Chemical Composition of Oil and Cake of Brassica juncea: Implications on Human and Animal Health

  • Chapter
  • First Online:
The Brassica juncea Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Oilseed Brassicas have become the third important edible oilseed crop next to soybean and palm in the world. The four main Brassica oilseed species, B. napus, B. rapa, B. juncea and B. carinata are widely cultivated for oil, condiment and vegetable purposes. B. juncea (L.) Czern, commonly referred to as Indian mustard is a major oilseed crop in South Asia, while B. napus and B. rapa are popular in Europe, Canada and Australia. Oil extracted from B. juncea using expeller/kachi ghani has always been favored as cooking oil in India due to its interesting chemical properties. Its oil is a perfect blend of saturated and unsaturated fatty acids along with bioactive components such as phytosterols and tocopherols. The meal or cake left after oil extraction from mustard seeds is rich in minerals, vitamins and high-quality proteins. Despite its nutritional richness, oil and meal of the traditional B. juncea varieties are considered inferior in quality as they contain a very high amount of undesirable long-chain fatty acids, namely erucic acid (C22:1) (40–57%) in oil and deleterious glucosinolates (GLSs) (50–120 µ moles/g) in seed meal. Intake of high erucic acid has been associated with cardiac injury in cattle and experimental rodents, whereas the presence of a high concentration of GLSs with goitrogenic effects limits the use of mustard meal to ruminants only. Based on animal trials, a statutory limit of < 2% erucic acid in oil and < 30 μmoles/g of GLSs in a meal has been set by many countries, initially for rapeseed varieties which have been registered under the trade name of ‘canola’ or ‘00’ quality and is also being implemented for mustard. The quantitative reduction of erucic acid is balanced by the increase in desirable oleic and linoleic acid in the mustard oil. In India, since 90% of the area under rapeseed-mustard is planted with B. juncea varieties, improvement of its oil and meal quality is of prime importance and hence, led to the development of canola or ‘00’ quality B. juncea varieties which have been fairly successful and can be considered excellent for food and feed purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abul-Fadl MM, El-Badry N, Ammar MS (2011) Nutritional and chemical evaluation for two different varieties of mustard seeds. World Appl Sci J 15(9):1225–1233

    CAS  Google Scholar 

  • Ahlin KA, Emanuelson M, Wiktorson H (1994) Rapeseed products from double-low cultivars as feed for dairy cows: effects of long-term feeding on thyroid function, fertility and animal health. Acta Veter Scand 35(1):37–53

    Article  CAS  Google Scholar 

  • Akhatar J, Singh MP, Sharma A, Kaur H, Kaur N, Sharma S, Bharti B, Sardana VK, Banga S (2020) Association map** of seed quality traits under varying conditions of nitrogen application in Brassica juncea L. Czern. & Coss. Front Genet 11:744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Jasass FM, Al-Jasser MS (2012) Chemical composition and fatty acid content of some spices and herbs under Saudi Arabia conditions. Sci World J, 859892

    Google Scholar 

  • Aluko RE, McIntosh T, Katepa MF (2005) Comparative study of the polypeptide profiles and functional properties of Sinapis alba and Brassica juncea seed meals and protein concentrates. J Sci Food Agri 85(11):1931–1937

    Article  CAS  Google Scholar 

  • Amar S, Becker HC, Möllers C (2008) Genetic variation and genotype× environment interactions of phytosterol content in three doubled haploid populations of winter rapeseed. Crop Sci 48(3):1000–1006

    Article  Google Scholar 

  • Amarowicz R (2007) Tannins: the new natural antioxidants. Eur J Lipid Sci Technol 109:549–551

    Article  CAS  Google Scholar 

  • Amarowicz R, Naczk M, Shahidi F (2000) Antioxidant activity of crude tannins of canola and rapeseed hulls. J Amer Oil Chem Soc 77(9):957–961

    Article  CAS  Google Scholar 

  • Ambriz-Perez DL, Leyva-Lopez N, Gutierrez-Grijalva EP, Heredia JB (2016) Phenolic compounds: natural alternative in inflammation treatment. A review. Cogent Food Agri 2:1131412

    Google Scholar 

  • Appelqvist LAD, Kornfeld AK, Wennerholm JE (1981) Sterols and steryl esters in some Brassica and Sinapis seeds. Phytochemistry 20(2):207–210

    Article  CAS  Google Scholar 

  • Arora R, Kumar R, Mahajan J, Vig AP, Singh B, Singh B, Arora S (2016) 3-Butenyl isothiocyanate: a hydrolytic product of glucosinolate as a potential cytotoxic agent against human cancer cell lines. J Food Sci Technol 53:3437–3445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augustine R, Bisht N (2016) Biofortification of oilseed Brassica juncea with the anti-cancer compound glucoraphanin by suppressing GSL-ALK gene family. Sci Rep 5:18005

    Article  CAS  Google Scholar 

  • Awogbemi O, Onuh EI, Inambao FL (2019) Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. Int J Low Carbon Technol 14(3):417–425

    Article  CAS  Google Scholar 

  • Bala M, Kumar S, Singh L (2011) Antioxidant potential of rapeseed–mustard seed meal extracts. Indian J Agric Biochem 24(1):55–59

    CAS  Google Scholar 

  • Bala M, Singh M (2013) Non-destructive estimation of total phenol and crude fiber content in intact seeds of rapeseed–mustard using FTNIR. Ind Crops Prod 42:357–362

    Article  CAS  Google Scholar 

  • Bala M, Tushir S, Tyagi SK, Gupta RK (2015) Antinutrients in oilseed brassica: uses and potential applications. Anim Nutr Technol 15(2):295–310

    Article  Google Scholar 

  • Barba FA, Nikmaram N, Roohinejad S, Khelfa A, Zhu Z, Koubaa M (2016) Bioavailability of glucosinolates and their breakdown products: impact of processing. Front Nutr 3:1–12

    Article  CAS  Google Scholar 

  • Bassan P, Bhushan S, Kaur T, Arora R, Arora S, Vig AP (2018) Extraction, profiling and bioactivity analysis of volatile glucosinolates present in oil extract of Brassica juncea var. Raya. Physiol Mol Biol Plants 24:399–409

    Article  CAS  PubMed  Google Scholar 

  • Bell JM (1993) Factors affecting the nutritional value of canola meal: a review. Can J Anim Sci 73(4):689–697

    Article  Google Scholar 

  • Bell JM (1995) Meal and by-product utilization in animal nutrition. In: Kimber DS, McGregor DI (eds) Brassica oilseeds: production and utilization. Cab International, Wallingford, Oxford, UK, pp 301–337

    Google Scholar 

  • Bell JM, Keith MO (1991) A survey of variation in the chemical composition of commercial canola meal produced in Western Canadian crushing plants. Can J Anim Sci 71(2):469–480

    Article  Google Scholar 

  • Bergmuller E, Porfirova S, Dormann P (2003) Characterization of an Arabidopsis mutant deficient in γ-tocopherol methyltransferase. Plant Mol Biol 52(6):1181–1190

    Article  PubMed  Google Scholar 

  • Bhattacharya A, Tang L, Li Y, Geng F, Paonessa JD, Chen SC, Zhang Y (2010) Inhibition of bladder cancer development by allyl isothiocyanate. Carcinog 31:281–286

    Article  CAS  Google Scholar 

  • Blažević I, Dulovic A, Maravic A, CikesCulic V, Montaut S, Rollin P (2019) Antimicrobial and cytotoxic activities of Lepidium latifolium L. Hydrodistillate, extract and its major sulfur volatile allyl isothiocyanate. Chem Biodivers 16:1800661

    Google Scholar 

  • Blažević I, Montaut S, Burcul F, Olsen CE, Burow M, Rollin P, Agerbirk N (2020) Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry 169:112100

    Google Scholar 

  • Booth EJ (2004) Extraction and refining. In: Gunstone E (ed) Rapeseed and canola oil: production, processing, properties and uses. Blackwell, Oxford, UK, pp 17–36

    Google Scholar 

  • Broz J, Ward NE (2007) The role of vitamins and feed enzymes in combating metabolic challenges and disorders. J Appl Poult Res 16(1):150–159

    Article  CAS  Google Scholar 

  • Burel C, Boujard T, Kaushik SJ, Boeuf G, Mol KA, Geyten SV, Darras VM, Kuhn ER, Predet-Balade B, Querat B, Quinsac A, Krouti M, Ribaillier D (2001) Effects of rapeseed meal-glucosinolates on thyroid metabolism and feed utilization in rainbow trout. Gen Comp Endocrinol 124:343–358

    Article  CAS  PubMed  Google Scholar 

  • Cabral CE, Klein MRST (2017) Phytosterols in the treatment of hypercholesterolemia and prevention of cardiovascular diseases. Arq Bras Cardiol 109(5):475–482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cartea ME, Velasco P (2008) Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochem Rev 7:213–229

    Article  CAS  Google Scholar 

  • Chadni M, Flourat AL, Reungoat V, Mouterde LM, Allais F, Ioannou I (2021) Selective extraction of sinapic acid derivatives from mustard seed meal by acting on pH: toward a high antioxidant activity rich extract. Molecules 26(1):212

    Article  CAS  PubMed Central  Google Scholar 

  • Chalas J, Claise C, Edeas M, Messaoudi C, Vergnes L, Abella A, Lindenbaum A (2001) Effect of ethyl esterification of phenolic acids on low density lipoprotein oxidation. Biomed Pharmacother 55:54–60

    Article  CAS  PubMed  Google Scholar 

  • Chand S, Patidar OP, Chaudhary R, Saroj R, Chandra K, Meena VK, Limbalkar OM, Patel MK, Pardeshi PP, Vasisth P (2021) Rapeseed-mustard breeding in India: Scenario, achievements and research needs. In: Brassica breeding and biotechnology. IntechOpen

    Google Scholar 

  • Charlton KM, Corner AH, Davey K, Kramer JK, Mahadevan S, Sauer FD (1975) Cardiac lesions in rats fed rapeseed oils. Can J Comp Med 39(3):261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan JS, Kumar S (2011) Assessment of oil and seed meal quality parameters of rapeseed–mustard group of crops. Indian J Agric Sci 81:140–144

    CAS  Google Scholar 

  • Chauhan JS, Singh M, Bhadauria VPS, Kumar A (2007) Genetic analysis of glucosinolate content in Indian mustard (Brassica juncea L.). In: Proceedings of the 12th international rapeseed congress. Science Press USA Inc., Wuhan, China, pp 167–169

    Google Scholar 

  • Chauhan JS, Tyagi MK, Kumar PR, Tyagi P, Singh M, Kumar S (2002) Breeding for oil and seed meal quality in rapeseed-mustard in India—a review. Agric Rev 23(2):71–92

    Google Scholar 

  • Chhokar V, Beniwal V, Kumar A, Rana JS (2008) Lipid content and fatty acid composition of mustard (Brassica juncea L.) during seed development. Asian J Exp Chem 3(1–2):6–9

    Google Scholar 

  • Chowdhury MK, Tacon AG, Bureau DP (2012) Digestibility of amino acids in Indian mustard protein concentrate and Indian mustard meal compared to that of a soy protein concentrate in rainbow trout and Atlantic salmon. Aquaculture 356:128–134

    Article  CAS  Google Scholar 

  • Cilly VK, Lodhi GN, Ichhponani JS (1978) Nutritive value of mustard cake derived from seeds of different genetic make up for growing chicks. J Agric Sci 91(3):543–550

    Article  CAS  Google Scholar 

  • Clarke DB (2010) Glucosinolates, structures and analysis in food. Anal Methods 2:310–325

    Article  CAS  Google Scholar 

  • Clemente I, Aznar M, Nerín C (2019) Synergistic properties of mustard and cinnamon essential oils for the inactivation of foodborne mouldsin vitro and on Spanish bread. Int J Food Microbiol 298:44–50

    Article  CAS  PubMed  Google Scholar 

  • Clemente I, Aznar M, Silva F, Nerín C (2016) Antimicrobial properties and mode of action of mustard and cinnamon essential oils and their combination against foodborne bacteria. Innov Food Sci Emerg Technol 36:26–33

    Article  CAS  Google Scholar 

  • Conti V, Izzo V, Corbi G, Russomanno G, Manzo V, De Lise F, Di Donato A, Filippelli A (2016) Antioxidant supplementation in the treatment of aging-associated diseases. Front Pharmacol 7:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daghir NJ, Mian NA (1976) Mustard seed meal as a protein source for chickens. Poult Sci J 55(5):1699–1703

    Article  CAS  Google Scholar 

  • Dang J, Yan W, Bock C, Nokhrina K, Keller W, Georges F (2013) Perturbing the metabolic dynamics of myo-inositol in develo** Brassica napus seeds through in vivo methylation impacts its utilization as phytate precursor and affects downstream metabolic pathways. BMC Plant Biol 13:84

    Article  CAS  Google Scholar 

  • Das R, Bhattacherjee C, Ghosh S (2009) Preparation of mustard (Brassica juncea L.) Protein isolate and recovery of phenolic compounds by ultrafiltration. Ind Eng Chem Res 48:4939–4947

    Article  CAS  Google Scholar 

  • De Groef B, Decallonne BR, Geyten SV, Darras VM, Bouillon R (2006) Perchlorate versus other environmental sodium/iodide symporter inhibitors: potential thyroid-related health effects. Eur J Endocrinol 155:17–25

    Article  PubMed  CAS  Google Scholar 

  • Dias C, Aires A, Bennett RN, Rosa EA, Saavedra MJ (2012) First study on antimicriobial activity and synergy between isothiocyanates and antibiotics against selected Gram-negative and Gram-positive pathogenic bacteria from clinical and animal source. Med Chem 8:474–480

    Article  CAS  PubMed  Google Scholar 

  • Dias C, Aires A, Saavedra MJ (2014) Antimicrobial activity of isothiocyanates from cruciferous plants against methicillin-resistant Staphylococcus aureus (MRSA). Int J Mol Sci 15:19552–19561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorni C, Sharma P, Saikia G, Longvah T (2018) Fatty acid profile of edible oils and fats consumed in India. Food Chem 238:9–15

    Article  CAS  PubMed  Google Scholar 

  • Drew M (2004) Canola protein concentrate as a feed ingredient for salmonid fish. In: Cruz Suárez LE, Ricque M, Nieto López MG, Villarreal D, Scholz UY, González M (eds) Advances en Nutritión Acuícola VII, Memorias del VII Simposium Internacional de Nutrición Acuícola. Hermosillo, Sonora, Mexico

    Google Scholar 

  • Dubie J, Stancik A, Morra M, Nindo C (2013) Antioxidant extraction from mustard (Brassica juncea) seed meal using high-intensity ultrasound. J Food Sci 78:542–548

    Article  CAS  Google Scholar 

  • Dufour V, Alazzam B, Ermel G, Thepaut M, Rossero A, Tresse O, Baysse C (2012) Antimicrobial activities of isothiocyanates against Campylobacter jejuni isolates. Front Cell Infect Microbiol 2:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frankel EN (2012) Lipid oxidation, 2nd edn. Elsevier, Oily Press

    Google Scholar 

  • Eifler J, Wick JE, Steingrobe B, Mollers C (2021) Genetic variation of seed phosphorus concentration in winter oilseed rape and development of a NIRS calibration. Euphytica 217:53

    Article  CAS  Google Scholar 

  • Endo J, Arita M (2016) Cardioprotective mechanism of omega-3 polyunsaturated fatty acids. J Cardiol 67(1):22–27

    Article  PubMed  Google Scholar 

  • Engels C, Schieber A, Ganzle MG (2012) Sinapic acid derivatives in defatted oriental mustard (Brassica juncea L.) seed meal extracts using UHPLC-DAD-ESI-MSN and identification of compounds with antibacterial activity. Eur Food Res Technol 234:535–542

    Article  CAS  Google Scholar 

  • Fritsche S, **ngxing W, Li J, Benjamin S, Friedrich J, Kopisch-Obuch JE, Gunhild L, Dreyer F, Friedt W, Meng J, Jung C (2012) A candidate gene-based association study of tocopherol content and composition in rapeseed (Brassica napus). Front Plant Sci 3:129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Fang X, Chen H, Qin Y, Xu F, ** TZ (2017) Physiochemical properties and food application of antimicrobial PLA film. Food Control 73:1522–1531

    Article  CAS  Google Scholar 

  • Gilani GS, Sepehr E (2003) Protein digestibility and quality in products containing antinutritional factors are adversely affected by old age in rats. J Nutr 133(1):220–225

    Article  CAS  PubMed  Google Scholar 

  • Greiner R, Konietzny U (2006) Phytase for food application. Food Technol Biotechnol 44(2):125–140

    CAS  Google Scholar 

  • Grundemann C, Huber R (2018) Chemoprevention with isothiocyanates—from bench to bedside. Cancer Lett 414:26–33

    Article  PubMed  CAS  Google Scholar 

  • Gugliandolo A, Bramanti P, Mazzon E (2017) Role of vitamin E in the treatment of Alzheimer’s disease: evidence from animal models. Int J Mol Sci 18(12):2504

    Article  PubMed Central  CAS  Google Scholar 

  • Gunstone F (2011) Vegetable oils in food technology: composition, properties and uses. Wiley.

    Google Scholar 

  • Hargraves KG, He L, Firestone GL (2016) Phytochemical regulation of the tumor suppressive micro RNA, miR-34a, by p53-dependent and independent responses in human breast cancer cells. Mol Carcinog 55:486–498

    Article  CAS  PubMed  Google Scholar 

  • Horrobin DF (1986) Essential fatty acid and prostaglandin metabolism in Sjögren’s syndrome, systemic sclerosis and rheumatoid arthritis. Scand J Rheumatol Suppl 61:242–245

    CAS  PubMed  Google Scholar 

  • Hossain MK, Dayem AA, Han J, Yin Y, Kim K, Saha SK, Yang GM, Choi HY, Cho SG (2016) Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int J Mol Sci 17:569

    Article  CAS  Google Scholar 

  • Hossain Z, Johnson EN, Wang L, Blackshaw RE, Gan Y (2019) Comparative analysis of oil and protein content and seed yield of five Brassicaceae oilseeds on the Canadian prairie. Ind Crop Prod 136:77–86

    Article  CAS  Google Scholar 

  • ICMR (2010) Nutrient requirements and recommended dietary allowances for Indians: a report of the expert group of the Indian Medical Research. ICMR, New Delhi, India, pp 93–106

    Google Scholar 

  • India Agristat (2020) http://www.indiaagristat.com/table/agriculture-data/2/total-oilseeds/19582/1067842/data.aspx. Dated 24 July 2021

  • Jagannath A, Sodhi YS, Gupta V, Mukhopadhyay A, Arumugam N, Singh I, Pental D (2011) Eliminating expression of erucic acid-encoding loci allows the identification of “hidden” QTL contributing to oil quality fractions and oil content in Brassica juncea (Indian mustard). Theor Appl Genet 122(6):1091–1103

    Article  CAS  PubMed  Google Scholar 

  • Jankowski KJ, Budzyński WS, Klasa A (2014) Concentrations of copper, zinc and manganese in the roots, straw and oil cake of white mustard (Sinapis alba L.) and Indian mustard (Brassica juncea (L.) Czern. et Coss.) depending on sulphur fertilization. Plant Soil Environ 60(8):364–371

    Google Scholar 

  • Jat RS, Singh VV, Sharma P, Rai PK (2019) Oilseed brassica in India: demand, supply, policy perspective and future potential. OCL 26:8

    Article  Google Scholar 

  • Jham GN, Moser BR, Shah SN, Holser RA, Dhingra OD, Vaughn SF, Berhow MA, Winkler-Moser JK, Isbell TA, Holloway RK, Walter EL, Natalino R, Anderson JC, Stelly DM (2009) Wild Brazilian mustard (Brassica juncea L.) seed oil methyl esters as biodiesel fuel. J Amer Oil Chem Soc 86:917–926

    Article  CAS  Google Scholar 

  • Jie M, Cheung WM, Yu V, Zhou Y, Tong PH, Ho JW (2014) Anti-proliferative activities of sinigrin on carcinogen-induced hepatotoxicity in rats. PLoS One 9(10):e110145

    Google Scholar 

  • Kaiser SJ, Mutters NT, Blessing B, Günther F (2017) Natural isothiocyanates express antimicrobial activity against develo** and mature biofilms of Pseudomonas aeruginosa. Fitoterapia 119:57–63

    Article  CAS  PubMed  Google Scholar 

  • Kale V (2007) In souvenir National seminar on changing vegetable oil scenario: issues and challenges before India. Indian Society of Oilseeds Research, Directorate of oilseeds Research, Hyderabad, India, pp 81–86

    Google Scholar 

  • Kanrar S, Venkateswari J, Dureja P, Kirti PB, Chopra VL (2006) Modification of erucic acid content in Indian mustard (Brassica juncea) by upregulation and down-regulation of the Brassica juncea Fatty Acid Elongation1 (Bjfae1) gene. Plant Cell Rep 25:148–155

    Article  CAS  PubMed  Google Scholar 

  • Katamoto H, Nishiguchi S, Harada K, Ueyama I, Fujita T, Watanabe O (2001) Suspected oriental mustard (Brassica juncea) intoxication in cattle. Vet Rec 149(7):215–216

    Article  CAS  PubMed  Google Scholar 

  • Kaur R, Sharma AK, Rani R, Mawlong I, Rai PK (2019) Medicinal qualities of mustard oil and its role in human health against chronic diseases: a review. Asian J Dairy Food Res 38(2):98–104

    Google Scholar 

  • Khajali F, Slominski BA (2012) Factors that affect the nutritive value of canola meal for poultry. Poult Sci J 91(10):2564–2575

    Article  CAS  Google Scholar 

  • Khansili N, Rattu G (2017) A comparative study of hidden characteristics of canola and mustard oil. Int J Chem Stud 5(3):632–635

    CAS  Google Scholar 

  • Khattab R, Eskin M, Aliani M, Thiyam U (2010) Determination of sinapicacid derivatives in canola extracts using high-performance liquid chromatography. J Amer Oil Chem Soc 87:147–155

    Article  CAS  Google Scholar 

  • Kies AK, Kemme PA, Sebek LBJ, Van Diepen JTM, Jongbloed AW (2006) Effect of graded doses and a high dose of microbial phytase on the digestibility of various minerals in weaner pigs. J Anim Sci 84(5):1169–1175

    Article  CAS  PubMed  Google Scholar 

  • Kies C, Umoren J (1989) Inhibitors of copper bioutilization: fiber, lead, phytate and tannins. Adv Exp Med Biol 258:81–93

    CAS  PubMed  Google Scholar 

  • Kirk JTO, Oram RN (1978) Mustards as possible oil and protein crops for Australia [Indian mustard, Brassica juncea, white mustard, Sinapsis alba]. J Austral Inst Agric Sci 44:143–156

    CAS  Google Scholar 

  • Klein-Hessling H (2007) Value canola meal before using it. World Poult 23:24–28

    Google Scholar 

  • Kozlowska H, Naczk M, Shahidi F, Zadernowski R (1990) Phenolic acids and tannins in rapeseed and canola. Canola and Rapeseed. Springer, Boston, MA, pp 193–210

    Chapter  Google Scholar 

  • Kulik T, Stuper-Szablewska K, Bilska K, Buśko M, Ostrowska-Kołodziejczak A, Załuski D, Perkowski J (2017) Sinapic acid affects phenolic and trichothecene profiles of F. culmorum and F. graminearum sensustricto. Toxins 9:264

    Google Scholar 

  • Kumar V, Thakur AK, Barothia ND, Chatterjee SS (2011) Therapeutic potentials of Brassica juncea: an overview. TANG Int J Genuine Trad Med 1(1):2

    CAS  Google Scholar 

  • Kwon HY, Choi SI, Park HI, Choi SH, Sim WS, Yeo JH, Cho JH, Lee OH (2020) Comparative analysis of the nutritional components and antioxidant activities of different Brassica juncea cultivars. Foods 9:840

    Article  CAS  PubMed Central  Google Scholar 

  • Kwon HY, Choi SI, Han X, Men X, Jang GW, Choi YE, Lee OH (2021) Antiobesity effect of Brassica juncea cultivated in Jeongseon with optimized sinigrin content using 3T3-L1 adipocytes. J Food Biochem 45:13650

    Article  CAS  Google Scholar 

  • Lattanzio V, Lattanzio VM, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry 661(2):23–67

    Google Scholar 

  • Latté KP, Appel KE, Lampen A (2011) Health benefits and possible risks of broccoli—an overview. Food Chem Toxicol 49:3287–3309

    Article  PubMed  CAS  Google Scholar 

  • Le B, Anh PTN, Yang SH (2020) Enhancement of the anti-inflammatory effect of mustard kimchi on RAW 264.7 macrophages by the Lactobacillus plantarum fermentation-mediated generation of phenolic compound derivatives. Foods 9:181

    Google Scholar 

  • Lee JW, Kim IH, Woyengo TA (2020) Toxicity of canola-derived glucosinolate degradation products in pigs—a review. Animals 10:2337

    Article  PubMed Central  Google Scholar 

  • Lee ST, Radu S, Ariffin A, Ghazali HM (2015) Physico-chemical characterization of oils extracted from noni, spinach, lady’s finger, bitter gourd and mustard seeds, and copra. Int J Food Prop 18:2508–2527

    Article  CAS  Google Scholar 

  • Li Y, Hussain N, Zhang L, Chen X, Ali E, Jiang L (2012) Correlations between tocopherol and fatty acid components in germplasm collections of Brassica oilseeds. J Agric Food Chem 61(1):34–40

    Article  PubMed  CAS  Google Scholar 

  • Lionneton E, Aubert G, Ochatt S, Merah O (2004) Genetic analysis of agronomic and quality traits in mustard (Brassica juncea). Theor Appl Genet 109(4):792–799

    Article  CAS  PubMed  Google Scholar 

  • Liu TT, Yang TS (2010) Stability and antimicrobial activity of allyl isothiocyanate during long-term storage in an oil-in-water emulsion. J Food Sci 75:445–451

    Article  CAS  Google Scholar 

  • Li W, Yang H, Li C, Tan S, Gao X, Yao M, Zheng Q (2019) Chemical composition, antioxidant activity and antitumor activity of tumorous stem mustard leaf and stem extracts. CyTA – J Food 17:272–279

    Google Scholar 

  • Lopes LF, Bordin K, de Lara GH, Saladino F, Quiles JM, Meca G, Luciano FD (2018) Fumigation of Brazil nuts with allyl isothiocyanate to inhibit the growth of Aspergillus parasiticus and aflatoxin production. J Sci Food Agric 98:792–798

