Automated Detection of Wireless Capsule Endoscopy Polyp Abnormalities with Deep Transfer Learning and Support Vector Machines

  • Conference paper
  • First Online:
Advanced Intelligent Systems for Sustainable Development (AI2SD’2020) (AI2SD 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1417))

Abstract

Polyp detection in wireless capsule endoscopy (WCE) is still an unsolved problem due to the large variation of polyps in terms of shape, color and size. There are two major problems hindering its improvement. First, traditional hand crafting approaches of WCE abnormalities’ detection has to be designed from scratch; it suffers from either a very time consuming process and/or a lack of exactitude. Second, WCE datasets acquisition still provides a challenge owing to the lack of large and publicly available annotated datasets. Recently, deep transfer learning has been widely used to transfer knowledge to medical images enabling the extraction of highly representative features. This paper investigates different architectures of pre-trained convolution neural networks (CNNs) from scratch (or network fine-tuning) for WCE polyp classification task. We compare the results with the state-of-art methods. The experiments consistently demonstrate that the use of a well-known DCNN architecture named Inception V3 with adequate fine-tuning outperform or, in the worst case, perform as a CNN trained from scratch. The last fully connected (fc) layer is connected to the support vector machine (SVM) classifier to obtain better accuracy. The methodology exceeds traditional handcrafting features extraction methods in terms of performance for WCE polyp abnormalities’ detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Souaidi, M., Charfi, S., Abdelouahad, A.A., El Ansari, M.: New features for wireless capsule endoscopy polyp detection. In: 2018 International Conference on Intelligent Systems and Computer Vision (ISCV), pp. 1–6. IEEE (2018)

    Google Scholar 

  2. Souaidi, M., Abdelouahad, A.A., El Ansari, M.: A fully automated ulcer detection system for wireless capsule endoscopy images. In: 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), pp. 1–6. IEEE (2017)

    Google Scholar 

  3. Souaidi, M., Abdelouahed, A.A., El Ansari, M.: Multi-scale completed local binary patterns for ulcer detection in wireless capsule endoscopy images. Multimedia Tools Appl. 78(10), 13091–13108 (2019)

    Article  Google Scholar 

  4. Rokkas, T., Papaxoinis, K., Triantafyllou, K., Ladas, S.D.: A meta-analysis evaluating the accuracy of colon capsule endoscopy in detecting colon polyps. Gastrointest. Endosc. 71(4), 792–798 (2010)

    Article  Google Scholar 

  5. Li, B., Meng, M.Q.-H.: Automatic polyp detection for wireless capsule endoscopy images. Exp. Syst. Appl. 39(12), 10952–10958 (2012)

    Article  Google Scholar 

  6. Yuan, Y., Li, B., Meng, M.Q.-H.: Improved bag of feature for automatic polyp detection in wireless capsule endoscopy images. IEEE Trans. Autom. Sci. Eng. 13(2), 529–535 (2016)

    Article  Google Scholar 

  7. Charfi, S., El Ansari, M.: Computer-aided diagnosis system for colon abnormalities detection in wireless capsule endoscopy images. Multimedia Tools Appl. 77(3), 4047–4064 (2018)

    Article  Google Scholar 

  8. Shin, H.-C., Lu, L., Kim, L., Seff, A., Yao, J., Summers, R.M.: Interleaved text/image deep mining on a very large-scale radiology database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1090–1099 (2015)

    Google Scholar 

  9. Bernal, J., et al.: Comparative validation of polyp detection methods in video colonoscopy: results from the MICCAI 2015 endoscopic vision challenge. IEEE Trans. Med. Imaging 36(6), 1231–1249 (2017)

    Article  Google Scholar 

  10. Tajbakhsh, N., et al.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016)

    Article  Google Scholar 

  11. Bartler, A., Mauch, L., Yang, B., Reuter, M., Stoicescu, L.: Automated detection of solar cell defects with deep learning. In: 26th European Signal Processing Conference (EUSIPCO), vol. 2018, pp. 2035–2039. IEEE (2018)

    Google Scholar 

  12. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Aoki, T., et al.: Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointest. Endosc. 89(2), 357–363 (2019)

    Article  Google Scholar 

  15. Seguí, S., et al.: Deep learning features for wireless capsule endoscopy analysis. In: Beltrán-Castañón, C., Nyström, I., Famili, F. (eds.) CIARP 2016. LNCS, vol. 10125, pp. 326–333. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52277-7_40

    Chapter  Google Scholar 

  16. Jia, X., Meng, M.Q.-H.: Gastrointestinal bleeding detection in wireless capsule endoscopy images using handcrafted and CNN features. In: 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), vol. 2017, pp. 3154–3157. IEEE (2017)

    Google Scholar 

  17. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. ar**v preprint ar**v:1405.3531 (2014)

  18. Mash, R., Borghetti, B., Pecarina, J.: Improved aircraft recognition for aerial refueling through data augmentation in convolutional neural networks. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10072, pp. 113–122. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50835-1_11

    Chapter  Google Scholar 

  19. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. ar**v preprint ar**v:1511.08458 (2015)

  20. Kavukcuoglu, K., Sermanet, P., Boureau, Y.-L., Gregor, K., Mathieu, M., Cun, Y.L.: Learning convolutional feature hierarchies for visual recognition. In: 2010 Advances in Neural Information Processing Systems, pp. 1090–1098 (2010)

    Google Scholar 

  21. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  22. Wu, H., Gu, X.: Max-pooling dropout for regularization of convolutional neural networks. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9489, pp. 46–54. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26532-2_6

    Chapter  Google Scholar 

  23. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  24. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2016, pp. 2818–2826 (2016)

    Google Scholar 

  25. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115 (2017)

    Article  Google Scholar 

  26. Wang, L.: Support Vector Machines: Theory and Applications, vol. 177. Springer, Heidelberg (2005). https://doi.org/10.1007/b95439

  27. WEO: WEO clinical endoscopy Atlas (1962). http://www.endoatlas.org/

  28. Picard, R.R., Cook, R.D.: Cross-validation of regression models. J. Am. Stat. Assoc. 79(387), 575–583 (1984)

    Article  MathSciNet  Google Scholar 

  29. Peng, C.-Y.J., Lee, K.L., Ingersoll, G.M.: An introduction to logistic regression analysis and reporting. J. Educ. Res. 96(1), 3–14 (2002)

    Article  Google Scholar 

  30. Sainath, T.N., Vinyals, O., Senior, A., Sak, H.: Convolutional, long short-term memory, fully connected deep neural networks. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 2015, pp. 4580–4584. IEEE (2015)

    Google Scholar 

  31. Pedregosa, F., et al.: Scikit-learn: machine learning in Python, pp. 2825–2830 (2011). https://scikit-learn.org/stable/modules/generated/ sklearn.model_selection.GridSearchCV.html/

  32. Pogorelov, K., et al.: KVASIR: a multi-class image dataset for computer aided gastrointestinal disease detection. In: Proceedings of the 8th ACM on Multimedia Systems Conference, vol. 2017, pp. 164–169. ACM (2017)

    Google Scholar 

  33. Tindall, L., Luong, C., Saad, A.: Plankton classification using VGG16 network (2015)

    Google Scholar 

  34. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S.: Deep learning for visual understanding: a review. Neurocomputing 187, 27–48 (2016)

    Article  Google Scholar 

  35. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 2014, pp. 2672–2680 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Souaidi, M., El Ansari, M. (2022). Automated Detection of Wireless Capsule Endoscopy Polyp Abnormalities with Deep Transfer Learning and Support Vector Machines. In: Kacprzyk, J., Balas, V.E., Ezziyyani, M. (eds) Advanced Intelligent Systems for Sustainable Development (AI2SD’2020). AI2SD 2020. Advances in Intelligent Systems and Computing, vol 1417. Springer, Cham. https://doi.org/10.1007/978-3-030-90633-7_74

Download citation

Publish with us

Policies and ethics

Navigation