Genomic Designing Towards Development of Abiotic Stress Tolerant Grass Pea for Food and Nutritional Security

  • Chapter
  • First Online:
Genomic Designing for Abiotic Stress Resistant Pulse Crops

Abstract

Grass pea (Lathyrus sativus L.) is a climate-resistant underused cool season legume crop grown in marginal rainy regions of sub-Saharan Africa, South Asia and the Mediterranean region, where it is grown for food as well as forage. In the face of climate change and global warming, grass pea is gaining popularity as a more water and input efficient crop with the unique ability to improve soil fertility while emitting little carbon. With deep penetrating root system, grass pea possesses enormous genetic potential for drought, salt and flood tolerance as well as for surviving under waterlogged condition of rice fallow niches. Despite of its immense potential grass pes is still orphan in terms of genetic and genomic resource. Because of the stigma associated with the presence of β-ODAP responsible for crippling disease, grass pea cultivation has declined in the recent decade. New research has revealed grass pea's potential as a functional food with presence of health-promoting nutraceutical like homoarginine. Concentrated breeding efforts in grass pea have developed 30 improved varieties with low ODAP content for their cultivation in diverse agro-ecologies. Molecular research is still lagging behind and renewed research is needed for strengthening molecular breeding program in grass pea. Availability of draft genome sequencing is a significant step forward towards the application of genomic-assisted breeding in this crop. Grass pea is the golden pulse of future for diversification of more energy and input intensive cereal-based crop** systems which are not long term viable. This chapter focuses on the redesigning of abiotic stress tolerant grass pea and highlights the research gaps that need to be contemplated to make it as a “wonder crop” of future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd El Moneim AM, Van Dorrestein B, Baum M, Ryan J, Bejiga G (2001) Role of ICARDA in improving the nutritional quality and yield potential of grass pea (Lathyrus sativus L.), for subsistence farmers in dry areas. Lathyrus Lathyrism Newsl 2:55–58

    Google Scholar 

  • Abd El-Moneim AM, Cocks PS (1993) Adaptation and yield stability of selected lines of Lathyrus spp. under rainfed conditions in West Asia. Euphytica 66:89–97

    Google Scholar 

  • Abd El-Moneim AMA, Van Dorrestein B, Baum M, Mulugeta W (2000) Improving the nutritional quality and yield potential of grasspea (Lathyrus sativus L.). Food Nutr Bull 21(4):493–496

    Google Scholar 

  • Ahmed B, Sultana M, Karim MR, Halder T, Rahman MM (2014) Screening of grasspea (Lathyrus sativus) genotypes against salinity. Intl J Bio Res 17(6):48–54

    Google Scholar 

  • Akdogan G, Tufekci ED, Uranbey S, Unver T (2016) miRNA-based drought regulation in wheat. Funct Integr Genom 16(3):221–233

    CAS  Google Scholar 

  • Aletor VA, El-Moneim AA, Goodchild AV (1994) Evaluation of the seeds of selected lines of three Lathyrus spp for β-N-oxalylamino-l-alanine (BOAA), tannins, trypsin inhibitor activity and certain in-vitro characteristics. J Sci Food Agri 65(2):143–151

    CAS  Google Scholar 

  • Ali HBM, Meister A, Schubert I (2000) DNA content, rDNA loci and DAPI bands reflect the phylogenetic distance between Lathyrus species. Genome 43:1027–1032

    CAS  PubMed  Google Scholar 

  • Allkin R, Goyder DJ, Bisby FA, White RJ (1986) Names and synonyms of species and subspecies in the Vicieae. Issue 3. Vicieae Database Project, Univ of Southampton, UK

    Google Scholar 

  • Almeida NF, Leitão ST, Caminero C, Torres AM, Rubiales D, Patto MCV (2014) Transferability of molecular markers from major legumes to Lathyrus spp. for their application in map** and diversity studies. Mol Biol Rep 41:269–283

    CAS  PubMed  Google Scholar 

  • Almeida NF, Leitão ST, Krezdorn N, Rotter B, Winter P, Rubiales D, Patto MCV (2014) Allelic diversity in the transcriptomes of contrasting rust-infected genotypes of Lathyrus sativus, a lasting resource for smart breeding. BMC Plant Biol 14(1):376

    PubMed  PubMed Central  Google Scholar 

  • Almeida NF, Krezdorn N, Rotter B, Winter P, Rubiales D, Vaz Patto MC (2015) Lathyrus sativus transcriptome resistance response to Ascochyta lathyri investigated by deepSuperSAGE analysis. Front Plant Sci 6:178

    PubMed  PubMed Central  Google Scholar 

  • Ambade RL, Verma SK, Nanda HC, Nair SK, Verulkar SB (2015) Genetic diversity based on molecular markers in Grasspea (Lathyrus sativus L.). Legume Res 38(1): 43–46

    Google Scholar 

  • Arslan M (2017) Diversity for vitamin and amino acid content in grass pea (Lathyrus sativus L.). Legum Res 40(5): 803–810

    Google Scholar 

  • Asmussen CB, Liston A (1998) Chloroplast DNA characters, phylogeny, and classification of Lathyrus (Fabaceae). Am J Bot 85(3):387–401

    CAS  PubMed  Google Scholar 

  • Asnake WF (2012) Gamma irradiation-derived, methionine-enriched mutant lines of Lathyrus sativus L. Bioremed Biodivers Bioavail 6(1):116–118

    Google Scholar 

  • Banerjee J, Gantait S, Maiti MK (2017) Physiological role of rice germin-like protein 1 (OsGLP1) at early stages of growth and development in indica rice cultivar under salt stress condition. Plant Cell Tiss Organ Cult 131:127–137. https://doi.org/10.1007/s11240-017-1270-z

    Article  CAS  Google Scholar 

  • Barik DP, Mohapatra U, Chand PK (2005) Transgenic grass pea (Lathyrus sativus L.): factors influencing Agrobacterium-mediated transformation and regeneration. Plant Cell Rep 24(9): 523–531

    Google Scholar 

  • Barna KS, Mehta SL (1995) Genetic transformation and somatic embryogenesis in Lathyrus sativus. J Plant Biochem 4(2):67–71

