Ta/HfO2-based Memristor and Crossbar Arrays for In-Memory Computing

  • Chapter
  • First Online:
Memristor Computing Systems

Abstract

Computing hardware systems based on memristors can eliminate the data shuttling between the memory and processing units, offer massive parallelism, and hence promise substantial boost in computing throughput and energy efficiencies. However, such non-von Neumann computational approach imposes high requirements on specific characteristics of memristive devices. In this chapter, we first describe the electrical behavior of our newly developed Ta/HfO2 memristor, in particular, how it meets most requirements for in-memory computing in artificial neural networks. We then examine the underlying mechanism of this device by using electrical and physical characterizations, and attribute the resistance switching to the composition modulation of conduction channel(s) through motion of both cation and anions. Finally, we showcase large-scale one-transistor-one-resistance switch (1T1R) arrays fabricated by integrating the Ta/HfO2 memristors with foundry-made metal–oxide–semiconductor transistors, and their applications in artificial neural networks and hardware security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. **a Q, Yang JJ (2019) Memristive crossbar arrays for brain-inspired computing. Nat Mater 18:309–323

    Article  Google Scholar 

  2. Zidan MA, Strachan JP, Lu WD (2018) The future of electronics based on memristive systems. Nat Electron 1:22–29

    Article  Google Scholar 

  3. Ielmini D, Wong HSP (2018) In-memory computing with resistive switching devices. . 1:333–343

    Google Scholar 

  4. Yu S (2018) Neuro-inspired computing with emerging nonvolatile memory. Proc IEEE 106(2):260

    Article  Google Scholar 

  5. Sebastian A, Gallo ML, Khaddam-Aljameh R, Eleftheriou E (2020) Memory devices and applications for in-memory computing. Nat Nano

    Google Scholar 

  6. Chua LO (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519

    Article  Google Scholar 

  7. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80–83

    Article  Google Scholar 

  8. Yang JJ, Strukov DB, Stewart DR (2013) Memristive devices for computing. Nat NANO 8(1):13

    Article  Google Scholar 

  9. Prezioso M et al (2015) Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521:61–64

    Article  Google Scholar 

  10. Yao P et al (2017) Face classifcation using electronic synapses. Nat Commun 8:15199

    Article  Google Scholar 

  11. Li C et al (2018) Analogue signal and image processing with large memristor crossbars. Nat Electron 1:52–59

    Article  Google Scholar 

  12. Li C et al (2018) Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nat Commun 9:2385

    Article  Google Scholar 

  13. Li C et al (2019) Long short-term memory networks in memristor crossbar arrays. Nat Mach Intell 1:49–57

    Article  Google Scholar 

  14. Hu M et al (2018) Memristor-based analog computation and neural network classifcation with a dot product engine. Adv Mater 30:1705914

    Article  Google Scholar 

  15. Sheridan PM et al (2017) Sparse coding with memristor networks. Nat Nanotechnol 12:784–789

    Article  Google Scholar 

  16. Wang Z et al (2018) Capacitive neural network with neuro-transistors. Nat Commun 9:3208

    Article  Google Scholar 

  17. Wang Z et al (2017) Memristors with difusive dynamics as synaptic emulators for neuromorphic computing. Nat Mater 16:101–108

    Article  Google Scholar 

  18. Wang Z et al (2019) Reinforcement learning with analogue memristor arrays. Nat Electron 2:115–124

    Article  Google Scholar 

  19. Lin P et al (2020) Three-dimensional memristor circuits as complex neural networks. Nat Electron 3:225–232

    Article  Google Scholar 

  20. Yao P et al (2020) Fully hardware-implemented memristor convolutional neural network. Nature 577:641–646

    Article  Google Scholar 

  21. Wang W et al (2018) Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses. Sci Adv 4:4752

    Article  Google Scholar 

  22. Jo SH et al (2010) Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 10:1297–1301

    Article  Google Scholar 

  23. Wang Z et al (2018) Fully memristive neural networks for pattern classifcation with unsupervised learning. Nat Electron 1:137–145

    Article  Google Scholar 

  24. Sun Z et al (2019) Solving matrix equations in one step with cross-point resistive arrays. Proc Natl Acad Sci USA 116:4123–4128

    Article  MathSciNet  Google Scholar 

  25. Du C et al (2017) Reservoir computing using dynamic memristors for temporal information processing. Nat Commun 8:2204

    Article  Google Scholar 

  26. Jiang H et al (2017) A novel true random number generator based on a stochastic difusive memristor. Nat Commun 8:882

    Article  Google Scholar 

  27. Gaba S, Sheridan P, Zhou J, Choi S, Lu W (2013) Stochastic memristive devices for computing and neuromorphic applications. Nanoscale 5:5872–5878

    Article  Google Scholar 

  28. Balatti S et al (2016) Physical unbiased generation of random numbers with coupled resistive switching devices. IEEE Trans Electron Dev 63:2029–2035

    Article  Google Scholar 

  29. Nili H et al (2018) Hardware-intrinsic security primitives enabled by analogue state and nonlinear conductance variations in integrated memristors. Nat Electron 1:197

    Article  Google Scholar 

  30. Jiang H et al (2018) A provable key destruction scheme based on memristive crossbar arrays. Nat Electron 1:548

    Article  Google Scholar 

  31. Fleischer B, et al (2018) A scalable multi- teraOPS deep learning processor core for AI trainina and inference. In: IEEE symposium on VLSI circuits, pp 35–36

    Google Scholar 

  32. Jiang H et al (2016) Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor. Sci Rep 6:28525

    Article  Google Scholar 

  33. Chakrabarti S, Samanta S, Maikap S, Rahaman SZ, Cheng HM (2016) Temperature-dependent non-linear resistive switching characteristics and mechanism using a new W/WO3/WOx/W structure. Nanoscale Res Lett 11:389

    Article  Google Scholar 

  34. Wang ZR et al (2017) Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat Mater 16:101–108

    Article  Google Scholar 

  35. Yang JJ et al (2008) Memristive switching mechanism for metal/oxide/metal nanodevices. Nat Nano 3(7):429

    Article  Google Scholar 

  36. Miao F, et al (2011) Anatomy of a nanoscale conduction channel reveals the mechanism of a high‐performance memristor 23(47):5633–5640

    Google Scholar 

  37. Munstermann R et al (2010) Morphology and electrical changes in TiO2 memristive devices induced by electroforming and switching. Phys Status Solidi-Rapid Res Lett 4:16–18

    Article  Google Scholar 

  38. Yang JJ, et al (2009) The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20:215201

    Google Scholar 

  39. Wedig A et al (2016) Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nature Nano 11:67–74

    Article  Google Scholar 

  40. Sheng X et al (2019) Low-conductance and multilevel CMOS-integrated nanoscale oxide memristors. Adv Electron Mater 5:1800876

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangfei **a .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, H., Li, C., Lin, P., Wang, Z., Yang, J.J., **a, Q. (2022). Ta/HfO2-based Memristor and Crossbar Arrays for In-Memory Computing. In: Chua, L.O., Tetzlaff, R., Slavova, A. (eds) Memristor Computing Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-90582-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90582-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90581-1

  • Online ISBN: 978-3-030-90582-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation