Experimental Study Between TPU Flex and Silicon Materials Mechanical Properties as an Alternatives in Development of the CardioVASS Heart Model

  • Conference paper
  • First Online:
6th Kuala Lumpur International Conference on Biomedical Engineering 2021 (BIOMED 2021)

Abstract

The development of a heart model for medical training purposes in the current market is still new. The mechanical properties and the selection of materials become the main elements in determining the type of materials used. This paper highlighted to study of the mechanical properties between TPU Flex and silicon to determine the suitability of the material for the development of the CardioVASS heart model. Both of the materials were assessed by utilizing the tensile, compression, and hardness test methods to prove the validity of the materials for the CardioVASS heart model. Results suggested that the TPU Flex was superior to the silicon materials in terms of strength and durability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 267.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Su, S.H., Hua, Z.K., Zhang, J.H.: Design and mechanics simulation of bionic lubrication system of artificial joints. J. Bionic Eng. 3, 155–160 (2006)

    Article  Google Scholar 

  2. Bondurant, S., Ernster, V., Herdman, R., Implants, C.S.S.B., Medicine, I.: Safety of Silicone Breast Implants. National Academies Press, Washington, USA (2000)

    Google Scholar 

  3. Goudie, C., Gill, A., Shanahan, J., Furey, A., Dubrowski, A.: Development of an anatomical silicone model for simulation-based medical training of obstetric anal sphincter injury repair in Bangladesh. Cureus (2019). https://doi.org/10.7759/cureus.3991

    Article  Google Scholar 

  4. Barton, A.: Medical adhesive-related skin injuries associated with vascular access: minimising risk with appeel sterile. Br. J. Nurs. 29, S20–S27 (2020)

    Article  Google Scholar 

  5. Swift, T., Westgate, G., Van Onselen, J., Lee, S.: Developments in silicone technology for use in stoma care. Br. J. Nurs. 29, S6–S15 (2020)

    Article  Google Scholar 

  6. Barboza, E.P., et al.: Evaluation of surgical gown textiles for resistance against aerosols: a preclinical double-blind study. Front. Dent. Med. 2 (2021)

    Google Scholar 

  7. Li, X., Koh, K.H., Farhan, M., Lai, K.W.C.: An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles. Nanoscale 12, 4110–4118 (2020)

    Article  Google Scholar 

  8. Chen, Q., et al.: Enhanced strain sensing performance of polymer/carbon nanotube-coated spandex fibers via noncovalent interactions. Macromol. Mater. Eng. 305 (2020)

    Google Scholar 

  9. Ashby, M.F.: Material profiles. In: Materials and the Environment (2013)

    Google Scholar 

  10. Curtis, J., Colas, A.: In: Ratner, B.D., Hoffman, A.S., Schoen, F.J. (eds.) Biomaterials Science: An Introduction to Materials in Medicine, pp. 80–86. Elsevier Academic Press, Amsterdam (2004)

    Google Scholar 

  11. Poojari, Y.: Silicones for encapsulation of medical device implants. Silicon 9(5), 645–649 (2017). https://doi.org/10.1007/s12633-017-9603-4

    Article  Google Scholar 

  12. Zhang, X., Brodus, D.S., Hollimon, V., Hu, H.: A brief review of recent developments in the designs that prevent bio-fouling on silicon and silicon-based materials. Chem. Cent. J. (2017). https://doi.org/10.1186/s13065-017-0246-8

  13. Yeh, S.-B., Chen, C.-S., Chen, W.-Y., Huang, C.-J.: Modification of silicone elastomer with zwitterionic silane for durable antifouling properties. Langmuir 30(38), 11386–11393 (2014)

    Article  Google Scholar 

  14. Rahaman, M., **ao, W.: Silicon nitride bioceramics in healthcare. Int. J. Appl. Ceram. Technol. 15(4), 861–872 (2018). https://doi.org/10.1111/ijac.12836

    Article  Google Scholar 

  15. Rosli, N.A.K., Adib, M.A.H.M., Sukri, N.N.M., Sahat, I.M., Hasni, N.H.M.: The CardioVASS heart model: comparison of biomaterials between TPU flex and soft epoxy resin for biomedical engineering application. In: 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), pp. 224–229 (2021). https://doi.org/10.1109/IECBES48179.2021.9398731

  16. Chauvel-Lebret, D.J., Auroy, P., Bonnaure-Mallet, M.: Biocompatibility of elastomers. In: Dumitriu, S. (ed.) Polymeric Biomaterials, Revised and Expanded. Taylor & Francis, pp. 311–360 (2001)

    Google Scholar 

  17. Wasikiewicz, J.M., Roohpour, N., Vadgama, P.: Packaging and coating materials for implantable device. In: Inmann, A., Hodgins, D. (eds.) Implantable Sensor Systems for Medical Applications, pp. 68–107. Woodhead Publishing Limited, Oxford, UK (2013)

    Chapter  Google Scholar 

  18. Adib, M.A.H.M., Hasni, N.H.M.: Study the heart valve elasticity and optimal of vortex formation for blood circulation measurement on the left ventricle using the heart simulator (Heart-S) apparatus. In: ACM International Conference Proceeding Series, pp. 58–62 (2017)

    Google Scholar 

  19. Liang, L.Q., Hui, K.Y., Hasni, N.H.M., Adib, M.A.H.M.: Development of heart simulator (heart-S) on the left ventricle for measuring the blood circulation during cardiac cycle. J. Biomimet. Biomater. Biomed. Eng. 36, 78–83 (2018)

    Google Scholar 

  20. Rosli, N.A.K., Adib, M.A.H.M., Hasni, N.H.M., Abdullah, M.S.: Effect of hemodynamic parameters on physiological blood flow through cardiovascular disease (CVD)—the perspective review. J. Adv. Res. Fluid Mech. Therm. Sci. 74, 19–34 (2020)

    Article  Google Scholar 

  21. Adib, M.A.H.M., Yakof, K.S.A., Anuar, Z., Abdullah, N., Sahat, I.M., Hasni, N.H.M.: The cardio vascular simulator (CardioVASS) device on monitoring the physiology of blood flow circulation via angiographic image for medical trainee. J. Adv. Res. Fluid Mech. Therm. Sci. (2019)

    Google Scholar 

  22. E3-95: Standard practice for preparation of metallographic specimens. ASTM Int. 82(C), 1–15 (2016)

    Google Scholar 

  23. Tractus3D: TPU material, Aug 2020 [Online]. Available: https://tractus3d.com/materials/tpu

  24. Sharma, S., Jujhar, S., Harish, K., Abhinav, S., Vivek, A., Amoljit, S.G., Jayarambabu, J., Saraswathi, A., Rao, K.V.: Utilization of rapid prototy** technology for the fabrication of an orthopedic shoe inserts for foot pain reprieve using thermo-softening viscoelastic polymers: a novel experimental approach. Measur. Control 53(3), 519–530 (2020)

    Google Scholar 

  25. Yakof, K.S.A., Zabudin, N.F., Sahat, I.M., Adib, M.A.H.M.: Development of 3D printed heart model for medical training. Lect. Notes Mech. Eng. 0(9789811087875), 109–116 (2018)

    Google Scholar 

  26. Li, R.L., Russ, J., Poschalides, C., Ferrari, G., Waisman, H., Kysar, J.W., Kalfa, D.: Mechanical considerations for polymeric heart valve development: biomechanics, materials, design and manufacturing. J. Biomater. 225, 119493 (2019)

    Google Scholar 

  27. Hoashi, T., Ichikawa, H., Nakata, T., Shimada, M., Ozawa, H., Higashida, A., Kurosaki, K., Kanzaki, S., Shirashi, I.: Utility of a super-flexible three-dimensional printed heart model in congenital heart surgery. In: 31st Annual Meeting of the European Association for Cardio-Thoracic Surgery, Vienna, Austria (2017)

    Google Scholar 

  28. Anna, K., Dominik, K., Michal, W., Elzbieta, J., Tomasz, C., Zbigniew, B.: Lab-on-a-chip system integrated with nanofiber mats used as a potential tool to study cardiovascular diseases (CVDs). Sens. Actuators B Chem. 330 (2021)

    Google Scholar 

  29. Ze-Wei, T., Siliang, W., Elizabeth, M.C.H., Jeffrey, G.J.: Evaluation of a polyurethane-reinforced hydrogel patch in a rat right ventricle wall replacement model. Acta Biomater. 101, 206–218 (2020)

    Article  Google Scholar 

  30. Geoff, B.: The Engineer’s Guide to Plant Layout and Pi** Design for the Oil and Gas Industries. Gulf Professional Publishing (2018)

    Google Scholar 

  31. Nicholas, H.C.: Silicone Elastomers for Artificial Hearts: 3D-Printing. Bioactive Glass and Potential. ETH Zurich, Germany (2018)

    Google Scholar 

Download references

Acknowledgements

The support from the Ministry of Higher Education (MOHE) under PRGS grant PRGS/1/2019/TK03/UMP/02/4, UMP under grant RDU190805 and PGRS2003198 and Medical Engineering and Health Intervention Team (MedEHiT) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Azrul Hisham Mohd Adib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosli, N.A.K., Adib, M.A.H.M., Ming, M.C., Sukri, N.N.M., Sahat, I.M., Hasni, N.H.M. (2022). Experimental Study Between TPU Flex and Silicon Materials Mechanical Properties as an Alternatives in Development of the CardioVASS Heart Model. In: Usman, J., Liew, Y.M., Ahmad, M.Y., Ibrahim, F. (eds) 6th Kuala Lumpur International Conference on Biomedical Engineering 2021. BIOMED 2021. IFMBE Proceedings, vol 86 . Springer, Cham. https://doi.org/10.1007/978-3-030-90724-2_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90724-2_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90723-5

  • Online ISBN: 978-3-030-90724-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation