Protocols for Extraction, Isolation, and Purification of Secondary Metabolites of Mushroom and Its Applications

  • Chapter
  • First Online:
Applied Mycology

Part of the book series: Fungal Biology ((FUNGBIO))

  • 1054 Accesses

Abstract

Mushrooms, generally belonging to Basidiomycetes, harbor numerous metabolites of nutraceutical and therapeutic significance. Since ancient civilizations, medicinal and edible mushrooms have been used by humans not only as valued food but also in medications. Mushrooms are manufacturers of diverse secondary metabolites possessing more than 130 therapeutic properties including antibacterial, antiviral, analgesic, antifungal, antioxidant, anti-inflammatory, antiplatelet, hepatoprotective, hypoglycemic, immunomodulatory, hypocholesterolemic, mitogenic/regenerative, and many more. Recently, researches have advanced in the area of exploration of these valuable low-molecular-weight metabolites to discover novel bioactive compounds. These mushroom derived compounds have tremendous potential for sustainable agriculture and in industrial sectors, also. This chapter deals with the protocol for extraction, isolation, and purification of valuable functional secondary metabolites of mushrooms. A wide range of bioactive compounds derived from Ganoderma spp., Lentinula edodes, and Flammulina velutipe have been discussed, along with their biological activities of direct applications in pharmaceutical, nutraceuticals manufacturing, or any biological management program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 246.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Afrin, S., Rakib, M. A., Kim, B. H., Kim, J. O., & Ha, Y. L. (2016). Eritadenine from edible mushrooms inhibits activity of angiotensin converting enzyme in vitro. Journal of Agricultural and Food Chemistry, 64, 2263–2268.

    Article  CAS  PubMed  Google Scholar 

  • Baby, S., Johnson, A. J., & Govindan, B. (2015). Secondary metabolites from Ganoderma. Phytochemistry, 114, 66–101.

    Article  CAS  PubMed  Google Scholar 

  • Béni, Z., Dékány, M., Kovács, B., Csupor-Löffler, B., Zomborszki, Z. P., Kerekes, E., Szekeres, A., Urbán, E., Hohmann, J., & Ványolós, A. (2018). Bioactivity-guided isolation of antimicrobial and antioxidant metabolites from the mushroom Tapinella atrotomentosa. Molecules: A Journal of Synthetic Chemistry and Natural Product Chemistry, 23, 1082.

    Article  CAS  Google Scholar 

  • Bérdy, J. (2012). Thoughts and facts about antibiotics: Where we are now and where we are heading. The Journal of Antibiotics, 65, 385–395.

    Article  PubMed  CAS  Google Scholar 

  • Boh, B., Hodzar, D., Dolnicar, D., Berovic, M., & Pohleven, F. (2000). Isolation and quantification of triterpenoid acids from Ganoderma applanatum of Istrianorigin. Food Technology and Biotechnology, 38, 11–18.

    CAS  Google Scholar 

  • Boonsong, S., Klaypradit, W., & Wilaipun, P. (2016). Antioxidant activities of extracts from five edible mushrooms using different extractants. Agriculture and Natural Resources, 50, 89–97.

    Article  CAS  Google Scholar 

  • Bubalo, C. M., Vidović, S., Redovniković, I. R., & Jokić, S. (2018). New perspective in extraction of plant biologically active compounds by green solvents. Food and Bioproducts Processing, 109(52–73), 109. https://doi.org/10.1016/j.fbp.2018.03.001

    Article  CAS  Google Scholar 

  • Cantley, M. F. (1997). International instruments, intellectual property and collaborative exploitation of genetic resources. In S. Wrigley (Ed.), Phytochemical diversity: A source of new industrial products (pp. 141–157). Royal Society of Chemistry.

    Google Scholar 

  • Chairul, S. M., & Hayashi, Y. (1994). Lanostanoid triterpenes from Ganoderma applanatum. Phytochemistry, 35, 1305–1308.

    Article  CAS  Google Scholar 

  • Chen, J., Wei, S. L., & Gao, K. (2015). Chemical constituents and antibacterial activities of compounds from Lentinus edodes. Chemistry of Natural Compounds, 51, 592–594.

    Article  CAS  Google Scholar 

  • Chen, S., Xu, J., Liu, C., Zhu, Y., Nelson, D. R., Zhou, S., Li, C., Wang, L., Guo, X., Sun, Y., Luo, H., Li, Y., Song, J., Henrissat, B., Levasseur, A., Qian, J., Li, J., Luo, X., Shi, L., … Sun, C. (2012). Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nature Communications, 3, 913.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, C. R., Yue, Q. X., Wu, Z. Y., Song, X. Y., Tao, S. J., Wu, X. H., Xu, P. P., Liu, X., Guan, S. H., & Guo, D. A. (2010). Cytotoxic triterpenoids from Ganoderma lucidum. Phytochemistry, 71, 1579–1585.

    Article  CAS  PubMed  Google Scholar 

  • Dembitsk, V. M., & Maoka, T. (2007). Allenic and cumulenic lipids. Progress in Lipid Research, 46, 328–375.

    Article  CAS  Google Scholar 

  • Fatmawati, S., Shimizu, K., & Kondo, R. (2010). Ganoderic acid Df, a new triterpenoid with aldose reductase activity from the fruiting body of Ganoderma lucidum. Fitoterapia, 81, 1033–1036.

    Article  CAS  PubMed  Google Scholar 

  • Feeney, M. J., Miller, A. M., & Roupas, P. (2014). Mushrooms – Biologically distinct and nutritionally unique: Exploring a “third food kingdom”. Nutrition Today, 49(6), 301–307.

    Article  PubMed Central  Google Scholar 

  • Finimundy, T. C., Dillon, A. J. P., Henriques, J. A. P., & Ely, M. R. (2014). A review on general nutritional compounds and pharmacological properties of the Lentinula edodes mushroom. Food and Nutrition Sciences, 5, 1095–1105.

    Article  CAS  Google Scholar 

  • Fukushima-Sakuno, E. (2020). Bioactive small secondary metabolites from the mushrooms Lentinula edodes and Flammulina velutipes. The Journal of Antibiotics, 73. https://doi.org/10.1038/s41429-020-0354-x

  • Gargano, M. L., van Griensven, L. J. L. D., Isikhuemhen, O. S., Lindequist, U., Venturella, G., Wasser, S. P., & Zervakis, G. I. (2017). Medicinal mushrooms: Valuable biological resources of high exploitation potential. Plant Biosystems, 151, 548–565.

    Article  Google Scholar 

  • Hashim, S. N. N. S., Schwarz, L. J., Danylec, B., Mitri, K., Yang, Y., Boysen, R. I., & Hearn, M. T. W. (2016). Recovery of ergosterol from the medicinal mushroom, Ganoderma tsugae, var. Janniae, with a molecularly imprinted polymer derived from a cleavable monomer-template composite. Journal of Chromatography A, 1468, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Hassainia, A., Satha, H., & Boufi, S. (2018). Chitin from Agaricus bisporus: Extraction and characterization. International Journal of Biological Macromolecules, 117, 1334–1342.

    Article  CAS  PubMed  Google Scholar 

  • Herrmann, H. (1962). Cortinellin, eine antibiotisch wirkasame Substanz aus Cortinellus shiitake. Naturwissenschaften, 49, 542.

    Article  CAS  Google Scholar 

  • Hirai, Y., Ikeda, M., Murayama, T., & Ohata, T. (1998). New monoterpentriols from the fruiting body of Flammulina velutipes. Bioscience, Biotechnology, and Biochemistry, 62, 1364–1368.

    Article  CAS  PubMed  Google Scholar 

  • Isaka, M., Chinthanom, P., Kongthong, S., Srichomthong, K., & Choeyklin, R. (2013). Lanostane triterpenes from cultures of the basidiomycete Ganoderma orbiforme BCC 22324. Phytochemistry, 87, 133–139.

    Article  CAS  PubMed  Google Scholar 

  • Kaewnarin, K., Suwannarach, N., Kumla, J., & Lumyong, S. (2016). Phenolic profile of various wild edible mushroom extracts from Thailand and their antioxidant properties, anti-tyrosinase and hyperglycaemic inhibitory activities. Journal of Functional Foods, 27, 352–364.

    Article  CAS  Google Scholar 

  • Kała, K., Kryczyk-Poprawa, A., Rzewińska, A., & Muszyńska, B. (2020). Fruiting bodies of selected edible mushrooms as a potential source of lovastatin. European Food Research and Technology, 246, 713–722.

    Article  CAS  Google Scholar 

  • Keswani, C., Mishra, S., Sarma, B. K., Singh, S. P., & Singh, H. B. (2014). Unravelling the efficient applications of secondary metabolites of various Trichoderma spp. Applied Microbiology and Biotechnology, 98, 533–544.

    Article  CAS  PubMed  Google Scholar 

  • Kimatu, B. M., Zhao, L., Biao, Y., Ma, G., Yang, W., Pei, F., & Hu, Q. (2017). Antioxidant potential of edible mushroom (Agaricus bisporus) protein hydrolysates and their ultrafiltration fractions. Food Chemistry, 230, 58–67.

    Article  CAS  PubMed  Google Scholar 

  • Komemushi, S., Yamamoto, Y., & Fujita, T. (1996). Purification and identification of antimicrobial substances produced by Lentinus edodes. Journal of Antibacterial and Antifungal Agents, 24, 21–25.

    CAS  Google Scholar 

  • Kumagai, H., Akao, M., & Masuda, H. (2013). Hepatopathy inhibitor. Japan Kokai Tokkyo Koho, JP2013103900A.

    Google Scholar 

  • Li, Y.-Y., Mi, Z.-Y., Tang, Y., Wang, G., Li, D.-S., & Tang, Y. J. (2009). Lanostanoids isolated from Ganoderma lucidum mycelium cultured by submerged fermentation. Helvetica Chimica Acta, 92, 1586–1593.

    Article  CAS  Google Scholar 

  • Lin, S., Chen, Y., Yu, H., Barseghyan, G. S., Asatiani, M. D., & Wasser, S. P. (2013). Comparative study of contents of several bioactive components in fruiting bodies and mycelia of culinary-medicinal mushrooms. International Journal of Medicinal Mushrooms, 15, 315–323.

    Article  CAS  PubMed  Google Scholar 

  • Liu, L. Y., Chen, H., Liu, C., Wang, H. Q., Kang, J., Li, Y., & Chen, R. Y. (2014). Triterpenoids of Ganoderma theaecolum and their hepatoprotective activities. Fitoterapia, 98, 254–259.

    Article  CAS  PubMed  Google Scholar 

  • Maeng, J. H., Muhammad Shahbaz, H., Ameer, K., Jo, Y., & Kwon, J. H. (2016). Optimization of microwave-assisted extraction of bioactive compounds from Coriolus versicolor mushroom using response surface methodology. Journal of Food Process Engineering, 40. https://doi.org/10.1111/jfpe.12421

  • Money, N. P. (2016). Are mushrooms medicinal? Fungal Biology, 120, 449–453.

    Article  CAS  PubMed  Google Scholar 

  • Morales, D., Piris, A. J., Ruiz-Rodriguez, A., Prodanov, M., & Soler-Rivas, C. (2018). Extraction of bioactive compounds against cardiovascular diseases from Lentinula edodes using a sequential extraction method. Biotechnology Progress, 34(3), 746–755.

    Article  CAS  PubMed  Google Scholar 

  • Morita, K., & Kobayashi, S. (1967). Isolation, structure, and synthesis of lenthionine and its analogs. Chemical & Pharmaceutical Bulletin, 15, 988–993.

    Article  CAS  Google Scholar 

  • Raut, J. K. (2019). Current status, challenges and prospects of mushroom industry in Nepal. International Journal of Agricultural Economics, 4, 154–160.

    Article  Google Scholar 

  • Ríos, J. L., Andújar, I., Recio, M. C., & Giner, R. M. (2012). Lanostanoids from fungi: A group of potential anticancer compounds. Journal of Natural Products, 75, 2016–2044.

    Article  PubMed  CAS  Google Scholar 

  • Roselló-Soto, E., Parniakov, O., Deng, Q., Patras, A., Koubaa, M., Grimi, N., & Barba, F. J. (2016). Application of non-conventional extraction methods: Toward a sustainable and green production of valuable compounds from mushrooms. Food Engineering Reviews, 8(2), 214–234.

    Article  CAS  Google Scholar 

  • Royse, D. J., Baars, J., & Tan, Q. (2017). Current overview of mushroom production in the world. In D. C. Zied & Pardo-Giménez (Eds.), Edible and medicinal mushrooms: Technology and applications (pp. 5–13). Wiley.

    Chapter  Google Scholar 

  • Ruthes, A. C., Smiderle, F. R., & Iacomini, M. (2015). D-glucans from edible mushrooms: A review on the extraction, purification and chemical characterization approaches. Carbohydrate Polymers, 117, 753–761.

    Article  CAS  PubMed  Google Scholar 

  • Sanodiya, B. S., Thakur, G. S., Baghel, R. K., Prasad, G. B., & Bisen, P. S. (2009). Ganoderma lucidum: A potent pharmacological macrofungus. Current Pharmaceutical Biotechnology, 10, 717–742.

    Google Scholar 

  • Sato, N., Zhang, Q., Ma, C. M., & Hattori, M. (2009). Anti-human immunodeficiency virus-1 protease activity of new lanostane-type triterpenoids from Ganoderma sinense. Chemical & Pharmaceutical Bulletin, 57, 1076–1080.

