More than Fifty Shades of Epigenetics for the Study of Early in Life Effects in Medicine, Ecology, and Evolution

  • Chapter
  • First Online:
Development Strategies and Biodiversity

Part of the book series: Fascinating Life Sciences ((FLS))

  • 559 Accesses

Abstract

After being coined by Conrad Waddington in the context of development, today the term epigenetics focuses on the molecular machinery beyond genes. Epigenetics is central to early in life effects and their consequences in eco-evolutionary dynamics. I review the two historical understandings of epigenetics, i.e. its Developmental and Evolutionary understandings, both concerning the molecular mechanisms occurring within an organisms’ lifetime. Although I unify them under a generic definition, these understandings are not suitable for studies at the intergenerational level. To fill this gap, I propose an inclusive understanding of epigenetics incorporating all the processes of parent–offspring resemblance that are not engraved into the DNA sequence. By integrating all mechanisms of phenotypic variation beyond the DNA sequence, this new understanding fully corresponds to the etymological meaning of the term “above, or beyond the gene.” By integrating knowledge at all levels, this broader understanding of epigenetics should help transferring all the knowledge at the infra-individual level into the study of processes unfolding at the supra-individual level to build a continuum from molecules to ecology and evolution. Concepts of inheritance and early in life effects should play a major role in building such a continuum. Classifying more than 50 definitions of epigenetics in four groups using the actual terms of the definitions reveals interesting discrepancies between definitions and ultimate scientific goals. Finally, I present some examples of how a clear vision of the various understandings of epigenetics may influence biology and argue that epigenetics now needs to percolate in ecology and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Avital E, Jablonka E (2000) Animal traditions. Behavioural inheritance in evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    Article  CAS  PubMed  Google Scholar 

  • Bjornsson HT, Cui H, Gius D, Fallin MD, Feinberg AP (2004) The new field of epigenomics: implications for cancer and other common disease research. Paper read at Cold Spring Harbor symposia on quantitative biology

    Google Scholar 

  • Bohacek J, Mansuy IM (2015) Molecular insights into transgenerational non-genetic inheritance of acquired behaviours. Nat Rev Genet 16:641–652

    Article  CAS  PubMed  Google Scholar 

  • Bollati V, Baccarelli A (2010) Environmental epigenetics. Heredity 105:105–112

    Article  CAS  PubMed  Google Scholar 

  • Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetic states. Science 330:612–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonduriansky R (2012) Rethinking heredity, again. Trends Ecol Evol 27:330–336

    Article  CAS  PubMed  Google Scholar 

  • Bonduriansky R, Day T (2009) Nongenetic inheritance and its evolutionary implications. Annu Rev. Ecol Syst 40:103–125

    Google Scholar 

  • Bonduriansky R, Day T (2018) Extended heredity: a new understanding of inheritance and evolution. Princeton University Press, Princeton and Oxford

    Book  Google Scholar 

  • Bourrat P (2015) How to read ‘heritability’ in the recipe approach to natural selection. Br J Philos Sci 66:883–903

    Article  Google Scholar 

  • Bourrat P, Lu QY (2017) Dissolving the missing heritability problem. Philos Sci 84:1055–1067

    Article  Google Scholar 

  • Bourrat P, Lu Q, Jablonka E (2017) Why the missing heritability might not be in the DNA. BioEssays 39:1700067

    Article  Google Scholar 

  • Bradbury J (2003) Human epigenome project—up and running. PLoS Biol 1:e82

    Article  PubMed  PubMed Central  Google Scholar 

  • Brakes P, Dall SRX, Aplin LM, Bearhop S, Carroll EL, Ciucci P, Fishlock V, Ford JKB, Garland EC, Keith SA, McGregor PK, Mesnick SL, Noad MJ, Notarbartolo di Sciara G, Robbins MM, Simmonds MP, Spina F, Thornton A, Wade PR, Whiting MJ, Williams J, Rendell L, Whitehead H, Whiten A, Rutz C (2019) Animal cultures matter for conservation. Science 363:1032–1034

    Article  CAS  PubMed  Google Scholar 

  • Brinkman AB, Stunnenberg HG (2008) Strategies for epigenome analysis. In: Ferguson-Smith AC, Greally JM, Martienssen RA (eds) Epigenomics. Springer, New York

    Google Scholar 

  • Brooks AN, Turkarslan S, Beer KD, Yin Lo F, Baliga NS (2011) Adaptation of cells to new environments. Wiley Interdiscip Rev Syst Biol Med 3:544–561

    Article  CAS  PubMed  Google Scholar 

  • Burunat E (2019) Love is a physiological motivation (like hunger, thirst, sleep or sex). Med Hypotheses 129:14

    Article  Google Scholar 

  • Champagne FA (2008) Epigenetic mechanisms and the transgenerational effects of maternal care. Front Neuroendocrinol 29:386–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champagne FA (2020) Interplay between paternal germline and maternal effects in sha** development: The overlooked importance of behavioural ecology. Funct Ecol 34:401–413

    Article  Google Scholar 

  • Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, G-h F, Peng H, Zhang X, Zhang Y, Qian J, Duan E, Zhai Q, Zhou Q (2016a) Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351:397–400

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Yan W, Duan EK (2016b) Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Genet 17:733–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortez MJV, Rabajante JF, Tubay JM, Babierra AL (2017) From epigenetic landscape to phenotypic fitness landscape: evolutionary effect of pathogens on host traits. Infect Genet Evol 51:245–254

    Article  PubMed  Google Scholar 

  • Curley JP, Champagne FA, Bateson P, Keverne EB (2008) Transgenerational effects of impaired maternal care on behaviour of offspring and grandoffspring. Anim Behav 75:1551–1561

    Article  Google Scholar 

  • Danchin É (2013) Avatars of information: towards an inclusive evolutionary synthesis. Trends Ecol Evol 28:351–358

    Article  PubMed  Google Scholar 

  • Danchin É, Pocheville A (2014) Inheritance is where physiology meets evolution. J Physiol 592:2307–2317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danchin É, Wagner RH (2010) Inclusive heritability: combining genetic and nongenetic information to study animal behavior and culture. Oikos 119:210–218

    Article  Google Scholar 

  • Danchin É, Giraldeau LA, Valone TJ, Wagner RH (2004) Public information: from nosy neighbors to cultural evolution. Science 305:487–491

    Article  CAS  PubMed  Google Scholar 

  • Danchin É, Charmantier A, Champagne FA, Mesoudi A, Pujol B, Blanchet S (2011) Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat Rev Genet 12:475–486

    Article  CAS  PubMed  Google Scholar 

  • Danchin É, Nöbel S, Pocheville A, Dagaeff A-C, Demay L, Alphand M, Ranty-Roby S, van Renssen L, Monier M, Gazagne É, Allain M, Isabel G (2018) Cultural flies: conformist social learning in fruit flies predicts long-lasting mate-choice traditions. Science 362:1025–1030

    Article  CAS  PubMed  Google Scholar 

  • Danchin É, Pocheville A, Huneman P (2019a) Early in life effects and heredity: reconciling neo-Darwinism with neo-Lamarckism under the banner of the inclusive evolutionary synthesis. Philos Trans R Soc B 374:20180113

    Article  CAS  Google Scholar 

  • Danchin É, Pocheville A, Rey O, Pujol B, Blanchet S (2019b) Epigenetically-facilitated mutational assimilation: epigenetics as a hub within the inclusive evolutionary synthesis. Biol Rev. 94:259–282

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. John Murray, London

    Google Scholar 

  • Deichmann U (2016) Epigenetics: the origins and evolution of a fashionable topic. Dev Biol 416:249–254

    Article  CAS  PubMed  Google Scholar 

  • Dekker J, Belmont AS, Guttman M, Leshyk VO, Lis JT, Lomvardas S, Mirny LA, O’Shea CC, Park PJ, Ren B, Politz JCR, Shendure J, Zhong S, van den Berg A, Heckert AB, Bertero A, Bortnick A, Kukalev A, Moore A, Pombo A, Hansen AS, Chiariello AM, Sali A, Belmont A, Stephens A, Nand A, Valton AL, Goloborodko A, He A, van Steensel B, Webb B, Roscoe B, Li B, Ren B, Chait B, Blau CA, Annunziatella C, Ware C, Wei CL, Leemans C, Disteche C, Jarjour C, Thieme C, Murry C, Barcia CT, Trapnell C, Murre C, Peric-Hupkes D, Simon D, Bartlett D, Gao D, Plewczynski D, Gilbert D, Gorkin D, McSwiggen D, Lin D, Aghamirzaie D, Banigan E, Finn E, Sontheimer E, Cadete FT, Alber F, Mast F, Filippova G, Yardimci GG, Fudenberg G, Loof G, Bonora G, Pegoraro G, Caglio G, Polles G, Ozadam H, Shin H, Pliner H, Reinecke H, Li HC, Tjong H, Fang H, Marie-Nelly H, Belaghzal H, Brandao H, Zhao HM, Cisse I, Jung IY, Tasan I, Juric I, Andrews JO, Schreiber J, Spille JH, Zimmerman J, Shendure J, Dixon J, Ma J, Xu J, Sima J, Dekker J, Gibcus J, Nuebler J, Aitchison J, Marko J, Lam J, Mendieta JAB, Mulia JCR, Cayford J, Cook K, Mitzelfelt K, Parsi KM, Klein K, Brueckner L, Mirny L, Zhang L, Pabon L, Chen L, Carpp L, Yang LY, Pei L, Sander M, Imakaev M, Nicodemi M, Schueler M, Falk M, Denholtz M, Libbrecht M, Bolukbasi MF, Zhen M, Yu M, Rout M, Hu M, Mir M, Armani N, Hua N, Kubo N, Abdennur N, Krietenstein N, Khanna N, Dudko O, Rando O, Luo O, Chaturvedi P, Blainey P, Fields P, Wang P, Li QJ, Casellas R, Gudla R, Maeh R, Kempfer R, Beagrie R, Biggs R, Fang RX, Qiu RL, Genga RMJ, Srivatsan S, Kumar S, Wolfe S, Shaffer S, Kim SS, Shachar S, Bianco S, Jain S, Sasaki T, Isoda T, Misteli T, van Schaik T, Liu T, Hsieh TH, Ramani V, Agarwal V, Dileep V, Chandra V, Winick-Ng W, Li WY, Noble W, Darzacq X, Zhou XHJ, Deng XX, **ong X, Yang XL, Yang Y, Zhang Y, Kou Y, Zhou Y, Ruan YJ, Chen Y, Wang YC, Qiu YJ, Duan ZJ, Tang ZH, Ozer A, Cote A, Tanay A, Chow A, Omer AD, Hwang A, Dudley C, Bartman C, Danko C, Varnai C, Aiden EL, Blobel G, Lin HN, Phillips-Cremins J, Lis J, Wang J, Ray J, Dunagin M, Arrastia M, Lai M, Curtis M, Kushner M, Pham M, Wang M, Yang M, Guttman M, Durand NC, Ollikainen N, Munn P, Fraser P, Ismagilov R, Hsu S, Bhardwaj S, Quinodoz S, Nagano T, Amarante T, Zipfel W, Baran Y, Lubling Y, Wang Z, Palla A, Muimbey-Wahula A, Vertii A, Moradian A, Larabell C, Brangwynne C, Lindsay C, Sanders D, Scalzo D, Cannavo E, McDermott G, Ozadam H, Ma H, Moresco J, Ritland J, Dekker J, Rinn J, Yates J, Zhu J, Roth K, Gerace L, Tait L, Brown L, Zhu L, Kordon M, Groudine M, Le Gros M, Escamilla M, Sweredoski M, Guttman M, Kaufman P, Maas P, Barutcu R, Amin R, Baboo S, Debartolome SM, Hess S, Lomvardas S, Pederson T, Szempruch T, Walkup W, Sun XM, Shin YD, Senecal A, Hansen A, Barentine A, Spakowitz A, Gustavsson AK, Tangara A, Rieger B, Nijmeijer B, Lim B, English B, Barton C, Kenworthy C, Carroll C, O’Shea C, Boassa D, Baddeley D, Grunwald D, Birney E, Chuang F, Castillon G, Wang HF, Grabmayr H, Chen HT, Ou H, Ellenberg J, Liphardt J, Soroczynski J, Biswas J, Yao J, Yin JW, Bewersdorf J, Ries J, Bardales J, Roberti J, Zaret K, Chung K, Lam K, Qi LS, Schmitt L, Barinov L, Tu LC, Yang LL, Tian L, Cai L, Ellisman M, Mackey M, Haberl M, Huisman M, Clark M, Levo M, Levine M, Mir M, Walther N, Oedegaard O, Guo P, Zheng QS, Cheng RH, Ghosh R, Ramachandra R, Coleman R, Singer R, Liu RW, Walden R, Phan S, Ramachandra S, Coleman R, Singer R, Liu RW, Walden R, Phan S, Quanming S, Ganguly S, Alexander S, Peltier S, Fukaya T, Deerinck T, Gregor T, Fitzgerald T, Moerner W, Darzacq X, Zhang YD, Li YM, Takei Y, Izumiya Y, Lin Y, Frankenstein Z, Ren B, Kling C, Rivera C, Zheng HZ, Rivera KZ, Hebert L, Rivas-Astroza M, Wu QY, Calandrelli R, Subramaniam S, Zhong S, Chien S, Leshyk V, Chen WZ, Cao XY, Yan ZM, Balashov A, Schroeder A, Goloborodko A, Alver BH, Vitzthum C, Nam C, Li DF, Purushotham D, Pehrsson EC, Yue F, Lekschas F, Pfister H, Strobelt H, Brandao H, Jang HS, Luber J, Hwang J, Walsh J, Johnson J, Nubler J, Kirli K, Mirny L, Falk M, Imakaev M, Choudhary MN, Abdennur N, Gehlenborg N, Kerpedjiev P, Park P, Kharchenko PV, Sears RL, Lee S, Wang S, Yang T, Hu TXM, Wang T, Hou Y (2017) The 4D nucleome project. Nature 549:219–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denenberg VH, Whimbey AE (1963) Behavior of adult rats is modified by experiences their mothers had as infants. Science 142:1192–1193

    Article  CAS  PubMed  Google Scholar 

  • Devanapally S, Ravikumar S, Jose AM (2015) Double-stranded RNA made in C. elegans neurons can enter the germline and cause transgenerational gene silencing. Proc Natl Acad Sci USA 112:2133–2138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teacher 35:125–129

    Article  Google Scholar 

  • Donohue K (2014) The epigenetics of adaptation: focusing on epigenetic stability as an evolving trait. Evolution 68:617–619

    Article  PubMed  Google Scholar 

  • Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457

    Article  CAS  PubMed  Google Scholar 

  • Fellous S, Duron O, Rousset F (2011) Adaptation due to symbionts and conflicts between heritable agents of biological information. Nat Rev Genet 12:663–663

    Article  CAS  PubMed  Google Scholar 

  • Felsenfeld G (2014) A brief history of epigenetics. Cold Spring Harbor Symp Quant Biol 6:a018200

    Google Scholar 

  • Francis D, Diorio J, Liu D, Meaney MJ (1999) Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286:1155–1158

    Article  CAS  PubMed  Google Scholar 

  • Frumkin I, Lajoie MJ, Gregg CJ, Hornung G, Church GM, Pilpel Y (2018) Codon usage of highly expressed genes affects proteome-wide translation efficiency. Proc Natl Acad Sci USA 115:E4940–E4949

    Article  PubMed  PubMed Central  Google Scholar 

  • Geoghegan JL, Spencer HG (2012) Population-epigenetic models of selection. Theor Popul Biol 81:232–242

    Article  PubMed  Google Scholar 

  • Gilbert SF (2002) The genome in its ecological context: philosophical perspectives on interspecies epigenesis. Ann N Y Acad Sci 981:202–218

    Article  PubMed  Google Scholar 

  • Gilbert SF, Epel D (2015) Ecological developmental biology: integrating epigenetics, medicine, and evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Godfrey-Smith P (2000) On the theoretical role of “genetic coding”. Philos Sci 67:26–44

    Article  Google Scholar 

  • Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  CAS  PubMed  Google Scholar 

  • Grossniklaus U, Kelly B, Ferguson-Smith AC, Pembrey M, Lindquist S (2013) Transgenerational epigenetic inheritance: how important is it? Nat Rev Genet 14:228–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrero-Bosagna CM, Skinner MK (2014) Environmental epigenetics and phytoestrogen/phytochemical exposures. J Steroid Biochem Mol Biol 139:270–276

    Article  CAS  PubMed  Google Scholar 

  • Haig D (2004) The (dual) origin of epigenetics, vol 69. Cold Spring Harbor Laboratory Press, New York, pp 67–70

    Google Scholar 

  • Halfmann R, Lindquist S (2010) Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science 330:629–632

    Article  CAS  PubMed  Google Scholar 

  • Halfmann R, Jarosz DF, Jones SK, Chang A, Lancaster AK, Lindquist S (2012) Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 482:363–U1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall BK (2012) Evolutionary developmental biology. Springer, New York

    Google Scholar 

  • Hallgrímsson B, Hall BK (2011) Epigenetics: linking genotype and phenotype in development and evolution. University of California Press, Berkeley

    Book  Google Scholar 

  • Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157:95–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helanterä H, Uller T (2010) The Price equation and extended inheritance. Philos Theo Biol 2:1–17

    Google Scholar 

  • Holliday R (1979) A new theory of carcinogenesis. Brit J Cancer 40:513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holliday R (1987) The inheritance of epigenetic defects. Science 238:163–170

    Article  CAS  PubMed  Google Scholar 

  • Holliday R (1990) Mechanisms for the control of gene activity during development. Biol Rev. 65:431–471

    Article  CAS  PubMed  Google Scholar 

  • Holliday R (1994) Epigenetics: an overview. Develop Genet 15:453–457

    Article  CAS  Google Scholar 

  • Huang S (2012) The molecular and mathematical basis of Waddington’s epigenetic landscape: a framework for post-Darwinian biology? Bioessays 34:149–157

    Article  CAS  PubMed  Google Scholar 

  • Huneman P, Whalsh DM (2017) Challenging the modern synthesis. adaptation, development, and inheritance. Oxford University Press, New York

    Book  Google Scholar 

  • Huxley J (1956) Epigenetics. Nature 177:807–809

    Article  Google Scholar 

  • Jablonka E (2013) Epigenetic inheritance and plasticity: the responsive germline. Progr Biophys Mol Biol 111:99–107

    Article  Google Scholar 

  • Jablonka E, Lamb MJ (1989) The inheritance of acquired epigenetic variations. J Theor Biol 139:69–83

    Article  CAS  PubMed  Google Scholar 

  • Jablonka E, Lamb MJ (1995) Epigenetic inheritance and evolution: the Lamarckian case. Oxford University Press, Oxford

    Google Scholar 

  • Jablonka E, Lamb MJ (2002) The changing concept of epigenetics. Ann N Y Acad Sci 981:82–96

    Article  PubMed  Google Scholar 

  • Jablonka E, Lamb MJ (2005) Evolution in four dimensions. genetic, epigenetic, behavioural, and symbolic variation in the history of life. MIT Press, Cambridge, MA

    Google Scholar 

  • Jablonka E, Lamm E (2011) Commentary: the epigenotype – a dynamic network view of development. Inter J Epidemiol 20:1–4

    Google Scholar 

  • Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84:131–176

    Article  PubMed  Google Scholar 

  • Jablonka E, Lamb MJ, Avital E (1998) ‘Lamarckian’ mechanisms in Darwinian evolution. Trends Ecol Evol 13:206–210

    Article  CAS  PubMed  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  CAS  PubMed  Google Scholar 

  • Jesmer BR, Merkle JA, Goheen JR, Aikens EO, Beck JL, Courtemanch AB, Hurley MA, McWhirter DE, Miyasaki HM, Monteith KL (2018) Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361:1023–1025

    Article  CAS  PubMed  Google Scholar 

  • Johannes F, Colot V, Jansen RC (2008) OPINION epigenome dynamics: a quantitative genetics perspective. Nat Rev Genet 9:883–890

    Article  CAS  PubMed  Google Scholar 

  • Khalil AM, Wahlestedt C (2008) Epigenetic mechanisms of gene regulation during mammalian spermatogenesis. Epigenetics 3:21–27

    Article  PubMed  Google Scholar 

  • Krutzen M, Mann J, Heithaus MR, Connor RC, Bejder L, Sherwin WB (2005) Cultural transmission of tool use in bottlenose dolphins. Proc Natl Acad Sci USA 102:8939–8943

    Article  PubMed  PubMed Central  Google Scholar 

  • Ladd-Acosta C, Fallin MD (2016) The role of epigenetics in genetic and environmental epidemiology. Epigenomics 8:271–283

    Article  CAS  PubMed  Google Scholar 

  • Laland K, Uller T, Feldman M, Sterelny K, Muller GB, Moczek A, Jablonka E, Odling-Smee J (2014) Does evolutionary theory need a rethink? - Point yes, urgently. Nature 514:161–164

    Article  CAS  PubMed  Google Scholar 

  • Laland KN, Uller T, Feldman MW, Sterelny K, Müller GB, Moczek A, Jablonka E, Odling-Smee J (2015) The extended evolutionary synthesis: its structure, assumptions and predictions. Proc R Soc Lond B Biol Sci 282:20151019

    Google Scholar 

  • Leppek K, Das R, Barna M (2018) Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol 19:158–174

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S (2011) Lamarck redux: prions, Hsp90, and the inheritance of environmentally acquired traits. In: Molecular Frontiers Symposium 2011: origin of life and molecular evolution, 2011-05-24

    Google Scholar 

  • Lu Q, Bourrat P (2017) The evolutionary gene and the extended evolutionary synthesis. Br J Philos Sci 69:775–800

    Article  Google Scholar 

  • Lu Q, Bourrat P (2018) The evolutionary gene and the extended evolutionary synthesis. Br J Philos Sci 69:775–800

    Article  Google Scholar 

  • Maher B (2008) Personal genomes: the case of the missing heritability. Nature 456:18–21

    Article  CAS  PubMed  Google Scholar 

  • Mameli M (2004) Nongenetic selection and nongenetic inheritance. Br J Philos Sci 55:35–71

    Article  Google Scholar 

  • Manjrekar J (2017) Epigenetic inheritance, prions and evolution. J Genet 96:445–456

    Article  PubMed  Google Scholar 

  • Maynard Smith J (2000) The concept of information in biology. Philos Sci 67:177–194

    Article  Google Scholar 

  • Mayr E (1961) Cause and effect in biology - kinds of causes, predictability, and teleology are viewed by a practicing biologist. Science 134:1501–1506

    Article  CAS  PubMed  Google Scholar 

  • Mazzio EA, Soliman KFA (2012) Basic concepts of epigenetics: impact of environmental signals on gene expression. Epigenetics 7:119–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medawar PB, Medawar JS (1983) Aristotle to zoos: a philosophical dictionary of biology. Harvard University Press, Oxford

    Google Scholar 

  • Merlin F, Riboli-Sasco L (2017) Map** biological transmission: an empirical, dynamical, and evolutionary approach. Acta Biotheor 65:97–115

    Article  PubMed  Google Scholar 

  • Mesoudi A, Blanchet S, Charmantier A, Danchin É, Fogarty L, Jablonka E, Laland KN, Müller GB, Odling-Smee FJ, Pujol B (2013) Is non-genetic inheritance just a proximate mechanism? A corroboration of the extended evolutionary synthesis. Biol Theor 7:189–195

    Article  Google Scholar 

  • Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53:857–869

    Article  CAS  PubMed  Google Scholar 

  • Muller GB (2007) Evo-devo: extending the evolutionary synthesis. Nat Rev Genet 8:943–949

    Article  PubMed  Google Scholar 

  • Muller GB (2017) Why an extended evolutionary synthesis is necessary. Interface Focus 7:11

    Google Scholar 

  • Nanney DL (1958) Epigenetic control systems. Proc Natl Acad Sci USA 44:712–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newby GA, Kiriakov S, Hallacli E, Kayatekin C, Tsvetkov P, Mancuso CP, Bonner M, Hesse WR, Chakrabortee S, Manogaran AL, Liebman SW, Lindquist S, Khalil AS (2017) A genetic tool to track protein aggregates and control prion inheritance. Cell 171:966–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicoglou A (2018) Waddington’s epigenetics or the pictorial meetings of development and genetics. Hist Philos Life Sci 40:61

    Article  PubMed  Google Scholar 

  • Nicoglou A, Merlin F (2017) Epigenetics: a way to bridge the gap between biological fields. Stud Hist Philos Sci Part C 66:73–82

    Google Scholar 

  • Norouzitallab P, Baruah K, Vandegehuchte M, Van Stappen G, Catania F, Vanden Bussche J, Vanhaecke L, Sorgeloos P, Bossier P (2014) Environmental heat stress induces epigenetic transgenerational inheritance of robustness in parthenogenetic Artemia model. FASEB J 28:3552–3563

    Article  CAS  PubMed  Google Scholar 

  • Odling-Smee JF (1988) Niche-constructing phenotypes. In: Plotkin HC (ed) The role of behavior in evolution. MIT Press, Cambridge

    Google Scholar 

  • Odling-Smee FJ (2010) Niche inheritance. In: Pigliucci M, Müller GB (eds) Evolution: the extended synthesis. MIT Press, Cambridge, pp 175–207

    Chapter  Google Scholar 

  • Odling-Smee J, Laland KN (2011) Ecological inheritance and cultural inheritance: what are they and how do they differ? Biol Theor 6:220–230

    Article  Google Scholar 

  • Odling-Smee FJ, Laland KN, Feldman M (2003) Niche construction: the neglected process in evolution. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjöström M, Golding J (2006) Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 14:159–166

    Article  PubMed  Google Scholar 

  • Pennisi E (2008) Modernizing the modern synthesis. Science 321:196–197

    Article  CAS  PubMed  Google Scholar 

  • Pigliucci M (2007) Do we need an extended evolutionary synthesis? Evolution 61:2743–2749

    Article  PubMed  Google Scholar 

  • Pigliucci M (2009) An extended synthesis for evolutionary biology. Year Evol Biol 2009:218–228

    Google Scholar 

  • Pigliucci M, Müller GB (2010) Evolution, the extended synthesis. MIT Press, Cambridge, MA

    Book  Google Scholar 

  • Pimpinelli S, Piacentini L (2020) Environmental change and the evolution of genomes: Transposable elements as translators of phenotypic plasticity into genotypic variability. Funct Ecol 34:428–441

    Article  Google Scholar 

  • Pocheville A (2018) Biological information as choice and construction. Philos Sci 85:1012–1025

    Article  Google Scholar 

  • Pocheville A, Danchin É (2015) Physiology and evolution at the crossroads of plasticity and inheritance. J Physiol 593:2243–2243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pocheville A, Danchin É (2017) Genetic assimilation and the paradox of blind variation. In: Humeman P, Walsh D (eds) Challenging the modern synthesis. Adaptation, development, and inheritance. Oxford University Press, Oxford, pp 111–136

    Google Scholar 

  • Pugh JE, Holliday R (1978) Do chemical carcinogens act by altering epigenetic controls through DNA-repair rather than by mutations. Heredity 40:329–329

    Google Scholar 

  • Ranjan N, Leidel SA (2019) The epitranscriptome in translation regulation: mRNA and tRNA modifications as the two sides of the same coin? FEBS Lett 593:1483–1493

    Article  CAS  PubMed  Google Scholar 

  • Rey O, Danchin É, Mirouze M, Loot C, Blanchet S (2016) Adaptation to global change: a transposable element-epigenetics perspective. Trends Ecol Evol 31:514–526

    Article  PubMed  Google Scholar 

  • Rey O, Eizaguirre C, Angers B, Baltazar-Soares M, Sagonas K, Prunier JG, Blanchet S (2020) Linking epigenetics and biological conservation: towards a conservation epigenetics perspective. Funct Ecol 34:414–427

    Article  Google Scholar 

  • Richards EJ (2006) Inherited epigenetic variation - revisiting soft inheritance. Nat Rev Genet 7:395–401

    Article  CAS  PubMed  Google Scholar 

  • Richards CL, Alonso C, Becker C, Bossdorf O, Bucher E, Colome-Tatche M, Durka W, Engelhardt J, Gaspar B, Gogol-Doring A, Grosse I, van Gurp TP, Heer K, Kronholm I, Lampei C, Latzel V, Mirouze M, Opgenoorth L, Paun O, Prohaska SJ, Rensing SA, Stadler PF, Trucchi E, Ullrich K, Verhoeven KJF (2017) Ecological plant epigenetics: evidence from model and non-model species, and the way forward. Ecol Lett 20:1576–1590

    Article  PubMed  Google Scholar 

  • Riggs AD (1975) X inactivation, differentiation, and DNA methylation. Cytogenet Genome Res 14:9–25

    Article  CAS  Google Scholar 

  • Russo VEA, Martienssen RA, Riggs AD (1996) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Saibil H (2013) Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 14:630–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar S (1996) Biological information: a skeptical look at some central dogmas of molecular biology. In: Sarkar S (ed) The philosophy and history of molecular biology: new perspectives. Kluwer Academic Publishers pp, Dordrecht, pp 187–232

    Chapter  Google Scholar 

  • Schang AL, Sabéran-Djoneidi D, Mezger V (2018) The impact of epigenomic next-generation sequencing approaches on our understanding of neuropsychiatric disorders. Clin Genet 93:467–480

    Article  CAS  PubMed  Google Scholar 

  • Sharma A (2015) Systems genomics analysis centered on epigenetic inheritance supports development of a unified theory of biology. J Exp Biol 218:3368–3373

    PubMed  Google Scholar 

  • Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun F, Song L, Carone BR, Ricci EP, Li XZ, Fauquier L, Moore MJ, Sullivan R, Mello CC, Garber M, Rando OJ (2016) Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351:391–396

    Article  CAS  PubMed  Google Scholar 

  • Silveira AB, Trontin C, Cortijo S, Barau J, Del Bem LEV, Loudet O, Colot V, Vincentz M (2013) Extensive natural epigenetic variation at a de novo originated gene. PLoS Gent 9:e1003437