    Google Scholar 

  • Barpete S, Dhingra M, Parmar D, Sairkar P, Sharma NC (2012) Intraspecific genetic variation in eleven accessions of grass pea using seed protein profile. Sci Secure J Biotechnol 1:21–27

    Google Scholar 

  • Barpete S, Sharma NC, Kumar S (2014) Assessment of somaclonal variation and stability in vitro regenerated grass pea plants using SDS-PAGE. Legum Res 37:345–352

    Google Scholar 

  • Barpete S, Gupta P, Singh M, Kumar S (2020) Culture selected somaclonal variants showing low-ODAP and high protein content in nineteen grass pea (Lathyrus sativus L.) genotypes. Plant Cell Tiss Org Cult 142:625–634. https://doi.org/10.1007/s11240-020-01889-0

    Article  CAS  Google Scholar 

  • Barpete S, Gupta P, Khawar KM, Kumar S (2021) Effect of cooking methods on protein content and neurotoxin (β-ODAP) concentration in grass pea (Lathyrus sativus L.) grains. CyTA J Food 19(1):448–456. https://doi.org/10.1080/19476337.2021.1915879

  • Barpete S (2015) Genetic associations, variability and diversity in biochemical and morphological seed characters in Indian grass pea (Lathyrus sativus L.) accessions. Fresenius Environ Bull 24(2): 492–497

    Google Scholar 

  • Bell EA, O’Donovan P (1966) The isolation of a and c-oxalyl derivatives of a, c diaminobutyric acid from seeds of Lathyrus latifolius, and the detection of the α-oxalyl isomer of the neurotoxin α-amino-β-oxalyl amino propionic acid which occurs together with the neurotoxin in this and other species. Phytochemistry 5:1211–1219

    CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot 107(3):467–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat KV, Mondal TK, Gaikwad AB, Kole PR, Chandel G, Mohapatra T (2020) Genome-wide identification of drought-responsive miRNAs in grass pea (Lathyrus sativus L.). Plant Gene 21:100210

    Google Scholar 

  • Blum A (2011) Drought resistance—is it really a complex trait? Funct Plant Biol 38:753–757. https://doi.org/10.1071/Fp111

  • Briggs CJ, Campbell CG (1990) Segregation pattern for BOAA content in selected F2 progenies in Lathyrus sativus L. In: An international workshop on ecology and biochemistry of non-protein amino acids from plants. Laboratory of Physiological Chemistry, University of Ghent, Belgium, p 12

    Google Scholar 

  • Brunet J, Repellin A, Varrault G, Terryn N, Zuily-Fodil Y (2008) Lead accumulation in the roots of grass pea (Lathyrus sativus L.): a novel plant for phytoremediation systems? Com Rend Biol 331:859–864

    CAS  Google Scholar 

  • Bryan JK (1980) Synthesis of the aspartate and branched chained amino acids. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 5. Academic Press, New York, NY, pp 329–357

    Google Scholar 

  • Bultynck L, Ter Steege MW, Schortemeyer M, Poot P, Lambers H (2004) From individual leaf elongation to whole shoot leaf area expansion: a comparison of three Aegilops and two Triticum species. Ann Bot 94:99–108. https://doi.org/10.1093/aob/mch11

  • Campbell CG (1997) Grass pea. Lathyrus sativus L. Promoting the conservation and use of underutilized and neglected crops, vol 18. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome. https://www.bioversityinternational.org/e-library/publications/detail/grass-pea-lathyrus-sativus-l/

  • Campbell CG, Briggs CJ (1987) Registration of low neurotoxin content Lathyrus germplasm LS 8246. Crop Sci 27:821

    Google Scholar 

  • Chakraborty S, Mitra J, Samanta MK, Sikdar N, Bhattacharyya J, Manna A, Pradhan S, Chakraborty A, Pati BR (2017) Tissue specific expression and in-silico characterization of a putative cysteine synthase gene from Lathyrus sativus L. Gene Expr Patterns 201827:128–134. https://doi.org/10.1016/j.gep.2017.12.001

    Article  CAS  Google Scholar 

  • Chapman MA (2015) Transcriptome sequencing and marker development for four underutilized legumes. Appl Plant Sci 3(2):1400111

    Google Scholar 

  • Chattopadhyay A, Subba P, Pandey A, Bhushan D, Kumar R, Datta A, Chakraborty N (2011) Analysis of the grasspea proteome and identification of stress-responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. Phytochemistry 72(10):1293–1307

    CAS  PubMed  Google Scholar 

  • Chowdhury MA, Slinkard AE (2000) Genetic diversity in grasspea (Lathyrus sativus L.). Genet Resour Crop Evol 47(2):163–169

    Google Scholar 

  • Chowdhury MA, Slinkard AE (1999) Linkage of random amplified polymorphic DNA, isozyme and morphological markers in grasspea (Lathyrus sativus). Agric Sci 133(4):389–395

    CAS  Google Scholar 

  • Chtourou-Ghorbel N, Lauga B, Combes D, Marrakchi M (2001) Comparative genetic diversity studies in the genus Lathyrus using RFLP and RAPD markers. Lathyrus Lathyrism Newsl 2:62–68

    Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA et al (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37:778–786

    CAS  PubMed  Google Scholar 

  • Cullis C, Kunert KJ (2017) Unlocking the potential of orphan legumes. J Exp Bot 68(8):1895–1903

    CAS  PubMed  Google Scholar 

  • Dahiya BS, Jeswani LM (1974) Estimation of genetic variances: full-sib and half-sib analysis in grass pea. Indian J Agric Sci 44(12):829–832

    Google Scholar 

  • Das NR (2000) Lathyrus sativus in rainfed multiple crop** systems in West Bengal, India: a review. Lathyrus Lathyrism Newsl 1:25–27

    Google Scholar 

  • Das A, Parihar AK, Barpete S, Kumar S, Gupta S (2021) Current perspectives on reducing the b-ODAP content and improving potential agronomic traits in grass pea (Lathyrus sativus L.). Front Plant Sci 12:703275. https://doi.org/10.3389/fpls.2021.703275

  • De Bruyn A, Becu C, Lambein F, Kebede N, Abegaz B, Nunn P (1994) The mechanism of the rearrangement of the neurotoxin β-ODAP to α-ODAP. Phytochemistry 36:85–89

    Google Scholar 

  • Deshpande SS, Campbell CG (1992) Genotype variation in BOAA, condensed tannins, phenolics and enzyme inhibitors in grass pea (Lathyrus sativus L.). Can J Plant Sci 72:1037–1047

    CAS  Google Scholar 

  • Dixit GP, Parihar AK, Bohra A, Singh NP (2016) Achievements and prospects of grass pea (Lathyrus sativus L.) improvement for sustainable food production. Crop J 4:407–416. https://doi.org/10.1016/j.cj.2016.06.008

  • Duminil J, Di Michele M (2009) Plant species delimitation: a comparison of morphological and molecular markers. Plant Biosyst 143(3):528–542

    Google Scholar 

  • Emmrich P (2017) Unlocking the potential of grass pea (Lathyrus sativus) for food security. Agril Dev 31:67–70

    Google Scholar 

  • Emmrich PM, Sarkar A, Njaci I, Kaithakottil GG, Ellis N, Moore C, Trick M (2020) A draft genome of grass pea (Lathyrus sativus), a resilient diploid legume. bioRxiv

    Google Scholar 

  • Fenta BA, Beebe SE, Kunert KJ, Burridge JD, Barlow KM, Lynch JP, Foyer CH (2014) Field phenoty** of soybean roots for drought stress tolerance. Agronomy 4:418–435

    Google Scholar 

  • Fikre A, Van Moorhem M, Ahmed S, Lambein F, Gheysen G (2011) Studies on neurolathyrism in Ethiopia: dietary habits, perception of risks and prevention. Food Chem Toxicol 49(3):678–684

    CAS  PubMed  Google Scholar 

  • Franks PJ (2013) Passive and active stomatal control: either or both? New Phytol 198:325–327. https://doi.org/10.1111/nph.12228

  • Gautam PL, Singh IP, Karihaloo JL (1998) Need for a crop network on Lathyrus genetic resources for conservation and use. In: Mathur PN, Rao VR, Arora RK (eds) Lathyrus genetic resources network. Proc IPGRI-ICARDA-ICAR Regional Working Group Meeting, New Delhi, India, pp 15–21

    Google Scholar 

  • Geda AK, Rastogi N, Pandey RL (1995) New processing approaches of detoxifcation for low toxin Lathyrus. In: Tekle-Haimanot R, Lambein F (eds) Lathyrus sativus and human lathyrism: a decade of progress. Ghent University, Ghent, pp 117–120

    Google Scholar 

  • Getahun H, Lambein F, Vanhoorne M, Van der Stuyft P (2003) Food-aid cereals to reduce neurolathyrism related to grass-pea preparations during famine. Lancet 362:1808–1810

    PubMed  Google Scholar 

  • Gheidary S, Akhzari D, Pessarakli M (2017) Effects of salinity, drought, and priming treatments on seed germination and growth parameters of Lathyrus sativus L. J Plant Nutr 40(10):1507–1514

    CAS  Google Scholar 

  • Girma D, Korbu L (2012) Genetic improvement of grass pea (Lathyrus sativus) in Ethiopia: an unfulfilled promise. Plant Breed 131(2):231–236

    Google Scholar 

  • Gowda CLL, Kaul AK (1982) Nutritional and anti-nutritional consideration. Pulses in Bangladesh, p 431

    Google Scholar 

  • Grando S, Ghebretatios I, Amlesom S, Ceccarelli S, El Maatougui MH, Niane AA, Ghebresselassie T (2010) Water productivity improvement of cereals and foods legumes in the Atbara Basin of Eritrea. CPWF Project Report, pp 1–87

    Google Scholar 

  • Grela Eugeniusz R, Rybiński W, Klebaniuk R, Matras, J. (2010). Morphological characteristics of some accessions of grass pea (Lathyrus sativus L.) grown in Europe and nutritional traits of their seeds. Genet Resour Crop Evol 57(5): 693–701

    Google Scholar 

  • Grønlund M, Constantin G, Piednoir E, Kovacev J, Johansen IE, Lund OS (2008) Virus-induced gene silencing in Medicago truncatula and Lathyrus odorata. Virus Res 135(2):345–349. https://doi.org/10.1016/j.virusres.2008.04.005

    Article  CAS  PubMed  Google Scholar 

  • Grover A, Sharma PC (2016) Development and use of molecular markers: past and present. Crit Rev Biotechnol 36(2):290–302

    CAS  PubMed  Google Scholar 

  • Haileselasie TH (2012) The effect of salinity (NaCl) on germination of selected grass pea (Lathyrus sativus l.) landraces of Tigray. Asian J Agric Sci 4(2): 96–101

    Google Scholar 

  • Hanada H, Hirai M (2003) Development of a genetic marker linked to the tendril trait of sweet pea (Lathyrus odoratus L.). Breed Sci 53(1):7–13

    Google Scholar 

  • Hanbury CL, Siddique KHM (2000) Registration of ‘Chalus’ Lathyrus cicera L. Crop Sci 40:1199

    Google Scholar 

  • Hanbury CD, Marker A, Siddique KHM, Perry MW (1995) Evaluation of lathyrus germplasm in a mediterranean type environment in south-western Australia, vol 8. CLIMA Occasional Publication, Perth, Australia

    Google Scholar 

  • Hanbury CD, Siddique KHM, Galwey NW, Cocks PS (1999) Genotype-environment interaction for seed yield and ODAP concentration of Lathyrus sativus L. and L. cicera L. in Mediterranean-type environments. Euphytica 110:45–60

    CAS  Google Scholar 

  • Hanbury CD, White CL, Mullan BP, Siddique KHM (2000) A review of the potential of Lathyrus sativus L. and L. cicera L. grain for use as animal feed. Anim Feed Sci Technol 87:1–27

    Google Scholar 

  • Hao X, Yang T, Liu R, Hu J, Yao Y et al (2017) An RNA sequencing transcriptome analysis of grass pea (Lathyrus sativus L.) and development of SSR and KASP markers. Front Plant Sci 8:1873. https://doi.org/10.3389/fpls.2017.01873

  • Harlan JR, De wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20: 509–517

    Google Scholar 

  • Heywood V, Casas A, Ford-Lloyd B, Kell S, Maxted N (2007) Conservation and sustainable use of crop wild relatives. Agric Ecosyst Environ 121:245–255

    Google Scholar 

  • Hillocks RJ, Maruthi MN (2012) Grass pea (Lathyrus sativus) Is there a case for further crop improvement? Euphytica 186(3):647–654

    Google Scholar 

  • Hoque R, Hussain M, Kuo YH, Lambein F (1996) Salinity tolerance and accumulation of neurotoxin and excitatory amino acids in Lathyrus sativus. Bang J Biochem 2:15–27

    Google Scholar 

  • Hura T, Hura K, Grzesiak S (2009) Leaf dehydration induces different content of phenolics and ferulic acid in drought-resistant and-sensitive genotypes of spring triticale. Z Naturforsch C 64(1–2):85–95

    CAS  PubMed  Google Scholar 

  • Hussain N, Sarwar G, Schmeisky H, Al-Rawahy S, Ahmad M (2010) Salinity and drought management in legume crops. In: Yadav SS, McNeil DL, Redden R, Patil SA (eds) Climate change and management of cool season grain legume crops. Springer, Dordrecht, Netherlands, pp 171–191

    Google Scholar 

  • Icoz M, Ceylan FO, Inci NE, Canci H, Toker C (2014) selection of red pea (Lathyrus cicera L.) for drought and heat tolerance. Editorial board, 50. International Agriculture Congress, Pullman Putrajaya Lakeside, Putrajaya, Malaysia

    Google Scholar 

  • ICAR (2009) Project Coordinator’s report of all India coordinated research project on mungbean, urdbean, lentil, lathyrus, rajmash and pea. Indian Council of Agricultural Research (ICAR), New Delhi

    Google Scholar 

  • ICAR (2019) Project Coordinator’s report of all India coordinated research project on mungbean, urdbean, lentil, lathyrus, rajmash and pea. Indian Council of Agricultural Research (ICAR), New Delhi

    Google Scholar 

  • ICARDA (2006) ICARDA Annual report 2005. International Center for Agricultural Research in the Dry Areas. Aleppo, Syria, pp 54–55

    Google Scholar 

  • ICARDA (2007) ICARDA Annual report 2006. International Center for Agricultural Research in the Dry Areas. Aleppo, Syria, pp 57–58

    Google Scholar 

  • Jackson MT, Yunus, AG (1984) Variation in the grass pea (Lathyrus sativus L.) and wild species. Euphytica 33(2):549–559

    Google Scholar 

  • Jammulamadaka N, Burgula S, Medisetty R, Ilavazhagan G, Rao SLN, Singh SS (2011) β-N-oxalyl-l-α, β-diaminopropionic acid regulates mitogen-activated protein kinase signaling by down-regulation of phosphatidylethanolamine-binding protein. J Neurochem 118:176–186

    CAS  PubMed  Google Scholar 

  • Jiang J, Su M, Chen Y, Gao N, Jiao C, Sun Z, Li F, Wang C (2013) Correlation of drought resistance in grass pea (Lathyrus sativus) with reactive oxygen species scavenging and osmotic adjustment. Biologia 68(2):231–240

    CAS  Google Scholar 

  • Jiangbo W, **gfen J (2002) Agrobacterium rhizogenes-mediated transformation of Lathyrus maritimus and somatic embryogenesis of transformed tissues. Chin J Appl Environ Biol 8(2):190–194

    Google Scholar 

  • Kasai A, Bai S, Li T, Harada T (2011) Graft-transmitted siRNA signal from the root induces visual manifestation of endogenous post-transcriptional gene silencing in the scion. PLoS ONE 6(2):e16895. https://doi.org/10.1371/journal.pone.0016895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khandare AL, Babu JJ, Ankulu M, Aparna N, Shirfule A, Rao GS (2014) Grass pea consumption & present scenario of neurolathyrism in Maharashtra state of India. Indian J Med Res 140(1):96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyoshi Y, Toshiyuki F, Blumenreich ID (1985) Isozymic variation and interspecific crossability in annual species of genus Lathyrus L. Lathyrus Lathyrism 118–129

    Google Scholar 

  • Koevoets IT, Venema JH, Elzenga JTM, Testerink C (2016) Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front Plant Sci 7:1335. https://doi.org/10.3389/fpls.2016.01335

  • Kumar S, Bejiga G, Ahmed S, Nakkoul H, Sarker A (2011) Genetic improvement of grass pea for low neurotoxin (β-ODAP) content. Food Chem Toxicol 49(3):589–600

    CAS  PubMed  Google Scholar 

  • Kumar S, Gupta P, Barpete S, Sarker A, Amri A, Mathur PN, Baum M (2013) Grass pea. In: Singh M, Upadhyaya HD, Bisht IS (eds) Genetic and genomic resources of grain legume improvement. Elsevier, pp 269–292

    Google Scholar 

  • Kumar S, Gupta P, Barpete S, Choukri H, Maalouf F, Sarkar A (2020) Grass Pea. In: Pratap A, Gupta S (eds) The beans and the peas. Woodhead Publishing, Elsevier, pp 273–287

    Google Scholar 

  • Kumar G, Tripathi R (2009) Influence of heat stress on genome of grass pea (Lathyrus sativus L.). J Environ Biol 30(3):405–408

    Google Scholar 

  • Kuo YH, Bau HM, Rozan P, Chowdhury B, Lambein F (2000) Reduction efficiency of the neurotoxin β-ODAP in low-toxin varieties of Lathyrus sativus seeds by solid state fermentation with Aspergillus oryzae and Rhizopus microsporus var chinensis. J Sci Food Agric 80(15):2209–2215

    CAS  Google Scholar 

  • Kupicha FK (1981) Vicieae. In: Polhill RM, Raven PH (eds) Advances in legume systematics part 1. Royal Botanic Gardens, Kew, UK, pp 377–381

    Google Scholar 

  • Lal MS, Agrawal I, Chitale MW (1985) Genetic improvement of chickling vetch in Madhya Pradesh, India. In: Kaul AK, Combes D (eds) Lathyrus and lathyrism. Third World Medical Research Foundation, New York, USA, pp 146–160

    Google Scholar 

  • Lambein F (2000) Homeopathy, longevity and Lathyrus sativus toxicity. Lathyrus Lathyrism Newsl 1:4–5

    Google Scholar 

  • Lambein F, Kuo YH (2009) Lathyrism. Grain Legume 54:8–9

    Google Scholar 

  • Lambein F, Travella S, Kuo YH, Van Montagu M, Heijde M (2019) Grass pea (Lathyrus sativus L.): orphan crop, nutraceutical or just plain food? Planta 250:821–838

    CAS  PubMed  Google Scholar 

  • Lan G, Lan F, Sun X (2016) Use of dencichine in preparation of drug for treating thrombocytopenia. https://www.google.com/patents/US20160089351

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA (1987) MAPMAKER: an interactive computer package for constructing primary linkage maps of experimental populations. Genomics 1(2):174–181

    CAS  Google Scholar 

  • Lee J, Cao DV, Kim J, Pamplona RS, Ahn J, Cho S-K, Yang S-W, Riu K-Z, Boo K-H (2017) Development of a virus-induced gene silencing (VIGS) system for Spinacia oleracea L. In Vitro Cell Dev Biol-Plant 53:97–103. https://doi.org/10.1007/s11627-017-9806-9

    Article  CAS  Google Scholar 

  • Lioi L, Galasso I (2013) Development of genomic simple sequence repeat markers from an enriched genomic library of grass pea (Lathyrus sativus L.). Plant Breed 132(6):649–653

    Google Scholar 

  • Lioi L, Sparvoli F, Sonnante G, Laghetti G, Lupo F, Zaccardelli M (2011) Characterization of Italian grasspea (Lathyrus sativus L.) germplasm using agronomic traits, biochemical and molecular markers. Genet Resour Crop Evol 58(3):425–437

    Google Scholar 

  • Liu J, Tang H, Qu X, Liu H, Li C, Tu Y, Li S, Habib A, Mu Y, Dai S, Deng M, Jiang Q, Liu Y, Chen G, Wang J, Chen G, Li W, Jiang Y, Wei Y, Lan X, Zheng Y, Ma J (2020) A novel, major, and validated QTL for the effective tiller number located on chromosome arm 1BL in bread wheat. Plant Mol Biol 104(1):173–185

    CAS  PubMed  Google Scholar 

  • Liu F, Jiao C, Bi C, Xu Q, Chen P, Heuberger AL, Krishnan HB (2017) Metabolomics approach to understand mechanisms of β-N-oxalyl-l-α, β-diaminopropionic acid (β-ODAP) biosynthesis in grass pea (Lathyrus sativus L.). J Agric Food Chem 65(47):10206–10213

    Google Scholar 

  • Loudon JC, Don G, Wooster D (1855) Loudon’s Encyclopædia of plants. Longman, Brown, Green and Longmans, London

    Google Scholar 

  • Mahapatra NS, Das A, Bhattacharyya P, Bhattacharya S, Pal S, Barpete S (2020) Studies on genetic variability, divergence and association of characters in grass pea. J Crop Weed 16(1):155–161

    Google Scholar 

  • Maji S, Das A, Nath R, Bandopadhyay P, Das R, Gupta S (2019) Cool season food legumes in rice fallows: an Indian perspective. In: Hasanuzzaman M (ed) Agronomic Crops. Springer, Singapore, pp 561–605

    Google Scholar 

  • Malek MA, Sarwar CDM, Sarker A, Hassan MS (1996) Status of grass pea research and future strategy in Bangladesh. In: Arora RK, Mathur PN, Riley KW, Adham Y (eds) Lathyrus genetic resources in Asia. International Plant Genetic Resources Institute, Rome, Italy, pp 7–12

    Google Scholar 

  • Malik AI, Colmer TD, Lambers H, Schortemeyer M (2001) Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Funct Plant Biol 28:1121–1131

    Google Scholar 

  • Malik AI, Ailewe TI, Erskine W (2015) Tolerance of three grain legume species to transient waterlogging. AoB Plants 7: plv040

    Google Scholar 

  • Marghali S, Touati A, Gharbi M, Sdouga D, Trifi-Farah N (2016) Molecular phylogeny of Lathyrus species: insights from sequence-related amplified polymorphism markers. Genet Mol Res 15(1). https://doi.org/10.4238/gmr.15017198

  • Marzban L, Akhzari D, Ariapour A, Mohammadparast B, Pessarakli M (2017) Effects of cadmium stress on seedlings of various rangeland plant species (Avena fatua L., Lathyrus sativus L., and Lolium temulentum L.): Growth, physiological traits, and cadmium accumulation. J Plant Nutr 40(15):2127–2137

    Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457

    CAS  Google Scholar 

  • Mehra RB, Raju DB, Himabindu K. (1995) Status paper on lathyrus research. Division of Genetics, IARI, New Delhi, India, pp 1–7

    Google Scholar 

  • Mera M, Tay J, France A, Montenegro A, Espinoza N, Gaete N, Barrientos L (2003) Luanco-INIA, a large-seeded cultivar of Lathyrus sativus released in Chile. Lathyrus Lathyrism Newsl 3:26

    Google Scholar 

  • Milczak M, Pedzinski M, Mnichowska H, Szwed-Urbas K, Rybinski W (2001) Creative breeding of grass pea (Lathyrus sativus L.) in Poland. Lathyrus Lathyrism Newsl 2:85–89

    Google Scholar 

  • Nerkar YS (1972) Induced variation and response to selection for low neurotoxin content in Lathyrus sativus. Indian J Genet 32(2):175–180

    CAS  Google Scholar 

  • Nosrati H, Hosseinpour-Feizi MA, Nikniazi M, Razban-Haghighi A (2012) Genetic variation among diff erent accessions of Lathyrus sativus (Fabaceae) revealed by RAPDs. Botanica Serbica 36(1)

    Google Scholar 

  • Ooijen JW (2006) JoinMap 4 software for the calculation of genetic linkage maps in experimental populations. Wageningen, Kyazma B.V.

    Google Scholar 

  • Palta JA, Berger JD, Bramleyand H (2012) Physiology of the yield under drought: lessons from studies with lupin. In: Aroca R (ed) Plant responses to drought stress: from morphological to molecular features. Springer, Heidelberg, Germany, pp 417–440

    Google Scholar 

  • Patto MV, Mecha E, Pereira AB, Leitão ST, Alves ML, Bronze MR (2018) Deciphering grain legumes quality riddle: the genomics of bioactive compounds. In: Breeding Grasses and Protein Crops in the Era of Genomics. Springer, Cham, pp 118–120

    Google Scholar 

  • Pandey RL, Chitale MW, Sharma RN, Kashyap OP, Agrawal SK, Ged AK, Chandrakar HK (1995) Catalogue on grasspea (Lathyrus sativus) germplasm. Indira Gandhi Krishi Vishwavidyalaya, Raipur, India, p 60

    Google Scholar 

  • Parihar AK, Dixit GP, Singh D (2013) Multivariate analysis of various agronomic traits in grasspea (Lathyrus spp.) germplasm. Indian J Agril Sci 83(5): 570–575

    Google Scholar 

  • Parihar AK, Dixit GP, Singh D (2015) Genetic variability analysis for quantitative traits in a germplasm set of grasspea (Lathyrus spp.). Legume Res 38(4): 461–464

    Google Scholar 

  • Pastor-Cavada E, Juan R, Pastor JE, Alaiz M, Vioque J (2011) Nutritional characteristics of seed proteins in 15 Lathyrus species (fabaceae) from Southern Spain. LWT- Food Sci Technol 44(4):1059–1064

    CAS  Google Scholar 

  • Peek J, Christendat D (2015) The shikimate dehydrogenase family: functional diversity within a conserved structural and mechanistic framework. Arch Biochem Biophys 566:85–99

    CAS  PubMed  Google Scholar 

  • Piwowarczyk B, Kamińska I, Rybiński W (2014) Influence of PEG generated osmotic stress on shoot regeneration and some bioc hemical parameters in Lathyrus culture. Czech J Genet Plant Breed 50:77–83

    Google Scholar 

  • Piwowarczyk B, Tokarz K, Kamińska I (2016) Responses of grass pea seedlings to salinity stress in in vitro culture conditions. Plant Cell Tiss Organ Cult 124(2):227–240

    CAS  Google Scholar 

  • Polignano G, Uggenti B, Alba P, Bisignano V, Della V, Gatta C (2005) Morpho-agronomic diversity in grass pea (Lathyrus sativus L.). Plant Genet Resour 3(1):29–34. https://doi.org/10.1079/PGR200455

  • Polignano GB, Bisignano V, Tomaselli V, Uggenti P, Alba V, Della Gatta C (2009) Genotype × environment interaction in grass pea (Lathyrus sativus L.) lines. Intl J Agron 898396. https://doi.org/10.1155/2009/898396

  • Ponnaiah M, Shiferaw E, Pe ME, Porceddu E (2011) Development and application of EST-SSRs for diversity analysis in Ethiopian grass pea. Plant Genet Res 9(2):276–280

    CAS  Google Scholar 

  • Quader M (1985) Genetic analysis of neurotoxin content and some aspects of reproductive biology in Lathyrus Sativus L. IARI, Division of Genetics, New Delhi, India

    Google Scholar 

  • Rahman MM, Kumar J, Rahman MA, Afzal MA (1995) Natural outcrossing in Lathyrus sativus L. Indian J Genet 55:204–207

    Google Scholar 

  • Ramanujam S, Sethi KL, Rao SLN (1980) Stability of neurotoxin content in Khesari. Indian J Genet 40:300–304

    CAS  Google Scholar 

  • Rana DS, Dass A, Rajanna GA, Kaur R (2016) Biotic and abiotic stress management in pulses. Indian J Agron 61:238–248

    Google Scholar 

  • Rao SLN, Ramachandran LK, Adiga PR (1963) The isolation and characterization of L-homoarginine from seeds of Lathyrus sativus. Biochemistry 2(2):298–300

    CAS  PubMed  Google Scholar 

  • Rathi D, Gayali S, Pareek A, Chakraborty S, Chakraborty N (2019) Transcriptome profiling illustrates expression signatures of dehydration tolerance in develo** grasspea seedlings. Planta 250(3):839–855

    CAS  PubMed  Google Scholar 

  • Rizvi AH, Sarker A, Dogra A (2016) Enhancing grass pea (Lathyrus sativus L.) production in problematic soils of South Asia for nutritional security. Indian J Genet 76:583–592

    Google Scholar 

  • Robertson LD, Abd El-Moneim AM (1995) Status of Lathyrus germplasm held at ICARDA and its use in breeding programmes. In: Arora RK, Mathur PN, Riley KW, Adham Y (eds) Lathyrus genetic resources in Asia. Proceedings of a Regional Workshop, 27–29 December, Raipur, India, pp 97–111

    Google Scholar 

  • Sammour RH (2014) Genetic diversity in Lathyrus sativus L. germplasm. Res Rev BioSci 8:325–336

    Google Scholar 

  • Sammour RH, Mustafa AEZ, Badr S, Tahr W (2007) Genetic variability of some quality traits in Lathyrus spp. germplasm. Acta Agric Slov 90(1):33–43

    Google Scholar 

  • Sandberg AS (2002) Bioavailability of minerals in legumes. Br J Nutr 88(S3):281–285

    Google Scholar 

  • Santha IM, Mehta SL (2001) Development of low ODAP somaclones of Lathyrus sativus. Lathyrus Lathyrism Newsl 2:42

    Google Scholar 

  • Santos C, Almeida NF, Alves ML, Horres R, Krezdorn N, Leitão ST, Patto MCV (2018) First genetic linkage map of Lathyrus cicera based on RNA sequencing-derived markers: key tool for genetic map** of disease resistance. Hortic Res 5(1):1–14

    CAS  Google Scholar 

  • Sarkar A, Emmrich PM, Sarker A, Zong X, Martin C, Wang TL (2019) Grass pea: remodeling an ancient insurance crop for climate resilience. In: Kole C (ed) Genomic designing of climate-smart pulse crops. Springer, Cham, pp 425–469

    Google Scholar 

  • Sarmento D, Martins M, Oliveira MM (2005) Evaluation of somaclonal variation in almond using RAPD and ISSR. Options Méditerranéennes, Série A 63:391–395

    Google Scholar 

  • Sarwar CDM, Malek MA, Sarker A, Hassan MS (1996): Genetic resources of grasspea (Lathyrus sativus L.) in Bangladesh. In: Arora RK, Mathur PN, Riley KW, Adham Y (eds) Lathyrus genetic resources in Asia. International Plant Genetic Resources Institute, Rome, Italy, pp 13–18

    Google Scholar 

  • Schaefer H, Hechenleitner P, Santos-Guerra A, de Sequeira MM, Pennington RT, Kenicer G, Carine MA (2012) Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages. BMC Evol Biol 12:250

    PubMed  PubMed Central  Google Scholar 

  • Schubert KR (1986) Products of biological nitrogen fixation in higher plants: synthesis, transport and metabolism. Annu Rev Plant Physiol 37:539–574

    CAS  Google Scholar 

  • Schulz S, Keatinge JDH, Wells GJ (1999) Productivity and residual effects of legumes in rice-based crop** systems in a warm-temperate environment: I. Legume biomass production and N fixation. Field Crop Res 61(1):23–35

    Google Scholar 

  • Semagn K, Bjørnstad Å, Ndjiondjop MN (2006) An overview of molecular marker methods for plants. Afr J Biotechnol 5(25)

    Google Scholar 

  • Siddique KHM, Regan KL, Tennant D, Thomson BD (2001) Water use and water use efficiency of cool season grain legumes in low rainfall Mediterranean-type environments. Eur J Agron 15(4):267–280

    Google Scholar 

  • Silva P, Geros H (2009) Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange. Plant Signal Behav 4:718–726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SS, Rao SLN (2013) Lessons from neurolathyrism: a disease of the past & the future of Lathyrus sativus (Khesari dal). Indian J Med Res 138(1):32–37

    PubMed  PubMed Central  Google Scholar 

  • Skiba B, Ford R, Pang ECK (2004) Genetics of resistance to Mycosphaerella pinodes in Lathyrus sativus. Aust J Agri Res 55(9):953–960

    CAS  Google Scholar 

  • Smartt J (1979) Interspecific hybridization in the grain legumes—a review. Econ Bot 33:329–337

    Google Scholar 

  • Solaiman Z, Colmer TD, Loss SP, Thomson BD, Siddique KHM (2007) Growth responses of cool-season grain legumes to transient waterlogging. Aust J Agric Res 58:406–412

    Google Scholar 

  • Soren KR, Yadav A, Pandey G, Gangwar P, Parihar AK, Bohra A, Dixit GP, Datta S, Singh NP (2015) EST-SSR analysis provides insights about genetic relatedness, population structure and gene flow in grass pea (Lathyrus sativus). Plant Breed 134(3):338–344

    Google Scholar 

  • Soren KR, Konda AK, Gangwar P, Tiwari VA, Shanmugavadivel PS, Parihar AK, Dixit GP, Singh NP (2020) Development of SSR markers and association studies of markers with phenology and yield-related traits in grass pea (Lathyrus sativus). Crop Pasture Sci 71(8):768–775

    CAS  Google Scholar 

  • Sun XL, Yang T, Guan JP, Ma Y, Jiang JY, Cao R, Burlyaeva M, Vishnyakova M, Semenova E, Bulyntsev S, Zong XX (2012) Development of 161 novel EST-SSR markers from Lathyrus sativus (Fabaceae). Am J Bot 99:e379–390. https://doi.org/10.3732/ajb.1100346

  • Tadesse W, Bekele E (2003) Variation and association of morphological and biochemical characters in grass pea (Lathyrus sativus L.). Euphytica 130:315–324

    CAS  Google Scholar 

  • Talukdar D (2012) An induced glutathione-deficient mutant in grass pea (Lathyrus sativus L.): modifications in plant morphology, alteration in antioxidant activities and increased sensitivity to cadmium. Bioremediat Biodivers Bioavailab 6:75–86

    Google Scholar 

  • Talukdar D (2013) Plant growth and leaf antioxidant metabolism of four elite grass pea (Lathyrus sativus) genotypes, differing in arsenic tolerance. Agric Res 2(4):330–339

    CAS  Google Scholar 

  • Talukdar D, Biswas AK (2008) Variability, heritability and scope of selection for some quantitative traits in induced mutant lines of grass pea (Lathyrus sativus L.). Intl J Plant Sci 3(2):528–530

    Google Scholar 

  • Talukdar D (2010) Reciprocal translocations in grass pea (Lathyrus sativus L.): Pattern of transmission, detection of multiple interchanges and their independence. J Hered 101(2):169–176

    Google Scholar 

  • Tamburino R, Guida V, Pacifico S, Rocco M, Zarelli A, Parente A, Di Maro A (2012) Nutritional values and radical scavenging capacities of grass pea (Lathyrus sativus L.) seeds in valle agricola district, Italy. Aust J Crop Sci 6(1):149–156

    Google Scholar 

  • Tan RY, **ng GY, Zhou GM, Li FM, Hu WT, Lambein F, Li ZX (2017) Plant toxin β-ODAP activates integrin β1 and focal adhesion: a critical pathway to cause neurolathyrism. Sci Rep 7:40677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD (1983) Molecular markers in plant breeding. Plant Mol Biol Rep 1(1):3–8

    CAS  Google Scholar 

  • Tarade MK, Singhal SR, Jayram VR, Pandit BA (2007) Kinetics of degradation of ODAP in Lathyrus sativus L. flour during food processing. Food Chem 104:643–649

    CAS  Google Scholar 

  • Tiwari KR, Campbell CG (1996) Inheritance of neurotoxin (ODAP) content, flower and seed coat colour in grass pea (Lathyrus sativus L.). Euphytica 91(2):195–203

    Google Scholar 

  • Tokarz KM, Wesołowski W, Tokarz B, Makowski W, Wysocka A, Jędrzejczyk RJ, Chrabaszcz K, Malek K, Kostecka-Gugała A (2021) Stem photosynthesis—a key element of grass pea (Lathyrus sativus L.) acclimatisation to salinity. Intl J Mol Sci 22(2):685. https://doi.org/10.3390/ijms22020685

  • Tripathy SK, Ranjan R, Dash S, Bharti R, Lenka D, Sethy YD, Mishra DR, Mohapatra BR, Pal S (2015) Genetic analysis of BOAA content in grasspea (Lathyrus sativus L.). Legume Res 38(4):465–468

    Google Scholar 

  • Tsegay BA, Andargie M (2018) Seed priming with Gibberellic Acid (GA 3) alleviates salinity induced inhibition of germination and seedling growth of Zea mays L., Pisum sativum Var. abyssinicum A. Braun and Lathyrus sativus L. J Crop Sci Biotechnol 21(3):261–267

    Google Scholar 

  • Tsykun T, Rellstab C, Dutech C, Sipos G, Prospero S (2017) Comparative assessment of SSR and SNP markers for inferring the population genetic structure of the common fungus Armillaria cepistipes. Heredity 119(5):371–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Unver T, Budak H (2009) Virus-induced gene silencing, a post transcriptional gene silencing method. Intl J Plant Genom. 2009:198680. https://doi.org/10.1155/2009/198680

    Article  CAS  Google Scholar 

  • Utkarsh A (2016) ICMR panel clears ‘unsafe’ khesari dal banned in 1961. The Indian Express, January 17, 2016. https://indianexpress.com/article/india/india-news-india/icmr-panel-clears-unsafe-khesari-dal-banned-in-61/

  • van Wyk SG, Kunert KJ, Cullis CA, Pillay P, Makgopa ME, Schlüter U, Vorster BJ (2016) The future of cystatin engineering. Plant Sci 246:119–127

    PubMed  Google Scholar 

  • Vaz Patto MC, Rubiales D (2014) Resistance to rust and powdery mildew in Lathyrus crops. Czech J Genet Plant Breed 50:116–122

    Google Scholar 

  • Vaz Patto MC, Fernández-Aparicio M, Moral A, Rubiales D (2006) Characterization of resistance to powdery mildew (Erysiphe pisi) in a germplasm collection of Lathyrus sativus. Plant Breed 125(3):308–310

    Google Scholar 

  • **ng GS, Cui KR, Li J, Wang Y, Li ZX (2001) Water stress and the accumulation of b-N-oxalyl-l-a, b-diaminopropionic acid in grass pea (Lathyrus sativus). J Agric Food Chem 49:216–220

    CAS  PubMed  Google Scholar 

  • Xu Q, Liu F, Chen P, Jez JM, Krishnan HB (2017) Beta-N-oxalyl-l-diaminopropionic acid (b-ODAP) Content in Lathyrus sativus: the integration of nitrogen and sulfur metabolism through cyanoalanine synthase. Intl J Mol Sci 18:526. https://doi.org/10.3390/ijms18030526

    Article  CAS  Google Scholar 

  • Xu Q, Liu F, Qu R, Gillman JD, Bi C, Hu X, Krishnan HB (2018) Transcriptomic profiling of Lathyrus sativus L. metabolism of β-ODAP, a neuroexcitatory amino acid associated with neurodegenerative lower limb paralysis. Plant Mol Biol Rep 36(5–6):832–843

    Google Scholar 

  • Yamamoto K, Fujiware T, Blumenreich I (1989) Isozymic variation and interspecific crossability in annual species of the genus Lathyrus L. In: Kaul AK, Combes D (eds) Lathyrus and lathyrism. Third World Medical Research Foundation, New York, pp 118–121

    Google Scholar 

  • Yan ZY, Spencer PS, Li ZX, Liang YM, Wang YF, Wang CY, Li FM (2006) Lathyrus sativus (grass pea) and its neurotoxin ODAP. Phytochemistry 67:107–121

    CAS  PubMed  Google Scholar 

  • Yang T, Jiang J, Burlyaeva M, Hu J, Coyne CJ, Kumar S, Hao X (2014) Large-scale microsatellite development in grasspea (Lathyrus sativus L.), an orphan legume of the arid areas. BMC Plant Biol 14(1):65

    Google Scholar 

  • Yang H, Zhang XY (2005) Considerations on the reintroduction of grass pea in China. Lathyrus Lathyrism Newsl 4:22–26

    Google Scholar 

  • Yunus AG, Jackson MT (1991) The gene pool of the grass pea (Lathyrus sativus L). Plant Breed 106:319–328

    Google Scholar 

  • Zambre M, Chowdhury B, Kuo YH, Van Montagu M, Angenon G, Lambein F (2002) Prolific regeneration of fertile plants from green nodular callus induced from meristematic tissues in Lathyrus sativus L. (grass pea). Plant Sci 163(6):1107–1112

    Google Scholar 

  • Zhang D, Li Z, Li JF (2015) Genome editing: New antiviral weapon for plants. Nat Plants 1:15146. https://doi.org/10.1038/nplants.2015.146

    Article  CAS  Google Scholar 

  • Zhang HX, Zhang Y, Yin H (2019) Genome editing with mRNA encoding ZFN, TALEN, and Cas9. Mol Ther 27(4):735–746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Chen X, Hu Z, Li Q, Chen Q, Li Z (1999) Analysis of β-N-oxalyl-l-α, β-diaminopropionic acid and homoarginine in Lathyrus sativus by capillary zone electrophoresis. J Chromatogr A 857(1–2):295–302

    CAS  PubMed  Google Scholar 

  • Zhelyazkova T, Pavlov D, Delchev G, Stoyanova A (2016) Productivity and yield stability of six grain legumes in the moderate climatic conditions of Bulgaria. Sci Papers-Series A Agron 9:478–487

    Google Scholar 

  • Zhou L, Cheng W, Hou H, Peng R, Hai N, Bian, Z, Jiao C, Wang C (2016) Antioxidative responses and morpho-anatomical alterations for co** with flood-induced hypoxic stress in Grass Pea (Lathyrus sativus L.) in comparison with Pea (Pisum sativum). J Plant Growth Regul 35(3):690–700

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, J., Das, A., Parihar, A.K., Sharma, R., Pramanik, K., Barpete, S. (2022). Genomic Designing Towards Development of Abiotic Stress Tolerant Grass Pea for Food and Nutritional Security. In: Kole, C. (eds) Genomic Designing for Abiotic Stress Resistant Pulse Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-91039-6_9

Download citation

Publish with us

Policies and ethics

Navigation