    Article  CAS  Google Scholar 

  • Seo, H. W., Hung, T. M., Na, M., Jung, H. J., Kim, J. C., Choi, J. S., Kim, J. H., Lee, H. K., Lee, I., Bae, K., Hattori, M., & Min, B. S. (2009). Steroids and triterpenes from the fruit bodies of Ganoderma lucidum and their anti-complement activity. Archives of Pharmacal Research, 32, 1573–1579.

    Article  CAS  PubMed  Google Scholar 

  • Smania, A., Jr., Monache, F. D., Smania, E. F. A., & Cuneo, R. S. (1999). Antibacterial activity of steroidal compounds isolated from Ganoderma applanatum (Pers.) Pat. (Aphyllophoromycetideae) fruit body. International Journal of Medicinal Mushrooms, 1, 325–330.

    Article  Google Scholar 

  • Smiderle, F. R., Morales, D., Gil-Ramírez, A., de Jesus, L. I., Gilbert-López, B., Iacomini, M., & Soler-Rivas, C. (2017). Evaluation of microwave-assisted and pressurized liquid extractions to obtain β-d-glucans from mushrooms. Carbohydrate Polymers, 156, 165–174.

    Article  CAS  PubMed  Google Scholar 

  • Stadler, M., Hellwig, V., Mayer-Bartschmid, A., Denzer, D., Wiese, B., & Burkhardt, N. (2006). Novel analgesic triglycerides from cultures of Agaricus macrosporus and other basidiomycetes as selective inhibitors of neurolysin. The Journal of Antibiotics, 58, 775–786. https://doi.org/10.1038/ja.2005.105

    Article  Google Scholar 

  • Stadler, M., & Hoffmeister, D. (2015). Fungal natural products—the mushroom perspective. Frontiers in microbiology, 6, 127.

    Google Scholar 

  • Tabuchi, A., Fukushima-Sakuno, E., Osaki-Oka, K., Futamura, Y., Motoyama, T., Osada, H., et al. (2020). Productivity and bioactivity of enokipodins A–D of Flammulina rossica and Flammulina velutipes. Bioscience, Biotechnology, and Biochemistry, 84, 876–886.

    Article  CAS  PubMed  Google Scholar 

  • Tang, C., Hoo, P. C., Tan, L. T., Pusparajah, P., Khan, T. M., Lee, L., et al. (2016). Golden needle mushroom: A culinary medicine with evidenced based biological activities and health promoting properties. Frontiers in Pharmacology, 7, Article 474.

    Google Scholar 

  • Tao, Q., Ma, K., Yang, Y., Wang, K., Chen, B., Huang, Y., et al. (2016). Bioactive sesquiterpenes from the edible mushroom Flammulina velutipes and their biosynthetic pathway confirmed by genome analysis and chemical evidence. The Journal of Organic Chemistry, 81(98), 67–77.

    Google Scholar 

  • Tokimoto, K., & Komatsu, M. (1995). Selection and breeding of Shiitake strains resistant to Trichoderma spp. Canadian Journal of Botany, 73(S1), 962–966.

    Article  Google Scholar 

  • Wang, F., & Liu, J. K. (2008). Highly oxygenated lanostane triterpenoids from the fungus Ganoderma applanatum. Chemical & Pharmaceutical Bulletin, 56, 1035–1037.

    Article  CAS  Google Scholar 

  • Wang, Y., Bao, L., Yang, X., Li, L., Li, S., Gao, H., et al. (2012). Bioactive sesquiterpenoids from the solid culture of the edible mushroom Flammulina velutipes growing on cooked rice. Food Chemistry, 132, 1346–1353.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Z. Y., Wu, Z. A., & Bi, K. S. (2013). A novel norsesquiterpene alkaloid from the mushroom-forming fungus Flammulina velutipes. Chinese Chemical Letters, 24, 57–58.

    Article  CAS  Google Scholar 

  • Yang, M., Wang, X. M., Guan, S. H., **a, J. M., Sun, J. H., Guo, H., & Guo, D. A. (2007). Analysis of triterpenoids in Ganoderma lucidum using liquid chromatography coupled with electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 18, 927–939.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S. X., Yu, Z. C., Lu, Q. Q., Shi, W. Q., Laatsch, H., & Gao, J. M. (2012). Toxic lanostane triterpenes from the basidiomycete Ganoderma amboinense. Phytochemistry Letters, 5, 576–580.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Afzal, K., Shukla, A.C., Srivastava, D.K. (2022). Protocols for Extraction, Isolation, and Purification of Secondary Metabolites of Mushroom and Its Applications. In: Shukla, A.C. (eds) Applied Mycology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-90649-8_8

Download citation

Publish with us

Policies and ethics

Navigation