    Article  CAS  Google Scholar 

  • Singh DP, Saudemont B, Guglielmi G, Arnaiz O, Gout J-F, Prajer M, Potekhin A, Przybos E, Aubusson-Fleury A, Bhullar S, Bouhouche K, Lhuillier-Akakpo M, Tanty V, Blugeon C, Alberti A, Labadie K, Aury J-M, Sperling L, Duharcourt S, Meyer E (2014) Genome-defence small RNAs exapted for epigenetic mating-type inheritance. Nature 509:447–452

    Article  CAS  PubMed  Google Scholar 

  • Skinner MK (2011a) Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics 6:838–842

    Article  CAS  PubMed  Google Scholar 

  • Skinner MK (2011b) Role of epigenetics in developmental biology and transgenerational inheritance. Birth Defects Res C 93:51–55

    Article  CAS  Google Scholar 

  • Skinner MK, Manikkam M, Guerrero-Bosagna C (2010) Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metabol 21:214–222

    Article  CAS  Google Scholar 

  • Szyf M (2014) Lamarck revisited: epigenetic inheritance of ancestral odor fear conditioning. Nat Neurosci 17:2–4

    Article  CAS  PubMed  Google Scholar 

  • Szyf M (2015) Nongenetic inheritance and transgenerational epigenetics. Trends Mol Med 21:134–144

    Article  PubMed  Google Scholar 

  • Thieffry D, Sanchez L (2002) Alternative epigenetic states understood in terms of specific regulatory structures. Ann N Y Acad Sci 981:135–153

    Article  CAS  PubMed  Google Scholar 

  • Tollefsbol T (2017) Handbook of epigenetics: the new molecular and medical genetics. Academic Press, Oxford, UK

    Google Scholar 

  • Tricker PJ (2015) Transgenerational inheritance or resetting of stress-induced epigenetic modifications: two sides of the same coin. Front Plant Sci 6:699–707

    Article  PubMed  PubMed Central  Google Scholar 

  • Uller T, Helanterä H (2017) Niche construction and conceptual change in evolutionary biology. Br J Philos Sci. https://doi.org/10.1093/bjps/axx050

  • van Schaik CP, Ancrenaz M, Borgen G, Galdikas B, Knott CD, Singleton I, Suzuki A, Utami SS, Merrill M (2003) Orangutan cultures and the evolution of material culture. Science 299:102–105

    Article  PubMed  Google Scholar 

  • Van Speybroeck L (2002) From epigenesis to epigenetics: the case of CH Waddington. Ann N Y Acad Sci 981:61–81

    Article  PubMed  Google Scholar 

  • Vastenhouw NL, Brunschwig K, Okihara KL, Muller F, Tijsterman M, Plasterk RHA (2006) Long-term gene silencing by RNAi. Nature 442:882–882

    Article  CAS  PubMed  Google Scholar 

  • Waddington CH (1939) An introduction to modern genetics. George Allen And Unwin Ltd, London

    Google Scholar 

  • Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature 3811:563–565

    Article  Google Scholar 

  • Waddington CH (1953a) Epigenetics and evolution. In: Brown R, Danielli JF (eds) Evolution (SEB Symposium VII). Cambridge University Press, Cambridge, pp 186–199

    Google Scholar 

  • Waddington CH (1953b) Genetic assimilation of an acquired character. Evolution 7:118–126

    Article  Google Scholar 

  • Waddington CH (1959) Canalisation of development and genetic assimilation of acquired characters. Nature 183:1654–1655

    Article  CAS  PubMed  Google Scholar 

  • Waddington CH (1968) The basic ideas of biology. In: Waddington CH (ed) Towards a theoretical biology, vol. 1: prolegomena. Edinburgh University Press, Edinburgh, pp 1–32

    Google Scholar 

  • Wang Y, Liu H, Sun Z (2017) Lamarck rises from his grave: parental environment-induced epigenetic inheritance in model organisms and humans. Biol Rev 92:2084–2111

    Article  PubMed  Google Scholar 

  • Weigel D, Colot V (2012) Epialleles in plant evolution. Gene Biol 13:1–6

    Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, Oxford

    Book  Google Scholar 

  • Whitehead H (2017) Gene-culture coevolution in whales and dolphins. Proc Natl Acad Sci USA 114:7814–7821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whiten A (2011) The scope of culture in chimpanzees, humans and ancestral apes. Philos Trans R Soc Lond B 366:997–1007

    Article  Google Scholar 

  • Whiten A (2017) Culture extends the scope of evolutionary biology in the great apes. Proc Natl Acad Sci USA 114:7790–7797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whiten A, Horner V, de Waal FBM (2005) Conformity to cultural norms of tool use in chimpanzees. Nature 437:737–740

    Article  CAS  PubMed  Google Scholar 

  • Willbanks A, Leary M, Greenshields M, Tyminski C, Heerboth S, Lapinska K, Haskins K, Sarkar S (2016) The evolution of epigenetics: from prokaryotes to humans and its biological consequences. Genet Epigenet 8:25–36

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu C-T, Morris JR (2001) Genes, genetics, and epigenetics: a correspondence. Science 293:1103–1105

    Article  CAS  Google Scholar 

  • Yang Q, Yu CH, Zhao FZ, Dang YK, Wu C, **e PC, Sachs MS, Liu Y (2019) eRF1 mediates codon usage effects on mRNA translation efficiency through premature termination at rare codons. Nucl Acids Res 47:9243–9258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Many thanks to Antonine Nicoglou and Francesca Merlin who early and greatly contributed to the historical part of this paper. Despite the fact that our discussions could not dispel all divergences between us, this paper owes them a lot. Arnaud Pocheville and Guillaume Isabel commented a previous version, which brought important improvements. This work was supported by and perfectly fits into the philosophy of the Laboratoire d’Excellence (LABEX) TULIP (ANR-10-LABX-41), as well as MoleCulture (ANR-18-CE37-0015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Danchin .

Editor information

Editors and Affiliations

Glossary

Extended Evolutionary Synthesis

A trend in evolutionary science, that took momentum at the turn of the twenty-first century and that puts more emphasis on the role of development, environmental factors, as well as some non-genetic forms of inheritance in the evolutionary processes (mainly if not exclusively epigenetics in its developmental and evolutionary understandings: Pennisi 2008; Pigliucci and Müller 2010; Laland et al. 2015; Lu and Bourrat 2017).

Genetic

Here, I use this term in its most common modern sense of sequencic, i.e. information encoded in the DNA sequence of nucleotides. Note that this meaning is highly reductionist relative to the initial meaning that encompassed everything that participates to heredity.

Genetic assimilation

A process by which a phenotype initially induced by a specific environmental factor, becomes genetically determined through selection. Note that, at the time of Waddington, the term genetic meant anything that is inherited. In particular, Waddington’s experiments did not show that the initially plastic trait became encoded into the DNA sequence, but rather, that it lost its plasticity and became inclusively heritable (Danchin et al. 2019b).

Heredity

Patterns of parent–offspring resemblance. It is widely accepted in biology that heredity results from parents transmitting information to their offspring, though the nature of this information is still at the heart of a hot debate (e.g., Sarkar 1996; Godfrey-Smith 2000; Maynard Smith 2000; Pocheville 2018; Danchin et al. 2019b).

Heritability

Usually, this term quantifies the part of phenotypic variation that is inherited genetically, either additively (narrow sense heritability) or total (broad sense heritability). It is measured at the level of a population. It quantifies parent–offspring resemblance at play in quantitative genetics. Today heritability is usually associated to variation in DNA nucleotidic sequence alone (Danchin and Wagner 2010; Danchin et al. 2011). For more details, see (Bourrat 2015). In Table 1.1, I also point at the transposition of this term to depict the persistence of cell characteristics along cell lineages of multicellular organisms.

Inclusive Evolutionary Synthesis

The evolutionary synthesis ambitioning to incorporate all known dimensions of inheritance into a single theoretical framework. It incorporates the inclusive understanding of epigenetics that I develop here.

Inclusive heritability

Statistical term quantifying the degree of parent–offspring resemblance, whatever the mechanisms responsible for it (whether sequencic or not, Danchin and Wagner 2010; Danchin et al. 2011). It is the heredity of difference, whatever the underlying mechanism. Often in this book chapter, I use the term heritability in the meaning of inclusive heritability, because historically it was the initial meaning of this term. Inclusive heritability is the corner stone of evolution through natural selection and drift.

Infra-individual processes

Biological processes occurring within an organism during its lifetime, including gene expression, cell functioning, physiology, neurobiology, as opposed to supra-individual processes. Corresponds to what Mayr (1961) called functional biology.

Inheritance

The set of mechanisms producing parent–offspring resemblance.

Intergenerational epigenetic inheritance

The set of epigenetic mechanisms that produce resemblance between two successive generations.

Modern Synthesis (of evolution)

A trend in evolution, first coined by Julian Huxley in 1942, that brought together Darwinism, Mendelism, and population genetics in order to provide a powerful account of the mechanisms of evolution. Also called Neo-Darwinism although these two terms often cover different approaches. In this trend, the focus is mainly on genes (today understood as sequencic). A purpose of the extended or inclusive syntheses is to extend it beyond the gene.

Non-genetic inheritance

Mechanisms of inclusively heritable variation that do not result from variation in the DNA sequence (Danchin and Wagner 2010; Danchin et al. 2011). Equivalent to non-sequencic inheritance.

Sequencic

Term that was first casually used by Hervé Philippe in a discussion to depict the pervasive trend among biologists and the grand public to reduce inherited information to the sole information encoded into the DNA sequence of nucleotides. It can replace the term genocentrism that I used before that is ambiguous because of the many understandings of all the terms of the “gene” family (genetics, genomics…).

Supra-individual processes

Interactions occurring among individuals within populations, communities, and ecosystems. These integrate transgenerational processes such as heredity. This is the domain of ecology and evolution. Corresponds to what Mayr (1961) called evolutionary biology.

Transgenerational epigenetic inheritance

The set of epigenetic mechanisms that produces resemblance across multiple (≥2) generations of organisms.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Danchin, E. (2022). More than Fifty Shades of Epigenetics for the Study of Early in Life Effects in Medicine, Ecology, and Evolution. In: Costantini, D., Marasco, V. (eds) Development Strategies and Biodiversity. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-90131-8_1

Download citation

Publish with us

Policies and ethics

Navigation