A Concept for a Distributed Interchangeable Knowledge Base in CPPS

  • Conference paper
  • First Online:
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems (CARV 2021, MCPC 2021)

Abstract

As AI technology is increasingly used in production systems, different approaches have emerged from highly decentralized small-scale AI at the edge level to centralized, cloud-based services used for higher-order optimizations. Each direction has disadvantages ranging from the lack of computational power at the edge level to the reliance on stable network connections with the centralized approach. Thus, a hybrid approach with centralized and decentralized components that possess specific abilities and interact is preferred. However, the distribution of AI capabilities leads to problems in self-adapting learning systems, as knowledgebases can diverge when no central coordination is present. Edge components will specialize in distinctive patterns (overlearn), which hampers their adaptability for different cases. Therefore, this paper aims to present a concept for a distributed interchangeable knowledge base in CPPS. The approach is based on various AI components and concepts for each participating node. A service-oriented infrastructure allows a decentralized, loosely coupled architecture of the CPPS. By exchanging knowledge bases between nodes, the overall system should become more adaptive, as each node can “forget” their present specialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bannat, A., et al.: Artificial cognition in production systems. IEEE Trans. Autom. Sci. Eng. 8, 148–174 (2010)

    Article  Google Scholar 

  2. Casalino, G., Facchini, F., Mortello, M., Mummolo, G.: ANN modelling to optimize manufacturing processes: the case of laser welding. IFAC-PapersOnLine 49, 378–383 (2016)

    Article  Google Scholar 

  3. Mabkhot, M.M., Al-Samhan, A.M., Hidri, L.: An ontology-enabled case-based reasoning decision support system for manufacturing process selection. Adv. Mater. Sci. Eng. (2019)

    Google Scholar 

  4. Schott, P., Lederer, M., Eigner, I., Bodendorf, F.: Case-based reasoning for complexity management in Industry 4.0. J. Manuf. Technol. Manage. (2020)

    Google Scholar 

  5. Susto, G.A., Schirru, A., Pampuri, S., McLoone, S., Beghi, A.: Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans. Industr. Inf. 11, 812–820 (2014)

    Article  Google Scholar 

  6. Wang, G., Nixon, M., Boudreaux, M.: Toward cloud-assisted industrial IoT platform for large-scale continuous condition monitoring. Proc. IEEE 107, 1193–1205 (2019)

    Article  Google Scholar 

  7. Sun, W., Liu, J., Yue, Y.: AI-enhanced offloading in edge computing: when machine learning meets industrial IoT. IEEE Network 33, 68–74 (2019)

    Article  Google Scholar 

  8. Jazdi, N.: Cyber physical systems in the context of Industry 4.0. In: 2014 IEEE International Conference on Automation, Quality and Testing, Robotics, pp. 1–4. IEEE (2014)

    Google Scholar 

  9. Lee, J., Noh, S.D., Kim, H.-J., Kang, Y.-S.: Implementation of cyber-physical production systems for quality prediction and operation control in metal casting. Sensors 18, 1428 (2018)

    Article  Google Scholar 

  10. Vernon, D., Metta, G., Sandini, G.: A survey of artificial cognitive systems: implications for the autonomous development of mental capabilities in computational agents. IEEE Trans. Evol. Comput. 11, 151–180 (2007)

    Article  Google Scholar 

  11. Newell, A.: Unified Theories of Cognition. Harvard University Press, Cambridge (1990)

    Google Scholar 

  12. Anderson, J.R., Matessa, M., Lebiere, C.: ACT-R: a theory of higher level cognition and its relation to visual attention. Hum.-Comput. Interact. 12, 439–462 (1997)

    Article  Google Scholar 

  13. Newell, A.: Unified theories of cognition and the role of Soar. SOAR: A Cognitive Architecture in Perspective, pp. 25–79. Springer (1992)

    Google Scholar 

  14. Burghart, C., et al.: A cognitive architecture for a humanoid robot: a first approach. In: 5th IEEE-RAS International Conference on Humanoid Robots, pp. 357–362. IEEE (2005)

    Google Scholar 

  15. Negri, E., Fumagalli, L., Garetti, M., Tanca, L.: Requirements and languages for the semantic representation of manufacturing systems. Comput. Ind. 81, 55–66 (2016)

    Article  Google Scholar 

  16. Scholz-Reiter, B., Hamann, T., Gronau, N., Bogen, J.: Fallbasierte neuronale Produktionsregelung: Nutzung des Case-Based Reasoning zur Produktionsregelung mit neuronalen Netzen (2005)