    Google Scholar 

  • Lozano-Baena MD, Tasset I, Obregón-Cano S, de Haro-Bailon A, Muñoz-Serrano A, Alonso-Moraga Á (2015) Antigenotoxicity and tumor growing inhibition by leafy Brassica carinata and sinigrin. Molecules 20:15748–15765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luciano FB, Holley RA (2009) Enzymatic inhibition by allyl isothiocyanate and factors affecting its antimicrobial action against Escherichia coli O157: H7. Int J Food Microbiol 131:240–245

    Article  CAS  PubMed  Google Scholar 

  • Mahoonak AS, Swamylingappa B (2007) A new method for preparation of non-toxic, functional protein hydrolysate from commercial mustard cake. Qual Nutr Process Trade 142

    Google Scholar 

  • Martland MF, Butler EJ, Fenwick GR (1984) Rapeseed induced liver haemorrhage reticulolysis and biochemical changes in laying hens: The effects of feeding high and low glucosinolate meals. Vet Sci Res 36:298–309

    Article  CAS  Google Scholar 

  • Maruthupandy M, Seo J (2019) Allyl isothiocyanate encapsulated halloysite covered with polyacrylate as a potential antibacterial agent against food spoilage bacteria. Mater Sci Eng 105:110016

    Google Scholar 

  • Mathur P, Ding Z, Saldeen T, Mehta JL (2015) Tocopherols in the prevention and treatment of atherosclerosis and related cardiovascular disease. Clin Cardiol 38:570–576

    Article  PubMed  PubMed Central  Google Scholar 

  • Matthaus B (1998) Effect of dehulling on the composition of antinutritive compounds in various cultivars of rapeseed. Fett/lipid 100:295–301

    Article  Google Scholar 

  • Mawson R, Heaney RK, Zdunczyk Z, Kozlowska H (1994) Rapeseed meal-glucosinolates and their antinutritional effects. Part 3 Animal growth and performance. Nahrung 38:167–177

    Article  CAS  PubMed  Google Scholar 

  • Mayengbam S, Aachary A, Thiyam-Holländer U (2014) Endogenous phenolics in hulls and cotyledons of mustard and canola: a comparative study on its sinapates and antioxidant capacity. Antioxidants 3:544–558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mazumder A, Dwivedi A, du Plessis J (2016) Sinigrin and its therapeutic benefits. Molecules 21:416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Megna BW, Carney PR, Nukaya M, Geiger P, Kennedy GD (2016) Indole-3-carbinol induces tumor cell death: function follows form. J Surg Res 204:47–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melrose J (2019) The glucosinolates: a sulphur glucoside family of mustard anti-tumour and antimicrobial phytochemicals of potential therapeutic application. Biomedicines 7:62

    Article  CAS  PubMed Central  Google Scholar 

  • Mensink R, Katan M (1989) Dietary fat guidelines for men and women. The Lancet 333:790–791

    Article  Google Scholar 

  • Meyer SLF, Zasada IA, Orisajo SB, Morra MJ (2011) Mustard seed meal mixtures: management of Meloidogyne incognita on pepper and potential phytotoxicity. J Nematol 43:7–15

    PubMed  PubMed Central  Google Scholar 

  • Mo S, Dong L, Hurst WJ, van Breemen RB (2013) Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography–tandem mass. Lipids 48(9):949–956

    Google Scholar 

  • Mohapatra M, Narain M, Sarkar BC (2004) Quality characteristics of dehulled rapeseed. J Food Sci Technol 41:194–195

    Google Scholar 

  • Mortuza MG (2006) Tocopherol and sterol content of some rapeseed/mustard cultivars developed in Bangladesh. Pak J Biol Sci 9:1812–1816

    Article  CAS  Google Scholar 

  • Munir A, Iqbal S, Khaliq B, Saeed Q, Hussain S, Shah KH, Ahmad F, Mehmood S, Ali Z, Munawar A, Saeed MQ, Mehmood S, Asharf MY, Akrem A (2019) In silico studies and functional characterization of a napin protein from seeds of Brassica juncea. Int J Agric Biol 22:1655–1662

    Google Scholar 

  • Musigwa S, Cozannet P, Morgan N, Swick RA, Wu SB (2021) Multi-carbohydrase effects on energy utilization depend on soluble non-starch polysaccharides-to-total non-starch polysaccharides in broiler diets. Poult Sci 100:788–796

    Article  CAS  PubMed  Google Scholar 

  • Naczk M, Amarowicz R, Sullivan A, Shahidi F (1998) Current research developments on polyphenolics of rapeseed/canola: a review. Food Chem 62:489–502

    Article  CAS  Google Scholar 

  • Naczk M, Shahidi F (1990) Carbohydrates of canola and rapeseed. Canola and Rapeseed. Springer, Boston, MA, pp 211–220

    Chapter  Google Scholar 

  • Nagaraj G (2009) Oilseeds: properties, processing, products and procedures. New India Publishing

    Google Scholar 

  • Newkirk RW, Classen HL, Tyler RT (1997) Nutritional evaluation of low glucosinolate mustard meals (Brassica juncea) in broiler diets. Poult Sci 76(9):1272–1277

    Article  CAS  PubMed  Google Scholar 

  • Nicácio AE, Rodrigues CA, Visentainer JV, Maldaner L (2021) Evaluation of the quencher method for the determination of phenolic compounds in yellow (Brassica alba), brown (Brassica juncea), and black (Brassica nigra) mustard seeds. Food Chem 340:128162

    Google Scholar 

  • Norton G (1989) Nature and biosynthesis of storage proteins. In: Robbelen G, Downey RK, Ashri A (eds) Oil crops of the world. McGraw-Hill, New York, USA, pp 105–191

    Google Scholar 

  • Noureddini H, Dang J (2008) Degradation of phytase in Distillers’ grains and corn gluten feed by Aspergillus niger phytase. Appl Biochem Biotechnol 159:11–23

    Article  PubMed  CAS  Google Scholar 

  • Oh S, Kim K, Choi M (2016) Antioxidant activity of different parts of Dolsan leaf mustard. Food Sci Biotechnol 25:1463–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olaimat AN, Holley RA (2013) Effects of changes in pH and temperature on the inhibition of Salmonella and Listeria monocytogenes by allyl isothiocyanate. Food Control 34:414–419

    Article  CAS  Google Scholar 

  • Orsavova J, Misurcova L, Ambrozova JV, Vicha R, Mlcek J (2015) Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int J Mol Sci 16:12871–12890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostrikov AN, Kleymenova NL, Bolgova IN, Kopylov MV (2020) Gas chromatographic analysis of the fatty acid composition of mustard oil obtained by cold pressing (method). Emir J Food Agri 32(5):391–396

    Article  Google Scholar 

  • Otoni CG, Soares NDFF, da Silva WA, Medeiros EAA, Baffa Junior JC (2014) Use of allyl isothiocyanate-containing sachets to reduce Aspergillus flavus sporulation in peanuts. Package Technol Sci 27:549–558

    Article  CAS  Google Scholar 

  • Park SY, Jang HL, Lee JH, Choi Y, Kim H, Hwang J, Seo D, Kim S, Nam JS (2017) Changes in the phenolic compounds and antioxidant activities of mustard leaf (Brassica juncea) kimchi extracts during different fermentation periods. J Food Sci Biotechnol 26:105–112

    Article  CAS  Google Scholar 

  • Park W, Lee YH, Kim KS, Cha YL, Moon YH, Song YS, Kwon DE, Lee JE (2019) The optimal mixing ratio of Brassica napus and Brassica juncea meal improve nematode Meloidogyne hapla effects. Plant Signal Behav 14:1678369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi AM (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agri 80:939–966

    Article  CAS  Google Scholar 

  • Pontoppidan K, Pettersson D, Sandberg AS (2007) Peniophoralycii phytase is stable and degrades phytate and solubilises minerals in vitro during simulation of gastrointestinal digestion in the pig. J Sci Food Agri 87:2700–2708

    Article  CAS  Google Scholar 

  • Potts DA, Rakow GW, Males DR, Woods DL (2003) The development of canola-quality Brassica juncea. Can J Plant Sci 83:117–118

    Google Scholar 

  • Prieto MA, Lopez CJ, Simal-Gandara J (2019) Glucosinolates: molecular structure, breakdown, genetic, bioavailability, properties and healthy and adverse effects. Adv Food Nutr Res 90:305–350

    Article  CAS  PubMed  Google Scholar 

  • Quiles JM, Manyes L, Luciano F, Manes J, Meca G (2015) Influence of the antimicrobial compound allyl isothiocyanate against the Aspergillus parasiticus growth and its aflatoxins production in pizza crust. Food Chem Toxicol 83:222–228

    Article  CAS  PubMed  Google Scholar 

  • Rahman M, Khatun A, Liu L, Barkla BJ (2018) Brassicaceae mustards: traditional and agronomic uses in Australia and New Zealand. Molecules 23:231

    Article  PubMed Central  CAS  Google Scholar 

  • Rakow G, Raney JP (2003) Present status and future perspectives of breeding for seed quality in Brassica oilseed crops. In: Proceedings of the 11th international rape seed congress, Copenhagen, Denmark, pp 181–185

    Google Scholar 

  • Ramachandran S, Singh SK, Larroche C, Soccol CR, Pandey A (2007) Oil cakes and their biotechnological applications—a review. Bioresour Technol 98(10):2000–2009

    Article  CAS  PubMed  Google Scholar 

  • Rampal G, Thind TS, Arora R, Vig AP, Arora S (2017) Synergistic anti-mutagenic effect of isothiocyanates against varied mutagens. Food Chem Toxicol 109:879–887

    Article  CAS  PubMed  Google Scholar 

  • Ramprasath VR, Awad AB (2015) Role of phytosterols in cancer prevention and treatment. J AOAC Int 98(3):735–738

    Article  CAS  PubMed  Google Scholar 

  • Rao AG, Rao MN (1981) Comparative study of the high molecular weight protein fraction of mustard (B. juncea) and rapeseed (B. campestris). Int J Peptide Protein Res 18(2):154–161

    Google Scholar 

  • Rao AG, Urs MK, Rao MN (1978) Studies on the proteins of mustard seed (B. juncea). Can Inst Food Sci Technol J 11(3):155–161

    Google Scholar 

  • Rastogi T, Reddy KS, Vaz M, Spiegelman D, Prabhakaran D, Willett WC, Ascherio A (2004) Diet and risk of ischemic heart disease in India. Amer J Clin Nutr 79(4):582–592

    Article  CAS  PubMed  Google Scholar 

  • Ratnayake WMN, Daun JK (2004) Chemical composition of canola and rapeseed oils. In: Gunstone FD (ed) Rapeseed and Canola Oil. Blackwell Publishing Limited, Oxford, UK, pp 37–73

    Google Scholar 

  • Richards A, Wijesundera C, Salisbury P (2007) Genotype and growing environment effects on the tocopherols and fatty acids of Brassica napus and B. juncea. J Amer Oil Chem Soc 85(2):159–168

    Google Scholar 

  • Rodriguez RA, Maciel MG, de Ochoteco MB (1997) Blindness in Holando Argentine calves due to ingestion of turnip (Brassica campestris). Vet Argent 14:601–605

    Google Scholar 

  • Romeo L, Iori R, Rollin P, Bramanti P, Mazzon E (2018) Isothiocyanates: an overview of their antimicrobial activity against human infections. Molecules 23:624

    Article  PubMed Central  CAS  Google Scholar 

  • Rosa EAS, Heaney RK, Fenwick GR, Portas CAM (1997) Glucosinolates in crop plants. Hort Rev 19:199–215

    Google Scholar 

  • Rout K, Yadav BG, Yadava SK, Mukhopadhyay A, Gupta V, Pental D, Pradhan AK (2018) QTL landscape for oil content in Brassica juncea: analysis in multiple bi-parental populations in high and “0” erucic background. Front Plant Sci 9:1448

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadeghi MA, Bhagya S (2009) Effect of recovery method on different property of mustard protein. World J Dairy Food Sci 4(2):100–106

    Google Scholar 

  • Sadeghi MA, Rao AA, Bhagya S (2006) Evaluation of mustard (Brassica juncea) protein isolate prepared by steam injection heating for reduction of antinutritional factors. LWT-Food Sci Technol 39(8):911–917

    Article  CAS  Google Scholar 

  • Schone F, Rudolph B, Kirchheim U, Knapp G (1997) Counteracting the negative effects of rapeseed and rapeseed press cake in pig diets. British J Nutr 78(6):947–962

    Article  CAS  Google Scholar 

  • Sen M, Bhattacharyya DK (2000) Nutritional effects of a mustard seed protein on detoxified with aqueous isopropanol in young rats. J Lipid Sci Technol 102:727–733

    Article  CAS  Google Scholar 

  • Sen R, Sharma S, Kaur G, Banga SS (2018) Near-infrared reflectance spectroscopy calibrations for assessment of oil, phenols, glucosinolates and fatty acid content in the intact seeds of oilseed Brassica species. J Sci Food Agric 98(11):4050–4057

    Article  CAS  PubMed  Google Scholar 

  • Seppanen CM, Song Q, Csallany AS (2010) The antioxidant functions of tocopherol and tocotrienol homologues in oils, fats, and food systems. J Amer Oil Chemist Soc 87(5):469–481

    Article  CAS  Google Scholar 

  • Shahidi F, Naczk M (1992) An overview of the phenolics of canola and rapeseed: chemical, sensory and nutritional significance. J Amer Oil Chem Soc 69(9):917–924

    Article  CAS  Google Scholar 

  • Sharafi Y, Majidi MM, Goli SAH, Rashidi F (2015) Oil content and fatty acids composition in Brassica species. Int J Food Prop 18(10):2145–2154

    Article  CAS  Google Scholar 

  • Sharif RH, Paul RK, Bhattacharjya DK, Ahmed KU (2017) Physicochemical characters of oilseeds from selected mustard genotypes. J Bang Agril Univ 15(1):27–40

    Article  Google Scholar 

  • Sharma A, Aacharya M, Punetha H, Sharma S, Kumari N, Rai PK (2019) Biochemical characterization and correlations in Brassica juncea genotypes. Int J Curr Microbiol Appl Sci 8(1):2408–2417

    Article  CAS  Google Scholar 

  • Sharma S, Gupta N (2020) Defense signaling in plants against micro-creatures: do or die. Indian Phytopathol 73:605–613

    Article  Google Scholar 

  • Sharma A, Rai PK, Prasad S (2018) GC–MS detection and determination of major volatile compounds in Brassica juncea L. leaves and seeds. Microchem J 138:488–493

    Article  CAS  Google Scholar 

  • Shrestha K, De Meulenaer B (2014) Effect of seed roasting on canolol, tocopherol, and phospholipid contents, maillard type reactions, and oxidative stability of mustard and rapeseed oils. J Agric Food Chem 62(24):5412–5419

    Article  CAS  PubMed  Google Scholar 

  • Shuang R, Rui X, Wenfang L (2016) Phytosterols and dementia. Plant Foods Human Nutr 71(4):347–354

    Article  CAS  Google Scholar 

  • Siddiqui IR, Wood PJ (1977) Carbohydrates of rapeseed: a review. J Sci Food Agri 28(6):530–538

    Article  CAS  Google Scholar 

  • Simakova I, Volf E, Strizhevskaya V, Popova O, Kozyreva V, Karagulova E (2019) Blends of unrefined vegetable oils for functional nutrition. Agron Res 17(4):1761–1768

    Google Scholar 

  • Simbaya J, Slominski BA, Rakow G, Campbell LD, Downey RK, Bell JM (1995) Quality characteristics of yellow-seeded Brassica seed meals: protein, carbohydrate, and dietary fiber components. J Agric Food Chem 43(8):2062–2066

    Article  CAS  Google Scholar 

  • Sindhu Kanya TC, Kantharaj Urs M (1983) Carbohydrate composition of mustard (Brassica juncea) seed meal. J Food Sci Technol 20(3):124–126

    Google Scholar 

  • Singh RB, Niaz MA, Sharma JP, Kumar R, Rastogi V, Moshiri M (1997) Randomized, double-blind, placebo-controlled trial of fish oil and mustard oil in patients with suspected acute myocardial infarction: the Indian experiment of infarct survival. Cardiovasc Drugs Ther 11(3):485–491

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Bala M, Rai PK (2014) Fatty acid composition and seed meal characteristics of Brassica and allied genera. Natl Acad Sci Lett 37(3):219–226

    Article  CAS  Google Scholar 

  • Singh S, Das SS, SinghG PM, Schuff S, Catalan CAN (2017) Comparison of chemical composition, antioxidant and antimicrobial potentials of essential oils and oleoresins obtained from seeds of Brassica juncea and Sinapis alba. MOJ Food Process and Technol 4(4):113–120

    Google Scholar 

  • Slominski BA, Campbell LD, Guenter W (1994) Carbohydrates and dietary fibre components of yellow and brown seeded canola. J Agric Food Chem 42:704–707

    Article  CAS  Google Scholar 

  • Sonderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates—gene discovery and beyond. Trends Plant Sci 15(5):283–290

    Article  PubMed  CAS  Google Scholar 

  • Spiegel C, Bestetti G, Rossi G, Blum JW (1993) Feeding of rapeseed presscake meal to pigs: effects on thyroid morphology and function and on thyroid hormone blood levels, on liver and on growth performance. J Vet Med 40:45–57

    Article  CAS  Google Scholar 

  • Sra SK, Sharma M, Kaur G, Sharma S, Akhatar J, Sharma A, Banga SS (2019) Evolutionary aspects of direct or indirect selection for seed size and seed metabolites in Brassica juncea and diploid progenitor species. Mol Biol Rep 46:1227–1238

    Article  CAS  PubMed  Google Scholar 

  • Suhr KI, Nielsen PV (2003) Antifungal activity of essential oils evaluated by two different application techniques against rye bread spoilage fungi. J Appl Microbiol 94:665–674

    Article  CAS  PubMed  Google Scholar 

  • Tan SH, Mailer RJ, Blanchard CL, Agboola SO (2011) Extraction and residual antinutritional components in protein fractions of Sinapis alba and Brassica napus oil-free meals. In: 17th Australian Research Assembly on Brassicas, pp 107–114

    Google Scholar 

  • Tangtaweewipat S, Cheva-Isarakul B, Sangsrijun P (2004) The use of mustard meal as a protein source in broiler diets. Songklanakarin J Sci Technol 26(1):23–30

    Google Scholar 

  • Teh L, Möllers C (2016) Genetic variation and inheritance of phytosterol and oil content in a doubled haploid population derived from the winter oilseed rape Sansibar XOase cross. Theor Appl Genet 129:181–199

    Article  CAS  PubMed  Google Scholar 

  • Thirumalai T, Therasa SV, Elumalai EK, David E (2011) Hypoglycemic effect of Brassica juncea (seeds) on streptozotocin induced diabetic male albino rat. Asian Pac J Trop Biomed 1:323–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiyam U, Stöckmann H, ZumFelde T, Cwarz K (2006) Antioxidative effect of the main sinapic acid derivatives from rapeseed and mustard oil by-products. Eur J Lipid Sci Tech 108:239–248

    Article  CAS  Google Scholar 

  • Tian Y, Deng F (2020) Phytochemistry and biological activity of mustard (Brassica juncea): a review. CyTAJ Food 18:704–718

    Google Scholar 

  • Tripathi K, Hussein UK, Anupalli R, Barnett R, Bachaboina L, Scalici J, Rocconi RP, Owen LB, Piazza GA, Palle K (2015) Allyl isothiocyanate induces replication-associated DNA damage response in NSCLC cells and sensitizes to ionizing radiation. Oncotarget 6:5237–5252

    Article  PubMed  PubMed Central  Google Scholar 

  • Tripathi MK, Agrawal IS, Sharma SD, Mishra DP (2001) Effect of untreated, HCl treated or copper and iodine supplemented high glucosinolate mustard (Brassica juncea) meal on nutrient utilization, liver enzymes, thyroid hormones and growth of calves. Anim Feed Sci Technol 92:73–85

    Article  CAS  Google Scholar 

  • Tripathi MK, Mishra AS (2017) Prospects and problems of dietary glucosinolates in animal feeding. Adv Diary Res 5:180

    Google Scholar 

  • Tripathi MK, Mishra AS, Misra AK, Prasad R, Mondal D, Jakhmola RC (2003) Effect of graded levels of high glucosinolate mustard (Brassica juncea) meal inclusion on nutrient utilization, growth performance, organ weight and carcass composition of growing rabbits. World Rabbit Sci 11(4):211–226

    Google Scholar 

  • Vaidya B, Choe E (2011) Stability of tocopherols and lutein in oil extracted from roasted or unroasted mustard seeds during the oil oxidation in the dark. Food Sci Biotechnol 20:193–199

    Article  CAS  Google Scholar 

  • Venkatesh A, Rao AA (1988) Isolation and characterization of low molecular weight protein from mustard (Brassica juncea). J Agric Food Chem 36:1150–1155

    Article  CAS  Google Scholar 

  • Vig AP, Rampal G, Thind TS, Arora S (2009) Bio-protective effects of glucosinolates—a review. LWT- Food Sci Technol 42(10):1561–1572

    Article  CAS  Google Scholar 

  • Walker KC, Booth EJ (2001) Agricultural aspects of rape and other Brassica products. Eur J Lipid Sci Technol 103:441–446

    Article  CAS  Google Scholar 

  • Wanasundara JP (2011) Proteins of Brassicaceae oilseeds and their potential as a plant protein source. Crit Rev Food Sci Nutr 51(7):635–677

    Article  CAS  PubMed  Google Scholar 

  • Wanasundara U, Amarowicz R, Shahidi F (1994) Isolation and identification of an antioxidative component in canola meal. J Agric Food Chem 42(6):1285–1290

    Article  CAS  Google Scholar 

  • Wang AS, Hu P, Hollister EB, Rothlisberger KL, Somenahally A, Provin TL, Hons FM, Gentry TJ (2012) Impact of Indian mustard (Brassica juncea) and flax (Linumus itatissimum) seed meal applications on soil carbon, nitrogen, and microbial dynamics. Appl Environ Soil Sci, 1–14

    Google Scholar 

  • Wang SX, Oomah BD, Ian McGregor D, Downey RK (1998) Genetic and seasonal variation in the sinapine content of seed from Brassica and Sinapis species. Can J Plant Sci 78:395–400

    Article  CAS  Google Scholar 

  • Wang X, He H, Lu Y, Ren W, Teng K, Chiang CL, Yang Z, Yu B, Hsu S, Jacob ST, Ghoshal K (2015) Indole-3-carbinol inhibits tumorigenicity of hepatocellular carcinoma cells via suppression of microRNA-21 and upregulation of phosphatase and tensin homolog. Biochim Biophys Acta (BBA)—Mol Cell Res 1853:244–253

    Google Scholar 

  • WHO (2018) Draft guidelines on saturated fatty acid and trans fatty acids. Intake for adults and children, pp 1–103

    Google Scholar 

  • Wijesundera C, Ceccato C, Fagan P, Shen Z (2008) Seed roasting improves the oxidative stability of canola (B. napus) and mustard (B. juncea) seed oils. Eur J Lipid Sci Technol 110(4):360–367

    Google Scholar 

  • Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7:263–270

    Article  CAS  PubMed  Google Scholar 

  • Wojciechowski A, Kott L, Beversdorf W (1994) Content of sinapine in haploid embryos of rapeseed (Brassica napus) from microspore in in vitro culture. Rośliny Oleiste—Oilseed Crop 15:105–110

    Google Scholar 

  • Wu X, Sun J, Haytowitz DB, Harnly JM, Chen P, Pehrsson PR (2017) Challenges of develo** a valid dietary glucosinolate database. J Food Compos Anal 64:78–84

    Article  CAS  Google Scholar 

  • **an YF, Hu Z, Ip SP, Chen JN, Su ZR, Lai XP, Lin ZX (2018) Comparison of the anti-inflammatory effects of Sinapis alba and Brassica juncea in mouse models of inflammation. Phytomedicine 50:196–204

    Article  CAS  PubMed  Google Scholar 

  • Yadav M, Rana JS (2018) Quantitative analysis of Sinigrin in Brassica juncea. J Pharmacogn Phytochem 7:948–954

    CAS  Google Scholar 

  • Yang R, Xue L, Zhang L, Wang X, Qi X, Jiang J, Li P (2019) Phytosterol contents of edible oils and their contributions to estimated phytosterol intake in the Chinese diet. Foods 8:334

    Article  CAS  PubMed Central  Google Scholar 

  • Ye X, Ng TB (2009) Isolation and characterization of juncin, an antifungal protein from seeds of Japanese Takana (Brassica juncea Var. integrifolia). J Agric Food Chem 57(10):4366–4371

    Google Scholar 

  • Yiu SH, Altosaar I, Fulcher RG (1983) The effects of commercial processing on the structure and microchemical organization of rapeseed. Food Struct 2(2):7

    Google Scholar 

  • Yiu SH, Poon H, Fulcher RG, Altosar I (1982) Microscopic structure and chemistry of rapeseed and its products. Food Struct 1:135–143

    CAS  Google Scholar 

  • Yuan L, Zhang F, Shen M, Jia S, **e J (2019) Phytosterols suppress phagocytosis and inhibit inflammatory mediators via ERK pathway on LPS-triggered inflammatory responses in RAW264. 7 macrophages and the correlation with their structure. Foods 8(11):582

    Google Scholar 

  • Yun KJ, Koh DJ, Kim SH, Park SJ, Ryu JH, Kim DG, Lee JY, Lee KT (2008) Anti-inflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygenase-2, and proinflammatory cytokines expressions via nuclear factor-κB inactivation. J Agric Food Chem 56:10265–10272

    Article  PubMed  Google Scholar 

  • Yusuf MA, Sarin NB (2007) Antioxidant value addition in human diets: genetic transformation of Brassica juncea with γ-TMT gene for increased α-tocopherol content. Transgen Res 16(1):109–113

    Article  CAS  Google Scholar 

  • Zanetti F, Vamerali T, Mosca G (2009) Yield and oil variability in modern varieties of high-erucic winter oilseed rape (Brassica napus L. var. oleifera) and Ethiopian mustard (Brassica carinata A. Braun) under reduced agricultural inputs. Ind Crops Prod 30(2):265–270

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjula Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S., Bala, M., Kaur, G., Tayyab, S., Feroz, S.R. (2022). Chemical Composition of Oil and Cake of Brassica juncea: Implications on Human and Animal Health. In: Kole, C., Mohapatra, T. (eds) The Brassica juncea Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-91507-0_3

Download citation

Publish with us

Policies and ethics

Navigation