Synthesis of Iron-Cobalt Nanoalloys (ICNAs) and Their Metallic Composites

  • Reference work entry
  • First Online:
Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites

Abstract

Nanoalloys’ are the combination of bi- or multimetals is in the form of nanoparticles/materials. Nanoalloys are the most trusted area for the scientific community, because of their flexibility in structures combined with enhanced properties when compared to nanoparticles. Iron-cobalt nanoalloys (ICNAs) are an important material due to its soft magnetic and modified structural properties. MRI, drug delivery, magnetic recording, EMI shielding, and catalyst are the major applications of ICNAs. The geometrical structure, basic kinetics in the oxidation mechanism, and phase formation are important concepts in understanding ICNAs. Both the chemical and physical methods along with the precursors and reducing agents used in the synthesis of ICNAs are detailed. The shape of alloys varies with the method of preparation and the chemicals used. The variation in the properties of the material can be analyzed using XRD, TEM, VSM, SQUID, etc. Literature study reveals that the electrical, magnetic, and chemical property of ICNAs makes it a promising candidate in engineering materials. Various metallic composites such as Fe-Co-Ni, Fe-Co-Cu, and Fe-Co-Zn are listed with highlights. This chapter gives a detailed summary of the formation of alloy and its oxidation mechanism, preparation methods, experimental characterizations, and properties of ICNAs and some of its metallic composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 748.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 802.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham FF (1974) Homogeneous nucleation theory. Academic Press, New York

    Google Scholar 

  • Akkouche K, Guittoum A, Boukherroub N, Souami N (2011) Evolution of structure, microstructure and hyperfine properties of nanocrystalline Fe50Co50 powders prepared by mechanical alloying. J Magn Magn Mater 323:2542–2548

    CAS  Google Scholar 

  • Bai Yan G, Wu Y, Li X, Yu R (2017) Surface-oxidized FeCo/carbon nanotubes nanorods for lightweight and efficient microwave absorbers. Mater Des 136:13–22

    Google Scholar 

  • Bergheul S, Otmane F, Azzaz M (2012) Structural and microwave absorption properties of nanostructured Fe–Co alloys. Adv Powder Techn 23:580–582

    CAS  Google Scholar 

  • Braga TP, Dias DF, de Sousa MF, Soares JM, Sasaki JM (2015) Synthesis of air stable FeCo alloy nanocrystallite by proteic sol–gel method using a rotary oven. J Alloys Compd 622:408–417

    CAS  Google Scholar 

  • Brain I (1995) Thermochemical data of pure substances, vol 1, 3rd edn. VCH, New York

    Google Scholar 

  • Calizzi M, Mutschler R, Patelli N, Migliori A, Zhao K, Züttel LPA (2020) CO2 hydrogenation over unsupported Fe-Co nanoalloy catalysts. Nano 10:1360

    CAS  Google Scholar 

  • Carta D, Mountjoy G, Gass M, Navarra G, Casula MF, Corrias A (2007) Structural characterization study of FeCo alloy nanoparticles in a highly porous aerogel silica matrix. J Chem Phys 127:204705. https://doi.org/10.1063/1.2799995

    Article  CAS  Google Scholar 

  • Casu A, Casula MF, Corrias A, Falqui A, Loche D, Marras S, Sangregorio C (2008) The influence of composition and porosity on the magnetic properties of FeCo–SiO2 nanocomposite aerogels. Phys Chem Chem Phys 10:1043–1052

    CAS  Google Scholar 

  • Çelik Ö, Fırat T (2018) Synthesis of FeCo magnetic nanoalloys and investigation of heating properties for magnetic fluid hyperthermia. J Magn Magn Mater 456:11–16

    Google Scholar 

  • Chaubey GS, Barcena C, Poudyal N, Rong C, Gao J, Sun S, Liu JP (2007) Synthesis and stabilization of FeCo nanoparticles. J Am Chem Soc 129:7214–7215

    CAS  Google Scholar 

  • Collier KN, Jones NJ, Miller KJ, Qin YL, Laughlin DE, McHenry ME (2009) Controlled oxidation of FeCo magnetic nanoparticles to produce faceted FeCo/ferrite nanocomposites for rf heating applications. J Appl Phys 105:07A328. https://doi.org/10.1063/1.3054376

    Article  CAS  Google Scholar 

  • Cullity BD, Graham CD (2009) Introduction to magnetic materials, 2nd edn. Wiley, New York

    Google Scholar 

  • Delczeg-Czirjak EK, Edström A, Werwiński M, Rusz J, Skorodumova NV, Vitos L, Eriksson O (2014) Stabilization of the tetragonal distortion of FexCo1−x alloys by C impurities: a potential new permanent magnet. Phys Rev B 89:1444031–1444036

    Google Scholar 

  • Dupuis V, Khadra G, Montejano-Carrizales JM, Tournus F, Granja FA, Tamion A (2019) Mass selected FeCo clusters embedded in carbon matrix as bench mark nanocatalyst. ACS Appl Nano Mater 2:2864. https://doi.org/10.1021/acsanm.9b00313

    Article  CAS  Google Scholar 

  • Edström A, Werwiński M, Iuşan D, Rusz J, Eriksson O, Skokov KP, Radulov IA, Ener S, Kuz’min MD, Hong J, Fries M, Karpenkov DY, Gutfleisch O, Toson P, Fidler J (2015) Magnetic properties of (Fe1−xCox)2B alloys and the effect of do** by 5d elements. Phys Rev B 92:1744131–1744113

    Google Scholar 

  • Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910

    CAS  Google Scholar 

  • Gao K, Zhao J, Bai Z, Song W, Zhang R (2019) The preparation of FeCo/ZnO composites and enhancement of microwave absorbing property by two-step method. Materials 12:3259. https://doi.org/10.3390/ma12193259

    Article  CAS  Google Scholar 

  • Gubin SP, Koksharov YA, Khomutov GB, Yurkov GY (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74:489–520

    CAS  Google Scholar 

  • JianminBai Y-HX, Wang J-P (2007) Cubic and spherical high-moment FeCo nanoparticles with narrow size. IEEE Trans Magn 43:3340–3342

    Google Scholar 

  • Jones NJ, McNernym KL, Wise AT, Sorescu M, McHenry ME, Laughlin DE (2010) Observations of oxidation mechanisms and kinetics in faceted FeCo magnetic nanoparticles. J Appl Phys 107:09A304

    Google Scholar 

  • Karipoth P, Thirumurugan A, Justin Joseyphus R (2013) Synthesis and magnetic properties of flower-like FeCo particles through a one pot polyol process. J Colloid Interface Sci 404:49–55

    CAS  Google Scholar 

  • Ke F, Li Y, Zhang C, Zhu J, Chen P, Ju H, Xu Q, Zhu J (2018) MOG-derived porous FeCo/C nanocomposites as a potential platform for enhanced catalytic activity and lithium-ion batteries performance. J Colloid Interface Sci 522:283–290

    CAS  Google Scholar 

  • Kerber SJ, Barr TL, Mann GP, Brantley WA, Papazoglou E, Mitchell JC (1998) The complementary nature of X-ray photoelectron spectroscopy and angle-resolved X-ray diffraction part I: background and theory. J Mater Eng Perf 7:329–333

    CAS  Google Scholar 

  • Khadra G, Tamion A, Tournus F, Boisron O, Albin C, Dupuis V (2017) Structure and magnetic properties of FeCo clusters: carbon environment and annealing effects. ISSPIC XVIII: international symposium on small particles and inorganic clusters. https://doi.org/10.1021/acs.jpcc.6b10715

  • Koutsopoulos S, BarfodK R, Eriksen M, Fehrmann R (2017) Synthesis and characterization of iron-cobalt (FeCo) alloy nanoparticles supported on carbon. J Alloys Compd 725:1210–1216

    CAS  Google Scholar 

  • Kuchi R, Lee K-M, Lee Y, Luong CH, Lee K-D, Park B-G, Jeong J-R (2015) Synthesis of highly magnetic FeCo nanoparticles through a one pot polyol process using all metal chlorides precursors with precise composition tunability. Nanosci Nanotechnol Lett 7:734–737

    Google Scholar 

  • Lee B-H, Lee YJ, Min KH, Kim D-G, Do Kim Y (2005) Synthesis of nano-sized Fe–Co alloy powders by chemical solution mixing of metal salts and hydrogen reduction (CSM-HR). Mater Lett 59:3156–3159

    CAS  Google Scholar 

  • Lee SJ, Cho J-H, Lee C, Cho J, Kim Y-R, Park JK (2011) Synthesis of highly magnetic graphite-encapsulated FeCo nanoparticles using a hydrothermal process. Nanotechnology 22(37):375603. https://doi.org/10.1088/0957-4484/22/37/375603

    Article  CAS  Google Scholar 

  • Liu M, Yu F, Ma C, Xue X, Fu H, Yuan H, Yang S, Wang G, Guo X, Zhang L (2019) Effective oxygen reduction reaction performance of FeCo alloys in situ anchored on nitrogen-doped carbon by the microwave-assistant carbon Bath method and subsequent plasma etching. Nano 9:1–12

    Google Scholar 

  • Lu A, Yu Y, Li X, Liu W, Yang H, Wu D, Yang S (2014) Dextran-coated superparamagnetic amorphous Fe–Co nanoalloy for magnetic resonance imaging applications. Mater Res Bull 49:285–290

    Google Scholar 

  • Moumeni H, Alleg S, Greneche JM (2005) Structural properties of Fe50Co50 nanostructured powder prepared by mechanical alloying. J Alloys Compd 386:12–19

    CAS  Google Scholar 

  • Nautiyal P, SeikhMd M, OlegI L, AsishK K (2015) Sol–gel synthesis of Fe–Co nanoparticles and magnetization study. J Magn Magn Mater 377:402–405

    CAS  Google Scholar 

  • Nicula R, Cojocaru VD, Stir M, Hennicke J, Burkel E (2007) High-energy ball-milling synthesis and densification of Fe–Co alloy nanopowders by field-activated sintering (FAST). J Alloys Compd 434–435:362–366

    Google Scholar 

  • Ponraj R, Thirumurugan A, Antilen Jacob G, Sivaranjani KS, Justin Joseyphus R (2020) Morphology and magnetic properties of FeCo alloy synthesized through polyol process. Appl Nanosci 10:477–483

    CAS  Google Scholar 

  • Popova AN (2012) Synthesis and characterization of iron-cobalt nanoparticles. IV nanotechnology international forum (Rusnanotech2011), IOP Publishing. J Phys Conf Series 345:012030. https://doi.org/10.1088/1742-6596/345/1/012030

    Article  CAS  Google Scholar 

  • Sadakiyo M, Heima M, Yamamoto T, Matsumura S, Atsuura M, Sugimoto S, Kato K, Takatae M, Yamauchi M (2015) Preparation of solid–solution type Fe–Co nanoalloys by synchronous deposition of Fe and Co using dual arc plasma guns. Dalton Trans 44:15764–15768

    CAS  Google Scholar 

  • Sánchez-De Jesús F, Bolarín-Miró AM, Cortés Escobedo CA, Torres-Villaseñor G, Vera-Serna P (2016) Structural analysis and magnetic properties of FeCo alloys obtained by mechanical alloying. J Metall 8347063:1–8

    Google Scholar 

  • Sharifati A, Sharafi S (2012) Structural and magnetic properties of nanostructured (Fe70Co30)1001_xCux alloy prepared by high energy ball milling. Mater Des 41:8–15

    CAS  Google Scholar 

  • Shin SJ, Kim YH, Kim CW, Cha HG, Kim YJ, Kang YS (2007) Preparation of magnetic FeCo nanoparticles by coprecipitation route. Curr Appl Phys 7:404–408

    Google Scholar 

  • Shokuhfar A, Afghahi SSS (2014) Size controlled synthesis of FeCo alloy nanoparticles and study of the particle size and distribution effects on magnetic properties. Adv Mater Sci Eng. https://doi.org/10.1155/2014/295390

  • Terakado O, Uno Y, Hirasawa M (2014) Synthesis of fine ironcobalt alloy particles by the Co-reduction of precursors with solvated electrons in sodiumammonia solution. Mater Transac 55:517–521

    CAS  Google Scholar 

  • Tzitzios V, Basina G, Niarchos D, Li W, Hadjipanayis G (2011) Synthesis of air stable FeCo nanoparticles. J Appl Phys 109:07A313

    Google Scholar 

  • Vasilev AA, Dzidziguri EL, Muratov DG, Zhilyaeva NA, Efimov MN, Karpacheva GP (2018) Morphology and dispersion of FeCo alloy nanoparticles dispersed in a matrix of IR pyrolized polyvinyl alcohol. IOP Conf Series Mater Sci Eng 347:012011

    Google Scholar 

  • Wang Q, Wu A, Yu L, Liu Z, Xu W, Yang H (2009) Nanocomposites of iron-cobalt alloy and magnetite: controllable solvothermal synthesis and their magnetic properties. J Phys Chem C 113:19875–19882

    CAS  Google Scholar 

  • Yan J, Huang Y, Liu P, Wei C (2017) Large-scale controlled synthesis of magnetic FeCo alloy with different morphologies and their high performance of electromagnetic wave absorption. J Mater Sci Mater Electron 28:3159–3167

    CAS  Google Scholar 

  • Yang B, Cao Y, Zhang L, Li RF, Yang XY, Yu RH (2014) Controlled chemical synthesis and enhanced performance of micron-sized FeCo particles. J Alloys Compd 615:322–326

    CAS  Google Scholar 

  • Yang B, Wu Y, Li X, Yu R (2018) Chemical synthesis of high-stable Amorphous FeCo Nanoalloys with good magnetic properties. Nano 8(154):1–14

    Google Scholar 

  • Yu RH, Basu S, Ren L, Zhang Y, Parvizi-Majidi A, Unruh KM, **ao JQ (2000) High temperature soft magnetic materials: FeCo alloys and composites. IEEE Trans Magn 36:3388. https://doi.org/10.1109/INTMAG.2000.871874

    Article  CAS  Google Scholar 

  • Zelenakova A, Oleksakova D, Degmova J, Kovac J, Kollar P, Kusy M, Sovak P (2007) Structural and magnetic properties of mechanically alloyed FeCo powders. J Magn Magn Mater 316:e519–e522

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Narayanan, M., Gunasekaran, V., Rajagopal, G., Rajesh, J. (2022). Synthesis of Iron-Cobalt Nanoalloys (ICNAs) and Their Metallic Composites. In: Thomas, S., Rezazadeh Nochehdehi, A. (eds) Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-90948-2_8

Download citation

Publish with us

Policies and ethics

Navigation