    Google Scholar 

  17. Kiang, M.Y.: A comparative assessment of classification methods. Decis. Support Syst. 35, 441–454 (2003)

    Article  Google Scholar 

  18. Sahu, C.K., Young, C., Rai, R.: Artificial intelligence (AI) in augmented reality (AR)-assisted manufacturing applications: a review. Int. J. Prod. Res.,1–57 (2020)

    Google Scholar 

  19. Thomas, P., El Haouzi, H.B., Suhner, M.-C., Thomas, A., Zimmermann, E., Noyel, M.: Using a classifier ensemble for proactive quality monitoring and control: the impact of the choice of classifiers types, selection criterion, and fusion process. Comput. Ind. 99, 193–204 (2018)

    Article  Google Scholar 

  20. Lass, S., Gronau, N.: A factory operating system for extending existing factories to Industry 4.0. Comput. Ind. 115, 103128 (2020)

    Google Scholar 

  21. Grum, M., Bender, B., Alfa, A., Gronau, N.: A decision maxim for efficient task realization within analytical network infrastructures. Decis. Support Syst. 112, 48–59 (2018)

    Article  Google Scholar 

  22. Song, M., et al.: In-Situ AI: towards autonomous and incremental deep learning for IoT systems. In: 2018 IEEE International Symposium on High Performance Computer Architecture, pp. 92–103 (2018)

    Google Scholar 

  23. Singh, S.K., Rathore, S., Park, J.H.: BlockIoTIntelligence: a Blockchain-enabled intelligent IoT architecture with artificial intelligence. Futur. Gener. Comput. Syst. 110, 721–743 (2020)

    Article  Google Scholar 

  24. Salah, K., Rehman, M.H.U., Nizamuddin, N., Al-Fuqaha, A.: Blockchain for AI: review and open research challenges. IEEE Access 7, 10127–10149 (2019)

    Article  Google Scholar 

  25. Zhang, Z.: Changeable manufacturing processes using service-based decision-making and I4. 0 service-oriented architecture. In: Proceedings of the 12th European Conference on Software Architecture: Companion Proceedings, pp. 1–4 (2018)

    Google Scholar 

  26. Industrial Internet Consortium. https://hub.iiconsortium.org/portal/DesignPattern/5fa908e3a2d19500129ced11

  27. Wender, S., Watson, I.: Combining case-based reasoning and reinforcement learning for unit navigation in real-time strategy game AI. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS (LNAI), vol. 8765, pp. 511–525. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11209-1_36

    Chapter  Google Scholar 

  28. Bianchi, R.A.C., Santos, P.E., da Silva, I.J., Celiberto, L.A., Lopez de Mantaras, R.: Heuristically accelerated reinforcement learning by means of case-based reasoning and transfer learning. J. Intell. Rob. Syst. 91(2), 301–312 (2017). https://doi.org/10.1007/s10846-017-0731-2

    Article  Google Scholar 

  29. Reuter, L., Berndt, J.O., Ulfert, A.-S., Antoni, C.H., Ellwart, T., Timm, I.J.: Intentional forgetting in distributed artificial intelligence. KI - Künstliche Intelligenz 33(1), 69–77 (2018). https://doi.org/10.1007/s13218-018-0566-4

    Article  Google Scholar 

  30. Zschörnig, T., Wehlitz, R., Franczyk, B.: IoT analytics architectures: challenges, solution proposals and future research directions. In: Dalpiaz, F., Zdravkovic, J., Loucopoulos, P. (eds.) RCIS 2020. LNBIP, vol. 385, pp. 76–92. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50316-1_5

    Chapter  Google Scholar 

  31. Atmojo, U.D., Vyatkin, V.: Towards an OPC UA Compliant Programming Approach with Formal Model of Computation for Dynamic Reconfigurable Automation Systems. In: 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), vol. 1, pp. 140–146. IEEE (2019)

    Google Scholar 

Download references

Acknowledgements

The research was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) with grant number KL2207/6–2 and GR 1846/21–2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Thim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thim, C., Grum, M., Schüffler, A., Roling, W., Kluge, A., Gronau, N. (2022). A Concept for a Distributed Interchangeable Knowledge Base in CPPS. In: Andersen, AL., et al. Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems. CARV MCPC 2021 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-90700-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90700-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90699-3

  • Online ISBN: 978-3-030-90700-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation