  • Park S, Li Y (2012) Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresour Technol 111:42–48

    Article  CAS  Google Scholar 

  • Plante L, Sheehan NP, Bier P, Murray K, Quell K, Ouellette C, Martinez E (2019) Bioenergy from biofuel residues and waste. Water Environ Res 91:1199–1204. https://doi.org/10.1002/wer.1214

    Article  CAS  Google Scholar 

  • Saka S, Kusdiana D (2001) Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80:225–231

    Article  CAS  Google Scholar 

  • Salama E-S, Saha S, Kurade MB, Dev S, Chang SW, Jeon B-H (2019) Recent trends in anaerobic co-digestion: fat, oil, and grease (FOG) for enhanced biomethanation. Prog Energy Combust Sci 70:22–42

    Article  Google Scholar 

  • Salama ES, Jeon BH, Kurade MB, Patil SM, Usman M, Li X, Lim H (2020) Enhanced anaerobic co-digestion of fat, oil, and grease by calcium addition: boost of biomethane production and microbial community shift. Bioresour Technol 296:122353. https://doi.org/10.1016/j.biortech.2019.122353

    Article  CAS  Google Scholar 

  • Siddique T, Penner T, Semple K, Foght JM (2011) Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings. Environ Sci Technol 45:5892–5899. https://doi.org/10.1021/es200649t

    Article  CAS  Google Scholar 

  • Silva SA, Cavaleiro AJ, Pereira MA, Stams AJM, Alves MM, Sousa DZ (2014) Long-term acclimation of anaerobic sludges for high-rate methanogenesis from LCFA. Biomass Bioenerg 67:297–303. https://doi.org/10.1016/j.biombioe.2014.05.012

    Article  CAS  Google Scholar 

  • Silvestre G, Illa J, Fernández B, Bonmatí A (2014) Thermophilic anaerobic co-digestion of sewage sludge with grease waste: effect of long chain fatty acids in the methane yield and its dewatering properties. Appl Energy 117:87–94. https://doi.org/10.1016/j.apenergy.2013.11.075

    Article  CAS  Google Scholar 

  • Silvestre G, Rodríguez-Abalde A, Fernández B, Flotats X, Bonmatí A (2011) Biomass adaptation over anaerobic co-digestion of sewage sludge and trapped grease waste. Bioresour Technol 102:6830–6836. https://doi.org/10.1016/j.biortech.2011.04.019

    Article  CAS  Google Scholar 

  • Sincero AP, Sincero GA (2002) Physical-chemical treatment of water and wastewater. CRC Press

    Book  Google Scholar 

  • Solé-Bundó M, Garfí M, Ferrer I (2020) Pretreatment and co-digestion of microalgae, sludge and fat oil and grease (FOG) from microalgae-based wastewater treatment plants. Bioresour Technol 298:122563

    Google Scholar 

  • Suwannakarn K, Lotero E, Ngaosuwan K, Goodwin JG (2009) Simultaneous free fatty acid esterification and triglyceride transesterification using a solid acid catalyst with in situ removal of water and unreacted methanol. Ind Eng Chem Res, 2810–2818

    Google Scholar 

  • Tabatabaei M, Aghbashlo M, Dehhaghi M, Panahi HKS, Mollahosseini A, Hosseini M, Soufiyan MM (2019) Reactor technologies for biodiesel production and processing: a review. Prog Energy Combust Sci 74:239–303

    Article  Google Scholar 

  • Tawfik A, Elsamadony M (2018) Development of dry anaerobic technologies of bio-waste and unlock the barriers for valorization. Optim Appl Bioprocesses. https://doi.org/10.1007/978-981-10-6863-8_13

    Article  Google Scholar 

  • Tu Q (2015) Fats, oils and greases to biodiesel: technology development and sustainability assessment. University of Cincinnati. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1448037796

  • Tu Q, Lu M, Knothe G (2017) Glycerolysis with crude glycerin as an alternative pretreatment for biodiesel production from grease trap waste: parametric study and energy analysis. J Clean Prod 162:504–511

    Article  CAS  Google Scholar 

  • Tu Q, Mcdonnell BE (2016) Monte Carlo analysis of life cycle energy consumption and greenhouse gas (GHG) emission for biodiesel production from trap grease. J Clean Prod 112:2674–2683. https://doi.org/10.1016/j.jclepro.2015.10.028

    Article  CAS  Google Scholar 

  • Usseglio M, Salvadori V, Siri G (2019) Advanced modeling of vegetable oils steam strip** with structured packing columns. Comput Chem Eng 121:654–669. https://doi.org/10.1016/j.compchemeng.2018.12.007

    Article  CAS  Google Scholar 

  • Venturin B, Frumi Camargo A, Scapini T, Mulinari J, Bonatto C, Bazoti S, Pereira Siqueira D, Maria Colla L, Alves SL, Paulo Bender J, Luís Radis Steinmetz R, Kunz A, Fongaro G, Treichel H (2018) Effect of pretreatments on corn stalk chemical properties for biogas production purposes. Bioresour Technol 266:116–124. https://doi.org/10.1016/j.biortech.2018.06.069

  • Wang M, Sahu AK, Rusten B, Park C (2013) Anaerobic co-digestion of microalgae Chlorella sp. and waste activated sludge. Bioresour Technol 142:585–590

    Article  CAS  Google Scholar 

  • Williams JB, Clarkson C, Mant C, Drinkwater A, May E (2012) Fat, oil and grease deposits in sewers: characterisation of deposits and formation mechanisms. Water Res 46:6319–6328

    Article  CAS  Google Scholar 

  • Xu S, Elsayed M, Ismail GA, Li C, Wang S, Abomohra AE-F (2019) Evaluation of bioethanol and biodiesel production from Scenedesmus obliquus grown in biodiesel waste glycerol: a sequential integrated route for enhanced energy recovery. Energy Convers Manag 197:111907. https://doi.org/10.1016/j.enconman.2019.111907

    Article  CAS  Google Scholar 

  • Yang ZH, Xu R, Zheng Y, Chen T, Zhao LJ, Li M (2016) Characterization of extracellular polymeric substances and microbial diversity in anaerobic co-digestion reactor treated sewage sludge with fat, oil, grease. Bioresour Technol 212:164–173. https://doi.org/10.1016/j.biortech.2016.04.046

    Article  CAS  Google Scholar 

  • Ziels RM, Karlsson A, Beck DAC, Ejlertsson J, Yekta SS, Bjorn A, Stensel HD, Svensson BH (2016) Microbial community adaptation influences long-chain fatty acid conversion during anaerobic codigestion of fats, oils, and grease with municipal sludge. Water Res 103:372–382. https://doi.org/10.1016/j.watres.2016.07.043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The second author is very grateful to the Science, Technology & Innovation Funding Authority (STIFA) for funding this research under the grant of basic science (ID: 26271) and pollution control (ID: 41591), Academy of Scientific Research and Technology (ASRT) under the call no. 2/2019/ASRT-Nexus), Imhotep project for partially financially support the research and the National Research Centre for partially supporting the research (Project ID: 12030202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdy Elsayed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elsayed, M., Tawfik, A., Abomohra, A.EF. (2022). Energy Recovery from Fat, Oil and Grease (FOG). In: Abomohra, A.EF., Wang, Q., Huang, J. (eds) Waste-to-Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-91570-4_10

Download citation

Publish with us

Policies and ethics

Navigation