Sulfur-Containing Polymer Cathode Materials for Li–S Batteries

  • Chapter
  • First Online:
Advances in Rechargeable Lithium–Sulfur Batteries

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 59))

  • 1112 Accesses

Abstract

Due to high energy density and low cost of sulfur, lithium-sulfur batteries are of great promise to substitute for lithium-ion batteries in a variety of applications, ranging from electric vehicles to portable electronics. Unfortunately, while providing many advantages, sulfur also has several fatal problems, including poor electronic conductivity, huge volume variation upon charge/discharge, and shuttle effect of polysulfides. Utilizing sulfur-containing polymers rather than elemental sulfur as cathode materials for lithium-sulfur batteries received tremendous attention in recent years. Sulfur species are confined in sulfur-containing polymers via covalent bonds, which can greatly alleviate the shuttle effect and thus render lithium-sulfur batteries improved discharge capacity, enhanced rate capability, and high cycling stability. In this chapter, a comprehensive review on the recent development of sulfur-containing polymer cathodes is provided. Different electrochemical behaviors and different molecular structures of sulfur-containing polymer cathode materials are systematically summarized. Furthermore, the optimization strategies for sulfur-containing polymer cathodes are discussed in detail. Finally, the remaining problems and future prospects for sulfur-containing polymer cathodes are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chung SH, Chang CH, Manthiram A (2018) Progress on the critical parameters for lithium-sulfur batteries to be practically viable. Adv Funct Mater 28:1801188

    Article  Google Scholar 

  2. Fang R, Zhao S, Sun Z, Wang DW, Cheng HM, Li F (2017) More reliable lithium-sulfur batteries: status, Solutions and Prospects. Adv Mater 29:1606823

    Article  Google Scholar 

  3. Zhao M, Li BQ, Peng HJ, Yuan H, Wei JY, Huang JQ (2020) Lithium-sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew Chem-Int Edit 59:12636–12652

    Article  CAS  Google Scholar 

  4. Liu Y, Wang W, Wang A, ** Z, Zhao H, Yang Y (2017) A polysulfide reduction accelerator-NiS2-modified sulfurized polyacrylonitrile as a high performance cathode material for lithium-sulfur batteries. J Mater Chem A 5:22120–22124

    Article  CAS  Google Scholar 

  5. Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G (2019) Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5:2326–2352

    Article  CAS  Google Scholar 

  6. Su D, Zhou D, Wang C, Wang G (2018) Toward high performance lithium-sulfur batteries based on Li2S cathodes and beyond: status, challenges, and perspectives. Adv Funct Mater 28:1800154

    Article  Google Scholar 

  7. Zhu J, Zhu P, Yan C, Dong X, Zhang X (2019) Recent progress in polymer materials for advanced lithium-sulfur batteries. Prog Polym Sci 90:118–163

    Article  CAS  Google Scholar 

  8. Simmonds AG, Griebel JJ, Park J, Kim KR, Chung WJ, Oleshko VP, Kim J, Kim ET, Glass RS, Soles CL, Sung Y-E, Char K, Pyun J (2014) Inverse vulcanization of elemental sulfur to prepare polymeric electrode materials for Li-S batteries. ACS Macro Lett 3:229–232

    Article  CAS  Google Scholar 

  9. Zhou D, Chen Y, Li B, Fan H, Cheng F, Shanmukaraj D, Rojo T, Armand M, Wang G (2018) A stable quasi-solid-state sodium-sulfur battery. Angew Chem-Int Edit 57:10168–10172

    Article  CAS  Google Scholar 

  10. Tang X, Zhou D, Li P, Guo X, Sun B, Liu H, Yan K, Gogotsi Y, Wang G (2020) MXene-based dendrite-free potassium metal batteries. Adv Mater 32:1906739

    Article  CAS  Google Scholar 

  11. Chung WJ, Griebel JJ, Kim ET, Yoon H, Simmonds AG, Ji HJ, Dirlam PT, Glass RS, Wie JJ, Nguyen NA, Guralnick BW, Park J, Somogyi A, Theato P, Mackay ME, Sung Y-E, Char K, Pyun J (2013) The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat Chem 5:518–524

    Google Scholar 

  12. Kim H, Lee J, Ahn H, Kim O, Park MJ (2016) Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries. Nat Commun 6:7278

    Article  Google Scholar 

  13. Shin H, Kim D, Kim HJ, Kim J, Char K, Yavuz CT, Choi JW (2019) Fluorinated covalent organic polymers for high performance sulfur cathodes in lithium−sulfur batteries. Chem Mater 31:7910–7921

    Article  CAS  Google Scholar 

  14. Wang W, Cao Z, Elia GA, Wu Y, Wahyudi W, Abou-Hamad E, Emwas A-H, Cavallo L, Li L-J, Ming J (2018) Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li-S batteries and beyond in Al-S batteries. ACS Energy Lett 3:2899–2907

    Article  CAS  Google Scholar 

  15. Preefer MB, Oschmann B, Hawker CJ, Seshadri R, Wudl F (2017) High sulfur content material with stable cycling in lithium-sulfur batteries. Angew Chem-Int Edit 56:15118–15122

    Article  CAS  Google Scholar 

  16. Kim J, Elabd A, Chung S-Y, Coskun A, Choi JW (2020) Covalent triazine frameworks incorporating charged polypyrrole channels for high performance lithium-sulfur batteries. Chem Mater 32(10):4185–4193

    Article  CAS  Google Scholar 

  17. Dong P, Han KS, Lee J-I, Zhang X, Cha Y, Song M-K (2018) Controlled synthesis of sulfur-rich polymeric selenium sulfides as promising electrode materials for long-life, high-rate lithium metal batteries. ACS Appl Mater Interfaces 10:29565–29573

    Article  CAS  Google Scholar 

  18. Gomez I, Leonet O, Blazquez JA, Grande H-J, Mecerreyes D (2018) Poly(anthraquinonyl sulfides): high capacity redox polymers for energy storage. ACS Macro Lett 7:419–424

    Google Scholar 

  19. Zhang X, Chen K, Sun Z, Hu G, **ao R, Cheng H-M, Li F (2020) Structure-related electrochemical performance of organosulfur compounds for lithium-sulfur batteries. Energy Environ Sci 13:1076–1095

    Article  CAS  Google Scholar 

  20. Wei S, Ma L, Hendrickson KE, Tu Z, Archer LA (2015) Metal-sulfur battery cathodes based on PAN-sulfur composites. J Am Chem Soc 137(37):12143–12152

    Article  CAS  Google Scholar 

  21. Zhang Y, Griebel JJ, Dirlam PT, Nguyen NA, Glass RS, Mackay ME, Char K, Pyun J (2017) Inverse vulcanization of elemental sulfur and styrene for polymeric cathodes in Li-S batteries. J Polym Sci Pol Chem 55:107–116

    Article  CAS  Google Scholar 

  22. Chen Z, Droste J, Zhai G, Zhu J, Yang J, Hansen MR, Zhuang X (2019) Sulfur-anchored azulene as a cathode material for Li-S batteries. Chem Commun 55:9047–9050

    Article  CAS  Google Scholar 

  23. Zhao F, Li Y, Feng W (2018) Recent advances in applying vulcanization/inverse vulcanization methods to achieve high-performance sulfur containing polymer cathode materials for Li–S batteries. Small Methods 2:1800156

    Article  Google Scholar 

  24. Nguyen DT, Hoefling A, Yee M, Nguyen GTH, Theato P, Lee YJ, Song S-W (2019) Enabling high-rate and safe lithium ion-sulfur batteries by effective combination of sulfur-copolymer cathode and hard-carbon anode. Chemsuschem 12:480–486

    Article  CAS  Google Scholar 

  25. Hoefling A, Nguyen DT, Partovi-Azar P, Sebastiani D, Theato P, Song S-W, Lee YJ (2018) Mechanism for the stable performance of sulfur-copolymer cathode in lithium-sulfur battery studied by solid-state NMR spectroscopy. Chem Mater 30:2915–2923

    Article  CAS  Google Scholar 

  26. Zeng S, Li L, Zhao D, Liu J, Niu W, Wang N, Chen S (2017) Polymer-capped sulfur copolymers as lithium-sulfur battery cathode: enhanced performance by combined contributions of physical and chemical confinements. J Phys Chem C 121:2495–2503

    Article  CAS  Google Scholar 

  27. Liu X, Wang S, Wang A, Chen J, Wang Z, Zeng Q, Liu W, Li Z, Zhang L (2019) A new conjugated porous polymer with covalently linked polysulfide as cathode material for high-rate capacity and high coulombic efficiency lithium-sulfur batteries. J Phys Chem C 123:21327–21335

    Article  CAS  Google Scholar 

  28. Kang H, Kim H, Park MJ (2018) Sulfur-rich polymers with functional linkers for high capacity and fast-charging lithium-sulfur batteries. Adv Energy Mater 1802423

    Google Scholar 

  29. Oschmann B, Park J, Kim C, Char K, Sung Y-E, Zentel R (2015) Copolymerization of polythiophene and sulfur to improve the electrochemical performance in lithium-sulfur batteries. Chem Mater 27(20):7011–7017

    Article  CAS  Google Scholar 

  30. Tiwari VK, Song H, Oh Y, Jeong Y (2020) Synthesis of sulfur-co-polymer/porous long carbon nanotubes composite cathode by chemical and physical binding for high performance lithium-sulfur batteries. Energy 195:117034

    Google Scholar 

  31. Sun Z, **ao M, Wang S, Han D, Song S, Chen G, Meng Y (2014) Sulfur-rich polymeric materials with semiinterpenetrating network structure as a novel lithium-sulfur cathode. J Mater Chem A 2:9280–9286

    Article  CAS  Google Scholar 

  32. Dirlam PT, Simmonds AG, Kleine TS, Nguyen NA, Anderson LE, Klever AO, Florian A, Costanzo PJ, Theato P, Mackay ME, Glass RS, Charf K, Pyun J (2015) Inverse vulcanization of elemental sulfur with 1,4-diphenylbutadiyne for cathode materials in Li-S batteries. RSC Adv 5:24718–24722

    Article  CAS  Google Scholar 

  33. Wu F, Chen S, Srot V, Huang Y, Sinha SK, Aken PA, Maier J, Yu Y (2018) A sulfur-limonene-based electrode for lithium-sulfur batteries: high-performance by self-protection. Adv Mater 1706643

    Google Scholar 

  34. Hoefling A, Lee YJ, Theato P (2017) Sulfur-based polymer composites from vegetable oils and elemental sulfur: a sustainable active material for Li-S batteries. Macromol Chem Phys 218(1):1600303

    Article  Google Scholar 

  35. Je SH, Hwang TH, Talapaneni SN, Buyukcakir O, Kim HJ, Yu J-S, Woo S-G, Jang MC, Son BK, Coskun A, Choi JW (2016) Rational sulfur cathode design for lithium-sulfur batteries: sulfur-embedded benzoxazine polymers. ACS Energy Lett 1(3):566–572

    Article  CAS  Google Scholar 

  36. Krishnaraj C, Jena HS, Leus K, Voort PVD (2020) Covalent triazine frameworks—a sustainable perspective. Green Chem 22:1038–1071

    Article  Google Scholar 

  37. Talapaneni SN, Hwang TH, Je SH, Buyukcakir O, Choi JW, Coskun A (2016) Elemental-sulfur-mediated facile synthesis of a covalent triazine framework for high-performance lithium-sulfur batteries. Angew Chem-Int Ed 55(9):3106–3111

    Article  CAS  Google Scholar 

  38. Xu F, Yang S, Jiang G, Ye Q, Wei B, Wang H (2017) Fluorinated, sulfur-rich, covalent triazine frameworks for enhanced confinement of polysulfides in lithium-sulfur batteries. ACS Appl Mater Interfaces 9:37731–37738

    Article  CAS  Google Scholar 

  39. Wang X, Qian Y, Wang L, Yang H, Li H, Zhao Y, Liu T (2019) Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries. Adv Funct Mater 1902929

    Google Scholar 

  40. Je SH, Kim HJ, Kim J, Choi JW, Coskun A (2017) Perfluoroaryl-elemental sulfur SNAr chemistry in covalent triazine frameworks with high sulfur contents for lithium-sulfur batteries. Adv Funct Mater 27:1703947

    Article  Google Scholar 

  41. Zeng S, Li L, Yu J, Wang N, Chen S (2018) Highly crosslinked organosulfur copolymer nanosheets with abundant mesopores as cathode materials for efficient lithium-sulfur batteries. Electrochim Acta 263:53–59

    Article  CAS  Google Scholar 

  42. Zhou H, Yu F, Wei M, Su Y, Ma Y, Wang D, Shen Q (2019) Substituting copolymeric poly(alkylenetetrasulfide) for elemental sulfur to diminish the shuttling effect of modified intermediate polysulfides for high-performance lithium-sulfur batteries. Chem Commun 55:3729–3732

    Article  CAS  Google Scholar 

  43. Hua H, Zhao B, Cheng H, Dai S, Kane N, Yu Y, Liu M (2019) A robust 2D organic polysulfane nanosheet with grafted polycyclic sulfur for highly reversible and durable lithium-organosulfur batteries. Nano Energy 57:635–643

    Article  Google Scholar 

  44. Yin L, Wang J, Lin F, Yang J, Nuli Y (2012) Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries. Energy Environ Sci 5:6966

    Article  CAS  Google Scholar 

  45. Wang J, Yang J, **e J, Xu N (2002) A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv Mater 14:963–965

    Article  CAS  Google Scholar 

  46. Wang J, Yang J, Nuli Y, Holze R (2007) Room temperature Na/S batteries with sulfur composite cathode materials. Electrochem Commun 9:31–34

    Article  CAS  Google Scholar 

  47. Hwang TH, Jung DS, Kim J-S, Kim BG, Choi JW (2013) One-dimensional carbon−sulfur composite fibers for Na-S rechargeable batteries operating at room temperature. Nano Lett 13:4532–4538

    Article  CAS  Google Scholar 

  48. Yang H, Chen J, Yang J, Wang J (2020) Prospect of sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) cathode materials for rechargeable lithium batteries. Angew Chem-Int Ed 59(19):7306–7318

    Article  CAS  Google Scholar 

  49. Weret MA, Kuo C-FJ, Zeleke TS, Beyene TT, Tsai M-C, Huang C-J, Berhe GB, Su W-N, Hwang B-J (2020) Mechanistic understanding of the sulfurized-poly(acrylonitrile) cathode for lithium-sulfur batteries. Energy Storage Mater 26:483–493

    Article  Google Scholar 

  50. Fanous J, Wegner M, Grimminger J, Andresen A, Buchmeiser MR (2011) Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries. Chem Mater 23:5024–5028

    Google Scholar 

  51. Warneke S, Hintennach A, Buchmeiser MR (2018) Communication—influence of carbonate-based electrolyte composition on cell performance of SPAN-based lithium-sulfur-batteries. J Electrochem Soc 165:A2093–A2095

    Article  CAS  Google Scholar 

  52. Gao J, Lowe MA, Kiya Y, Abruña HD (2011) Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J Phys Chem C 115:25132–25137

    Article  CAS  Google Scholar 

  53. Xu Z, Wang J, Yang J, Miao X, Chen R, Qian J, Miao R (2016) Enhanced performance of a lithium-sulfur battery using a carbonate-based electrolyte. Angew Chem-Int Ed 55:10372–10375

    Article  CAS  Google Scholar 

  54. Chen X, Peng L, Wang L, Yang J, Hao Z, **. Nat Commun 10:1021

    Article  Google Scholar 

  55. Wang J, Yin L, Jia H, Yu H, He Y, Yang J, Monroe CW (2014) Hierarchical sulfur-based cathode materials with long cycle life for rechargeable lithium batteries. Chemsuschem 7:563–569

    Article  CAS  Google Scholar 

  56. Zeng S-Z, Zeng X, Tu W, Huang H, Yu L, Yao Y, ** N, Zhang Q, Zou J (2018) A universal strategy to prepare sulfur-containing polymer composites with desired morphologies for lithium-sulfur batteries. ACS Appl Mater Interfaces 10:22002–22012

    Article  CAS  Google Scholar 

  57. Yin L, Wang J, Yang J, Nuli Y (2011) A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries. J Mater Chem 21:6807–6810

    Article  CAS  Google Scholar 

  58. Hu G, Sun Z, Shi C, Fang R, Chen J, Hou P, Liu C, Cheng H-M, Li F (2017) A sulfur-rich copolymer@CNT hybrid cathode with dual-confnement of polysulfdes for high-performance lithium-sulfur batteries. Adv Mater 1603835

    Google Scholar 

  59. Zeng S, Li L, **e L, Zhao D, Zhou N, Wang N, Chen S (2017) Graphene-supported highly crosslinked organosulfur nanoparticles as cathode materials for high-rate, Long-Life Lithium-Sulfur Battery. Carbon 122:106–113

    Article  CAS  Google Scholar 

  60. Ding B, Chang Z, Xu G, Nie P, Wang J, Pan J, Dou H, Zhang X (2015) Nanospace-confinement copolymerization strategy for encapsulating polymeric sulfur into porous carbon for lithium-sulfur batteries. ACS Appl Mater Interfaces 7(21):11165–11171

    Article  CAS  Google Scholar 

  61. Chang C-H, Manthiram A (2018) Covalently grafted polysulfur-graphene nanocomposites for ultrahigh sulfur-loading lithium-polysulfur batteries. ACS Energy Lett 3(1):72–77

    Article  CAS  Google Scholar 

  62. Shen K, Mei H, Li B, Ding J, Yang S (2017) 3D printing sulfur copolymer-graphene architectures for Li-S batteries. Adv Energy Mater 1701527

    Google Scholar 

  63. Shi Y, Peng L, Ding Y, Zhao Y, Yu G (2015) Nanostructured conductive polymers for advanced energy storage. Chem Soc Rev 44:6684–6696

    Article  CAS  Google Scholar 

  64. Gomez I, Mantione D, Leonet O, Blazquez JA, Mecerreyes D (2018) Hybrid sulfurselenium co-polymers as cathodic materials for lithium batteries. ChemElectroChem 5:260–265

    Article  CAS  Google Scholar 

  65. Park S, Kim S-J, Sung Y-E, Char K, Son JG (2019) Short-chain polyselenosulfide copolymers as cathode materials for lithium-sulfur batteries. ACS Appl Mater Interfaces 11:45785–45795

    Article  CAS  Google Scholar 

  66. Li S, Han Z, Hu W, Peng L, Yang J, Wang L, Zhang Y, Shan B, **e J (2019) Manipulating kinetics of sulfurized polyacrylonitrile with tellurium as eutectic accelerator to prevent polysulfide dissolution in lithium-sulfur battery under dissolution-deposition mechanism. Nano Energy 60:153–161. https://doi.org/10.1016/j.nanoen.2019.03.023

  67. Du Z, Chen X, Hu W, Chuang C, **e S, Hu A, Yan W, Kong X, Wu X, Ji H, Wan L-J (2019) Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J Am Chem Soc 141:3977–3985

    Article  CAS  Google Scholar 

  68. Kim SJ, Kim K, Park J, Sung YE (2019) Role and potential of metal sulfide catalysts in lithium-sulfur battery applications. ChemCatChem 11:2373–2387

    Article  CAS  Google Scholar 

  69. Liu Y, Yang D, Yan W, Huang Q, Zhu Y, Fu L, Wu Y (2019) Synergy of sulfur/polyacrylonitrile composite and gel polymer electrolyte promises heat-resistant lithium-sulfur batteries. iScience 19:316–325

    Google Scholar 

  70. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33:363–386

    Google Scholar 

  71. Wang Y, Zhou D, Palomares V, Shanmukaraj D, Sun B, Tang X, Wang C, Armand M, Rojo T, Wang G (2020) Revitalising sodium-sulfur batteries for non-high-temperature operation: a crucial review. Energy Environ Sci 13:3848–3879

    Article  CAS  Google Scholar 

  72. Zhang Y, Sun Y, Peng L, Yang J, Jia H, Zhang Z, Shan B, **e J (2019) Se as eutectic accelerator in sulfurized polyacrylonitrile for high performance all-solid-state lithium-sulfur battery. Energy Storage Mater 21:287–296

    Article  Google Scholar 

  73. Li M, Frerichs JE, Kolek M, Sun W, Zhou D, Huang CJ, Hwang BJ, Hansen MR, Winter M, Bieker P (2020) Solid-state lithium-sulfur battery enabled by thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode. Adv Funct Mater 30:1910123

    Article  CAS  Google Scholar 

  74. Gracia I, Benyoucef H, Judez X, Oteo U, Zhang H, Li C, Rodriguez-Martinez LM, Armand M (2018) S-containing copolymer as cathode material in poly(ethylene oxide)-based all-solid-state Li-S batteries. J Power Sources 390:148–152

    Article  CAS  Google Scholar 

  75. Wang Y, Wang G, He P, Hu J, Jiang J, Fan L-Z (2020) Sandwich structured NASICON-type electrolyte matched with sulfurized polyacrylonitrile cathode for high performance solid-state lithium-sulfur batteries. Chem Eng J 393:124705

    Google Scholar 

Download references

Acknowledgements

Prof. G. Wang would like to acknowledge the support by the Australian Research Council (ARC) Discovery Projects (DP200101249 and DP210101389).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxiu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y., Zhou, D., Wang, G. (2022). Sulfur-Containing Polymer Cathode Materials for Li–S Batteries. In: Manthiram, A., Fu, Y. (eds) Advances in Rechargeable Lithium–Sulfur Batteries. Modern Aspects of Electrochemistry, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-030-90899-7_8

Download citation

Publish with us

Policies and ethics

Navigation